
SCHOLAR Study Guide

Higher (CfE) Computing Science
Unit 1

Authored by:
Ian King

Jennifer Wilson

Mark J Tennant

Previously authored by:
David Bethune

Andy Cochrane

Tom Kelly

Ian King

Richard Scott

Heriot-Watt University

Edinburgh EH14 4AS, United Kingdom.

First published 2001 by Heriot-Watt University.

This edition published in 2014 by Heriot-Watt University SCHOLAR.

Copyright © 2014 Heriot-Watt University.

Members of the SCHOLAR Forum may reproduce this publication in whole or in part for
educational purposes within their establishment providing that no profit accrues at any stage,
Any other use of the materials is governed by the general copyright statement that follows.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, without written permission from the publisher.

Heriot-Watt University accepts no responsibility or liability whatsoever with regard to the
information contained in this study guide.

Distributed by Heriot-Watt University.

SCHOLAR Study Guide Unit 1: Higher (CfE) Computing Science

1. Higher (CfE) Computing Science

ISBN 978-1-909633-24-7

Printed and bound in Great Britain by Graphic and Printing Services, Heriot-Watt University,
Edinburgh.

Acknowledgements
Thanks are due to the members of Heriot-Watt University's SCHOLAR team who planned and
created these materials, and to the many colleagues who reviewed the content.

We would like to acknowledge the assistance of the education authorities, colleges, teachers
and students who contributed to the SCHOLAR programme and who evaluated these materials.

Grateful acknowledgement is made for permission to use the following material in the
SCHOLAR programme:

The Scottish Qualifications Authority for permission to use Past Papers assessments.

The Scottish Government for financial support.

All brand names, product names, logos and related devices are used for identification purposes
only and are trademarks, registered trademarks or service marks of their respective holders.

i

Contents

1 Languages and environments 1
1.1 Revision . 3
1.2 Low level and high level languages . 3
1.3 Control structures . 4
1.4 Why so many programming languages? 6
1.5 Classifying programming languages . 7
1.6 Programming environments . 20
1.7 Learning points . 24
1.8 End of topic test . 25

2 Low level operations: Storing data 29
2.1 Revision . 31
2.2 Using binary code to represent and store numbers 31
2.3 Storing integers . 32
2.4 Storing real numbers . 42
2.5 Storing text . 46
2.6 Storing graphics . 48
2.7 Storing sound . 56
2.8 Storing video . 58
2.9 Learning points . 61
2.10 End of topic test . 63

3 Data types and structures 65
3.1 Revision . 67
3.2 Data types and pseudocode . 68
3.3 Simple data types . 69
3.4 Identifying simple data types . 70
3.5 Structured data types . 71
3.6 Handling records . 73
3.7 Parallel arrays and records . 74
3.8 Handling records . 78
3.9 Identifying structured data types . 79
3.10 Sequential files . 80
3.11 Learning points . 81
3.12 End of topic test . 82

4 Development methodologies 83
4.1 Revision . 85
4.2 The traditional software development process 86

ii CONTENTS

4.3 Rapid Application Development (RAD) 101
4.4 Agile software development . 102
4.5 Learning points . 103
4.6 End of topic test . 104

5 Software design notations 107
5.1 Revision . 108
5.2 Introduction . 109
5.3 Structure diagrams . 109
5.4 Data flow diagrams . 111
5.5 Pseudocode . 112
5.6 Wireframes . 114
5.7 Learning points . 116
5.8 End of topic test . 117

6 Algorithm specification 119
6.1 Revision . 120
6.2 Standard algorithms . 121
6.3 Input validation . 121
6.4 Finding the minimum or the maximum value in an array 124
6.5 Counting Occurrences . 127
6.6 Linear search . 130
6.7 Learning points . 133
6.8 End of topic test . 134

7 Computational constructs 137
7.1 Revision . 139
7.2 Introduction . 140
7.3 Variables and scope . 141
7.4 Sub-programs . 142
7.5 User defined functions . 146
7.6 Parameters . 148
7.7 Passing parameters by value and reference 153
7.8 Sequential files . 155
7.9 Learning points . 156
7.10 End of topic test . 157

8 Testing and documenting solutions 161
8.1 Revision . 162
8.2 Test plans . 163
8.3 Debugging . 164
8.4 Debugging tools . 165
8.5 Learning points . 169
8.6 End of topic test . 170

9 Computer architecture 173
9.1 Revision . 175
9.2 The parts of the processor . 176
9.3 Buses and their function . 177
9.4 Interfaces . 180

© HERIOT-WATT UNIVERSITY

CONTENTS iii

9.5 Cache . 182
9.6 Advances in processor design . 184
9.7 Emulators and virtual machines . 186
9.8 Mobile devices . 187
9.9 Learning points . 187
9.10 End of topic test . 189

10 End of Unit 1 test 191
10.1 End of Unit 1 Test . 192

Glossary 200

Answers to questions and activities 208
1 Languages and environments . 208
2 Low level operations: Storing data . 213
3 Data types and structures . 216
4 Development methodologies . 224
5 Software design notations . 227
6 Algorithm specification . 229
7 Computational constructs . 234
8 Testing and documenting solutions . 237
9 Computer architecture . 239
10 End of Unit 1 test . 241

© HERIOT-WATT UNIVERSITY

1

Topic 1

Languages and environments

Contents

1.1 Revision . 3

1.2 Low level and high level languages . 3

1.3 Control structures . 4

1.4 Why so many programming languages? . 6

1.5 Classifying programming languages . 7

1.5.1 Procedural languages . 7

1.5.2 Declarative languages . 9

1.5.3 Object-oriented languages . 11

1.5.4 Domain-specific languages . 16

1.5.5 Scripting languages . 17

1.5.6 New programming languages . 19

1.6 Programming environments . 20

1.7 Learning points . 24

1.8 End of topic test . 25

Prerequisite knowledge

You should already know that:

• natural (human) languages are much more complex than programming languages;

• computer programming languages, are used to write programs which are used to
give a sequence of commands to a computer;

• all high level languages must be translated into machine code before they can be
understood by the computer;

• there are a large number of different programming languages and that many have
been created in order to solve specific types of problem.

Learning Objectives

By the end of this topic you will be able to:

• understand the difference between high level and low level programming
languages;

2 TOPIC 1. LANGUAGES AND ENVIRONMENTS

• know that all programming languages can be reduced to three basic control
structures: sequence, selection and iteration;

• appreciate that programming languages can be classified in a number of different
ways;

• explain the differences between procedural, declarative, object-oriented and
domain-specific languages;

• understand the difference between two types of translation software: compilers
and interpreters;

• describe the tools a programmer would expect to be available in a modern
programming environment.

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 3

1.1 Revision

Quiz: Revision

Q1: Programs written in a High Level language need to be translated because?

a) Computers only understand machine code
b) Machine code is easier for the programmer to understand
c) There are many different programming languages
d) A computer can only understand a few programming languages

. .

Q2: There are many different High level programming languages because?

a) There are many different human languages
b) High level languages are often written to solve particular types of problem
c) There are many types of translation software
d) There are many different types of computer

. .

Q3: What are the main differences between natural languages and programming
languages?

. .

1.2 Low level and high level languages

Digital computers are made up of from electronic switches which only have two states,
on and off. Because of this they have to be given instructions using a language
called machine code which contains only two corresponding characters: 1 and 0. For
this reason is the language used to directly control a computer it is referred to as a
low level language. Although we could give commands to computers using this code; it
is not easy for humans to read or understand. For this reason why we use programming
languages which are more like the natural languages we use to communicate between
ourselves. The programming languages we use are called high level languages
because they always have to be translated into machine code before a computer can
use them.

Natural language

High level language

Low level language

It would be nice if we could use a natural language like English to communicate with
computers, but unfortunately natural languages are too complex and too ambiguous to
be translatable directly into machine code, although there is much research going on into
achieving this goal. All languages whether human or machine, have rules which can be

© HERIOT-WATT UNIVERSITY

4 TOPIC 1. LANGUAGES AND ENVIRONMENTS

used to decide whether a statement is grammatically correct or not. The grammatical
rules for programming languages are much simpler than those for natural languages,
and it is these rules, usually referred to as their syntax, which are used by the translation
software which converts programs we have written in a high level language into machine
code.

There are approximately 7000 current human languages spoken in the world. There are
over 2000 computer programming languages but luckily for native English speakers, the
majority of computer programming languages use English words as keywords in their
commands.

1.3 Control structures

Programming languages are used to control the activities of computers. For this reason
all programming languages use control structures. Strictly speaking we only need 3
basic control structures to control a computer:

• Sequence: This is the rule that unless otherwise directed, any set of commands
will be executed one after the other.

• Selection: This is when a decision about which command to execute depends on
whether a condition is true or not.

• Iteration: This is where a set of commands is repeated for a set number of times,
often called a loop.

What distinguishes different programming languages is how these three basic control
structures have been combined into computational constructs, and how these
constructs are used.

Activity: Control structures

Identify the following pseudocode segments as Sequence, Selection, Iteration, or a
combination of these control structures.

Q4: Identify the following pseudocode segments as A) Sequence, B) Selection, C)
Iteration, or a combination of these control structures:

��� ����� �� 	

����� �������� �
�� ������
�

��� ����� �� ����� � ��������

a) A
b) B
c) C
d) A and B
e) A and C
f) B and C
g) A, B, and C

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 5

. .

Q5: Identify the following pseudocode segments as A) Sequence, B) Selection, C)
Iteration, or a combination of these control structures:

����� �������� �
�� ������
�

�� �������� � �		 ����

���� ���� �� ��� !"#!$ �� ���%&��

��� ��

a) A
b) B
c) C
d) A and B
e) A and C
f) B and C
g) A, B, and C

. .

Q6: Identify the following pseudocode segments as A) Sequence, B) Selection, C)
Iteration, or a combination of these control structures:

����� �������� �
�� ������
�

'��&� �������� (�
 �������� � �		 ��

���� ���� �� ���� � ��)��* � �*+ �		$ �� ���%&��

��� '��&�

��� ��

a) A
b) B
c) C
d) A and B
e) A and C
f) B and C
g) A, B, and C

. .

Once you have complete the above questions, explain what the pseudocode does for
each of the three segments.

. .

© HERIOT-WATT UNIVERSITY

6 TOPIC 1. LANGUAGES AND ENVIRONMENTS

1.4 Why so many programming languages?

Because programming languages have a much simpler and smaller vocabulary and
set of grammar rules than natural languages, they are much easier to create. Many
programming languages have been created in order to solve a particular sort of
computing task, or were written with a particular set of people in mind such as those
involved in Commercial Data Processing (COBOL), scientists (FORTRAN) or artificial
intelligence researchers (PROLOG). This is often described as programming languages
being problem oriented.

Most programming languages are very similar to each other which means that once you
have learned how to use one programming language, learning the grammatical rules of
another one is often quite easy.

Activity: Programming languages

30 min

Q7: Research the following programming languages. Once you have done this, match
each to one of the brief descriptions that follow.

• HTML

• Smalltalk

• Java

• PHP

• BASIC

• Python

• Pascal

• FORTRAN

• PROLOG

• COBOL

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 7

Language Description

A high level procedural language designed to be easy to learn
which became the popular language when computers became
cheaper and popular in the 1970s.

One of the earliest procedural programming languages designed
for business and finance users.
A general purpose procedural language developed by Niklaus
Wirth and designed to encourage good programming practice.

A highly portable object-oriented general purpose programming
language designed to be platform independent and used for
client-server web applications.

A domain specific page description language used to instruct web
browsers how to display web pages.

A general-purpose, procedural programming language designed
for numeric and scientific computing.

An early object-oriented programming language originally
designed for educational use.

A declarative logic language designed for artificial intelligence
applications.

a server-side scripting language designed for web development,
often in combination with the MySQL database application.

A general purpose procedural programming language designed by
Guido van Rossum with an emphasis on readability of code.

. .

1.5 Classifying programming languages

Although they have many similarities, programming languages are different enough from
each other to be classified in a number of ways. No method of classification is perfect
and no matter how they are classified, there will be languages which fall into more than
one category.

The simplest classification is by how they are used: In this section we are going to look
at procedural, declarative, object oriented and domain specific languages.

1.5.1 Procedural languages

Procedural languages are the commonest type of programming language. Programs
written in an procedural language will consist of a sequence of commands which will
be executed in a predictable order from beginning to end. A low level language like
machine code is the simplest example of an procedural language, but it is not easy to
write programs using it, so high level programming languages were developed to make
programming easier and more productive. Many procedural programming languages
were designed originally as languages to teach programming, and as a result are often
called general purpose languages. BASIC (Beginners All-Purpose Symbolic Instruction
Code) and Pascal are two examples of languages which were developed in this way.

© HERIOT-WATT UNIVERSITY

8 TOPIC 1. LANGUAGES AND ENVIRONMENTS

Procedural languages use standard arithmetic operations (+, -, *, /, etc), and a wide
variety of control structures and sub-programs.

A programmer using an procedural programming language creates a set of instructions
which are executed in order to provide a solution to a problem. The set of instructions
will have a definite beginning and end and will describe exactly what the computer must
do at each step. These instructions are executed in written order by the computer.

The first programming languages were all procedural languages as this matched the
way in which digital computers behave - they follow one instruction after the other. At
machine code level it could be said that all programming languages are procedural,
since they all must be translated into machine code before their instructions can be
executed.

Examples of procedural programming languages are: BASIC, C, Pascal and Python.

Code example: Visual Basic 6

Example of a program to read data into an array and output results

,%��#��� �� -"�� �* ����.)"�! ���� *���� �*+ /�"*� �!�� ���

%�"0��� �� �"������.1��"2345

�"� ����465 �� ���"*#

�"� ���*� �� �*��#��

,���"#* ����. 0�����

����4	5 7 8&�"�! &���*���8

����4�5 7 8��*��. ��.�8

����495 7 8
�.���*
�0���8

����4:5 7 8���+�� �����8

����4;5 7 8<�*"/�� <�*"���8

����465 7 8'��+"� '�*+�����8

��� ���*� 7 	 �� 6

%�"*� 8�����8= �� 4>5= ���*���= �� 4�;5= ����4���*�5

��?� ���*�

%�"*�

�*+ ��

Notice that:

• the program is expressing at each step precisely how each statement is executed;

• the program has beginning and end points, which is a feature of procedural
language programs.

Q8: From the above example, write out the predicted output.

. .

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 9

1.5.2 Declarative languages

Declarative languages were an attempt to create a programing language which more
closely matches how humans think than how a digital computer behaves. For this
reason, they are most closely associated with artificial intelligence programming. In
contrast to a program written in an procedural language, a program written in a
declarative language will consist of a set of facts and rules (the knowledge base). When
a program is run by entering a query, the solution is found by finding a match between the
query and the facts and rules in the knowledge base. This is a quite different approach
to how a procedural language is used, where a program would follow a set of commands
in sequence (although that sequence may very from one run to another depending on
the user choices while it is running) A program written in a declarative language will not
necessarily follow a specific sequence of operations.

• Declarative languages tend to have fewer variable types and less control structures
than procedural languages.

• They make more use of programming techniques like recursion (where a sub
program repeatedly calls itself until a simple base fact is identified).

• They use self modifying code (where the program modifies its set of facts and
rules).

• Being able to modify the facts and rules depending on circumstances while
a declarative program is running makes such languages useful where an
expert system has to build up knowledge and "learn" from experience).

Examples of Declarative programming languages are: PROLOG, Lisp

PROLOG facts and rules are stored as a database (or knowledge base) which can then
be queried to provide solutions.

Code example: PROLOG:

Problem: Suppose we want to find out whether a person drives a fast car. We start by
building a set of facts and rules for our knowledge base.

Solution:

/����*4@�+.5A

/����*4@����5A

+�"0��12��4@����B -��+1��2���5A

+�"0��12��4@�+.B /���2!�5A

+�"0��1-���12��4C5DE

+�"0��12��4CB /���2!�5A

In this example we could ask the program to tell us whether Judy drives a fast car by
typing the query:

F+�"0��1-���12��4@�+.5. The result would be YES since the goal is satisfied.

© HERIOT-WATT UNIVERSITY

10 TOPIC 1. LANGUAGES AND ENVIRONMENTS

If we asked:

F+�"0��1-���12��4@����5

then the result would be NO as +�"0��12��4@����B�5 would evaluate Y="ford escort".

This would then cause the rule +�"0��1-���12��4@����5 to fail as Y does not equal
"porsche" and the goal is not satisfied.

You can see from the code that there is no description of the type of data or its internal
representation. There are simply statements of facts and a rule.

Contrast this with an procedural language where the programmer would need to set up
a structure to hold the knowledge and predefine its type (string, number etc). Then they
would need to describe the steps taken to search the structure in order to answer the
query. A declarative/logical language is simplistically described as telling the computer
what to do and not how to do it.

Activity: PROLOG

This PROLOG program consists of a set of facts about a set of simple individuals. The
facts describe who is warm, who is fed and who is cold. There are two simple rules to
determine whether someone is happy or unhappy.

)���4-��+5A

)���4@��5A

)���4@"�5A

)���4@�235A

-�+4-��+5A

-�+4-��*2"�5A

-�+4@���"*5A

2��+4@"�5A

2��+4@���"*5A

!�//.4%����*5DE

)���4%����*5B

-�+4%����*5A

�*!�//.4%����*5DE

2��+4%����*5A

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 11

Match the answers to the following queries:

Q9: ?warm(fred)

a) Yes
b) No

. .

Q10: ?happy(jack)

a) Yes
b) No

. .

Q11: ?happy(fred)

a) Yes
b) No

. .

Q12: ?unhappy(X)

a) X = jim
b) X = fred
c) X = justin
d) X = jim, X = justin

. .

1.5.3 Object-oriented languages

Object-oriented languages were originally developed from procedural languages as an
attempt to make writing software more efficient. Graphical user interfaces (GUIs) are
now almost universal and they are event-driven environments where user interaction
is required in the form of a mouse click or a key press to represent the processing.
Procedural languages do not possess the necessary constructs to deal with this style
of programming and are generally unsuitable for building GUI applications. Programs
were becoming increasingly complex and the use of global variables meant that it
became more and more difficult to keep errors from occurring where data was changed
accidentally.

Object-oriented programming languages address these problems by creating re-usable
blocks of code (called objects) which define the data used within that block and how that
data can be changed.

• The data associated with an object is referred to as its attributes, and the methods
which can change that data are called its operations.

• These objects are defined as being of a particular type (called a class) which can
be used to create other objects with the same characteristics.

© HERIOT-WATT UNIVERSITY

12 TOPIC 1. LANGUAGES AND ENVIRONMENTS

• Objects are closed systems which cannot be altered from outside which makes
errors caused by the use of global variables less likely.

• This feature is called encapsulation. The benefit of using this technique is that
once a class has been defined and tested, sub-classes can then be created
which share the main characteristics of the parent class, thus saving testing and
development time.

• This ability to create a sub-class from a pre defined class is called inheritance.

• Because objects in an object-oriented program are closed systems, they interact
with each other by sending messages to other objects. Messages are much easier
to manage and keep track of than the changing values of global variables.

• A programmer using an object-oriented language would create a set of classes
and sub-classes which define the objects to be used in the program.

• Object-oriented languages depend greatly on the concept of class libraries.
These are sets of classes that can be used by developers as common building
blocks for complex applications, rather akin to module libraries that are used in
procedural programming.

• Whereas a procedural language program will be built from a number of procedures
called from a main procedure, an object oriented program will have a number of
methods which are specifically linked to the class within which they are defined,
in keeping with the idea of keeping classes and objects self contained.

Object-oriented table

Object Attributes Operations
Button Name, Size, Position, Colour Click, Mouse-over

Window
Name, Size, Position, Focus,
Border

Maximise, Minimise, Resize,
Open, Close

Dialogue box Contents, Priority Open, Close, OK, Cancel

Examples of object-oriented languages are: Java, C++, Smalltalk, BYOB

Activity: Object-oriented table

Q13: Extend the above object-orientated table to include the attributes and operations
for:

• Text box

• Radio button

• Pull-down menu

Object Attributes Operations
Button Name, Size, Position, Colour Click, Mouse-over

Window
Name, Size, Position, Focus,
Border

Maximise, Minimise, Resize,
Open, Close

Dialog box Contents, Priority Open, Close, OK, Cancel
Text box
Radio button
Pull-down menu

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 13

. .

Activity: Inheritance diagram

Q14: Match the words to the correct nodes to complete the inheritance diagram:

. .

Code example: BYOB

BYOB is an example of an object-oriented language used to teach programming. In this
example, the boy sprite has inherited the attributes of the general sprite class, but has
the additional specific attributes of several costumes to give a walking animation effect.
It communicates with the stage when it is touching the edge by sending a message.
When the stage receives the message it changes its background attribute to display the
next image.

© HERIOT-WATT UNIVERSITY

14 TOPIC 1. LANGUAGES AND ENVIRONMENTS

Figure 1.1: Code example: BYOB

. .

In this example of the Java programming language, there are three methods defined
within the average class: fillarray() which returns an integer array, average() which
returns an integer value and the main method which calls fillarray() and average() and
displays the average of the values in the array.

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 15

"�/��� @�0�A��"�A
�*+��=

2���� �0���#�G

HH ����� �� -"*+ �0���#� �- 0����� "* �* ����.

HH ��� �/ 2�*���*��

����"2 -"*�� "*� ����.��*#�! 7 9	=

����"2 "*� ����."* IJ7 *�) "*� I����.��*#�!J=

HH ���!�+ �� "*"�"��"�� ����.

����"2 0�"+ -"������.4"*� ����."*IJ5G

�*+�� ����.2�*��*�� 7 *�)
�*+�� 45=

-��4"*� 2��*���7	=2��*��� (7 ����."*A��*#�!E�=2��*�����5G

����."*I2��*���J 7 ���!A� �4����.2�*��*��A*�?��*�45 K �			5=

L

�.����A���A/�"*��*48����. *�) "*"�"��"��+85=

L

HH ���!�+ �� -"*+ �0���#� 0����

����"2 "*� �0���#�10���� 4"*� IJ ����."*5G

"*� ����� 7 	=

-��4"*� 2��*���7	=2��*��� (7 ����."*A��*#�!E�=2��*�����5G

����� 7 ����� � ����."*I2��*���J=

L

�����* �����H����."*A��*#�!=

L

HH��"* ���!�+

/� �"2 ����"2 0�"+ ��"* 4���"*# I J ��#�5G

-"������.4����."*5=

�.����A���A/�"*��*48�0���#� "� 8 � �0���#�10����4����."*55=

L

L

© HERIOT-WATT UNIVERSITY

16 TOPIC 1. LANGUAGES AND ENVIRONMENTS

Quiz: Object-oriented languages

Q15: Give two reasons for the development of object-oriented languages.

. .

Q16: Give three characteristics of object-oriented programming languages.

. .

Q17: Explain the concept of inheritance and why it is an important feature of object-
oriented programming?

. .

1.5.4 Domain-specific languages

Domain-specific languages (sometimes called mini languages) are a subset of
procedural languages, but what distinguishes them is that they have been designed
with one specific type of task in mind. A page description language like HTML is a good
example as it is used specifically to describe the layout and design of a web page.
Another example is SQL (Structured Query Language) which is the language used
to formulate database queries. A programmer using a domain-specific language will
typically have a particular type of application in mind and wants a language which has
specific commands and control structures appropriate to that application. This makes
the programmer's job easier and shortens development time as a result.

Code example: HTML

Here is an example of HTML which instructs a web browser to display text in a variety
of sizes, horizontal lines, an image and a link to the Google website.

(!����

(!��+�

(�"���� �"��� %�#� (H�"����

(H!��+�

(�+.�

(!�� �. -"��� �./��E��?� /�#� (H!��

(!��

(!:� �!"� ��2�"�* "� "* -�*� �"M� : (H!:�

(/� .�� 2�* ��3� ��?� (� ��+ (H �(H/�

(/� �� ("� "���"2 (H"�(H/�

(/� �� (�� �*+���"*�+ (H��(H/�

(/�(H/�

�� (� ("� (�� ��� �!��� (H � (H"� (H��

(!��

(/�(H/�

("�# ��27 8/"2����A@/#8�

(/�(H/�

(� !��-78!��/DHH)))A#��#��A2�A�38� N��#�� (H��

(H �+.�

(H!����

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 17

1.5.5 Scripting languages

Scripting languages are usually designed to add extra functionality to, or automate
an application program or an operating system. Scripting languages include those
macro languages which are part of applications like Word and Excel and languages like
Javascript and VBscript which can be embedded in HTML documents to add interactivity
to web pages.

A macro is a sequence of operations that can be invoked as a single task. It therefore
lets you automate a frequently-performed task and can be simple, such as entering text
and formatting it, or complex, like automating tasks that would take several minutes to
do manually.

Many programs (like Microsoft Word and Microsoft Excel) let users create macros easily
by "recording" a set of actions as you perform them. For example, you could record
opening a new document using a specific template, inserting a header and inserting a
name and address and greeting. Each time you "replayed" the macro, it would perform
those tasks. The macro is stored as a script using the application's scripting language,
VBScript and can be placed on the application toolbar as a button or in a menu as a
command.

Code example: VBScript

This is a example VBScript listing for a macro to create a table in Microsoft Word:

�� ��2���45

,

,

, ��2�� �� 2����� � �� �� "* '��+

,

, ��2��� ��2��

,

�2�"0���2���*�A�� ���A�++
�*#�D7����2�"�*A
�*#�B ���
�)�D7OB

��������*�D7 1

;B ��-������ ����!�0"��D7)+'��+P�� ����!�0"��B

�����"���!�0"��D7 1

)+�����"�'"*+�)

'"�! ����2�"�*A�� ���4�5

�- A��.�� (� 8�� �� N�"+8 �!�*

A��.�� 7 8�� �� N�"+8

�*+ �-

A�//�.��.�����+"*#
�)� 7 ����

A�//�.��.��&���
�) 7 ����

A�//�.��.���"��������* 7 ����

A�//�.��.��&��������* 7 ����

�*+ '"�!

�*+ ��

© HERIOT-WATT UNIVERSITY

18 TOPIC 1. LANGUAGES AND ENVIRONMENTS

Code example: Javascript

Here is a simple example of an HTML page which uses the Javascript scripting
language:

(!����

(!��+�

(�"�����++��(H�"����

(��
�%� ��*#��#� 7 <�0��2�"/��

-�*2�"�* �++45 G

� 7 +�2���*�A-����A*�� ���A0����

� 7 +�2���*�A-����A*�� ��9A0����

� 7 ��� ��4�5

� 7 ��� ��4�5

� 7 4� � �5

+�2���*�A-����A�*�)��A0���� 7 �

L

(H��
�%��

(H!��+�

(�+.�

(-��� *���7 -�����

(/�

��� �� �*�D

("*/�� �./�78��?�8 *���78*�� ���8 0���� 7 88�

(H/�

(/���� �� �)�D

("*/�� �./�78��?�8 *���78*�� ��98 0���� 7 88�

(H/�

(/�

�*�)��D

("*/�� �./�78��?�8 *���78�*�)��8 �&Q� 7 88�

(H/�

(/�

("*/�� �./�7�����* *���78�++8 0����78�++8 �*��"23 7 �++45�

(H/�

(H-����

(H �+.�

(H!����

This program inputs two integers and displays their sum.

Scripting languages also have a simple syntax which, for the programmer:

• makes them easy to learn and use;

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 19

• assumes minimum programming knowledge or experience;

• allows complex tasks to be performed in relatively few steps;

• allows the addition of dynamic and interactive activities to web pages.

1.5.6 New programming languages

New programming languages are being developed all the time, as developments such
as distributed computing, on-line and mobile applications become popular.

Recent surveys on the popularity of programming languages among both programmers
and employers have come up with relatively consistent results.

Currently these are among the most popular languages:

• Java

• Python

• C#

• PHP

• Ruby

• Javascript

© HERIOT-WATT UNIVERSITY

20 TOPIC 1. LANGUAGES AND ENVIRONMENTS

1.6 Programming environments

At the end of the implementation stage of software development, if all is going well,
a structured program listing will be produced, complete with internal (commentary)
documentation. This will be thoroughly checked against the design and against the
original specification.

The high-level code written at this stage is called source code which must be
translated into machine code, called object code that the computer understands ready
for execution by the computer.

A programming environment will normally include a program editor with text editing tools
such as search and replace, predictive typing, automatic indentation, and colour coding
of comments, keywords and variables. The programming environment may also include
debugging tools which allow the programmer to step through a program line by line or
to stop a program at a particular place by setting a breakpoint to investigate the value
of variables at that point. Another facility provided by many programming environments
is the ability to link modules from a class library. This is particularly common when
using object-oriented programming environments.

Many modern programming environments allow programmers to create GUI objects
such as windows, buttons and other graphical objects by "drawing" them on the program
interface. Code still has to be created to draw these objects - in fact they *could* be
programmed from scratch - but the environment does this for the programmer.

Translating high level languages into machine code

High level programming languages always need to be translated into machine code
before they can be run on the machine they are being written on. There are two
approaches to the translation process.

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 21

Interpreters: An interpreter translates the program (or source code) into machine code
line by line. This means that the interpreter can flag up errors in code as it is being
typed. Unfortunately an interpreter will be needed every time the program is run and the
translation process will slow down the execution of the program.

Compilers: Compilers translate the program (or source code) into machine code in one
operation. Once translated the program can be run independently of the compiler and
therefore it runs faster than an interpreted program, however if the programmer wants
to change code as a result of testing, it will need to be re-compiled. Compiled programs
are more efficient because no extra memory or processor resources are needed for the
translation software.

Some programming languages like Java are purely interpreted languages, other
programming languages will only provide a compiler. Many modern environments
provide the best of both worlds - an interpreter to write, test and debug the program,
and a compiler to translate the source code into an executable machine code program
once it is ready to distribute.

Although machine code is often described as the only language that computers
"understand", we have to remember that each type of processor will have its own set
of machine code instructions which refer to that processor's internal components. This
means that machine code is processor-specific, so when a new programming language
is created, the translation software for currently available processors will also have to be
developed.

Efficiency

The main difference between an interpreter and a compiler is that compilation "requires
the analysis and generation of machine code only once, whereas an interpreter may
need to analyse and interpret the same program statements each time it meets them
e.g. instructions appearing within a loop.

For example, consider the following code:

��
 2��*��� �
�� � �� 9		 ��

��� 7 ��� � 2��*���

���� ��� �� ���%&��

��� ��

Using a compiler, the source code would be analysed and compiled into machine code
once only.

Using an interpreter, the source code would be converted into machine code 200 times
(once each time round the loop).

Errors

This has implications for error reporting. For instance, when the interpreter encounters
an error it reports this to the user immediately and halts further execution of the program.
Such instant feedback, pinpointing the exact location of the error, helps the programmer
to find and remove errors.

Compilers, on the other hand, analyse the entire program, taking note of where errors
have occurred, and place these in an error/diagnostic file. If errors have occurred then

© HERIOT-WATT UNIVERSITY

22 TOPIC 1. LANGUAGES AND ENVIRONMENTS

the program cannot run. Programmers must then use the error messages to identify
and remove the errors in the source code.

Some compilers assist by adding line numbers to the source listing to help pinpoint
errors and all compilers will describe the nature of the error e.g. missing semi-colon,
expected keyword, etc. - although interpreting some compiler diagnostics is a skill in
itself.

Ease of use

Interpreters are more suitable for beginners to programming since errors are
immediately displayed and can be corrected by the user, until the program is able to
be executed.

On the whole compilers tend to be more difficult to use because they only give the
programmer error messages once the code has been translated.

Portability

A compiler produces a complete machine code program which can be saved, copied,
distributed and run on any computer which has the appropriate processor type. A
programming language is said to be portable if recompiling it on different platforms
is relatively easy.

An interpreter does not do this. The machine code has to be generated each time the
program is run. This means that the interpreter must always be present, and program
execution is slower.

Compiler and interpreter

A compiler, which is a complex program in itself, translates source code into object code
that is then loaded into main memory and executed.

Another form of translation that converts source code into object code is an interpreter.

Unlike a compiler, an interpreter checks syntax and generates object code one source
line at a time. Think of this as very similar to a group of translators at a United Nations'
Conference, who each have to convert sentences spoken by delegates into the native
language of their representative.

When an error is encountered, the interpreter immediately feeds back information on
the type of error and stops interpreting the code. This allows the programmer to see
instantly the nature of the error and where it has occurred. He or she can then make the
necessary changes to the source code and have it re-interpreted.

As the interpreter executes each line of code at a time the programmer is able to see
the results of their programs immediately which can also help with debugging.

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 23

Q18: Match up the advantages and disadvantages to the two methods of translating
source code into machine code:

1. Compiler advantage

2. Compiler disadvantage

3. Interpreter advantage

4. Interpreter disadvantage

Description 1, 2, 3, or 4?
Can test code while it is being written
Creates fast executable machine code
Does not provide clear error messages
Must be re-translated if changes have to be made to the source
code
Source code needs to be translated every time it is run
Can partially translate source code
Cannot translate code which contains errors
Provides helpful error messages
No need for the translation software once the source coded has
been converted to machine cod
Machine code cannot be converted back into source code
The translation software is needed along with the source code
every time it is run
Programs run more slowly because they are being translated
while they are running

. .

Quiz: Programming environments

Q19: One of the main differences between a compiler and interpreter is?

a) An interpreter is faster then a compiler
b) A compiler is better for beginners
c) A compiler creates an independent machine code program
d) An interpreter is much harder to use

. .

Q20: One disadvantage of using an interpreter is?

a) Looping structures have to be interpreted each time they are executed
b) It stops execution when an error is encountered
c) It helps the user to debug programs
d) An interpreter is ideal for beginners

. .

© HERIOT-WATT UNIVERSITY

24 TOPIC 1. LANGUAGES AND ENVIRONMENTS

Q21: High level languages have to be translated because?

a) Computers can only understand machine code
b) Source code is faster to run than object code
c) Programs run faster when converted to binary
d) All of the above

. .

Q22: Which one of these is NOT true?
When distributing a completed piece of software the advantage of using a compiler is:

a) The compiled program does not need an interpreter to run
b) The compiled program runs faster than it would if running in an interpreter
c) A compiled program cannot be editied without access to the source code
d) A compiled program takes up less memory than an interpreted one

. .

. .

1.7 Learning points

Summary

• all programming languages can be reduced to three basic control structures:
sequence, selection and iteration;

• what distinguishes different programming languages is how these three
basic control structures and methods of data representation have been
combined into language specific computational constructs;

• there are many types of high level programming languages in use today,
including procedural, declarative, object-oriented and domain-specific
languages;

• high level languages can be general purpose or problem-specific;

• high level languages have to be translated to machine code by compiler or
interpreter before execution;

• modern programming environments will include a text editor and debugging
tools.

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 25

1.8 End of topic test

End of topic test

Q23: Which one of the following types of language would be most suitable for
programming a knowledge base in an expert system?

a) Procedural
b) Declarative
c) Functional
d) Object-oriented

. .

Q24: Which of these is not a feature of a high level language?

a) They are problem oriented
b) They need to be translated into machine code before they can be understood by the

compiler
c) They have specific grammatical rules
d) They can contain statements which are ambiguous

. .

Q25: Which type of programming language is used to create a set of steps which are
executed in order to provide a solution to a problem?

a) Procedural
b) Declarative
c) Object-oriented
d) Domain-specific

. .

Q26: What type of programming language is used to create a knowledge base and a
query which specifies the problem which are then matched to provide a solution?

a) Procedural
b) Declarative
c) Object-oriented
d) Domain-specific

. .

Q27: Which of these is not a feature of an object-oriented programming language?

a) Knowledge base
b) Inheritance
c) Encapsulation
d) Message passing

. .

© HERIOT-WATT UNIVERSITY

26 TOPIC 1. LANGUAGES AND ENVIRONMENTS

Q28: Which of these is a domain-specific programming language?

a) BASIC
b) Java
c) SQL
d) Pascal

. .

Q29: Which of these is not true of machine code?

a) Processor specific
b) Created by a compiler from source code
c) Easy for humans to understand
d) A low level language

. .

Q30: Which of these features would you expect to be provided by a high level language
programming environment?

a) Keyword highlighting

b) Automatic indentation

c) Search and replace

d) Debugging tools

e) Spell check

. .

Q31: Which one of the following statements about compilers is true?

a) Different platforms require different compilers
b) Compilers translate the program creating a source code file
c) A compiler will run part of a program even if an error is found
d) Compilers translate and execute each line of the code in turn

. .

Q32: Which of the statements below describes a class library?

a) A list of all of the classes used in a program
b) A file containing all the actual code used in a program
c) A set of pre-written classes that tests part of a program
d) A set of pre-tested classes which can be used in a program

. .

Q33: Which of the following statements about interpreters is false?

a) An interpreter will run a program until an error is found
b) Interpreters translate source code to create an object code file
c) Interpreters are platform specific
d) Interpreters translate and execute a program line by line

. .

© HERIOT-WATT UNIVERSITY

TOPIC 1. LANGUAGES AND ENVIRONMENTS 27

Q34: Which of the following statements best describes an object-oriented programming
language?

a) An object-orientated language contains special routines for handling documents
b) The programmer can define customised data types
c) The programmer defines both the data and the operations that can be carried out

on it
d) An object-orientated language has built-in routines for drawing graphics objects

. .

Q35: Which of these statements best describes portability of software?

a) The software can be run on more than one computer
b) The software can be easily re-translated for different platforms
c) The software is small enough to be easily transferred over a network
d) The software only needs to be compiled once

. .

. .

© HERIOT-WATT UNIVERSITY

28 TOPIC 1. LANGUAGES AND ENVIRONMENTS

© HERIOT-WATT UNIVERSITY

29

Topic 2

Low level operations: Storing data

Contents

2.1 Revision . 31

2.2 Using binary code to represent and store numbers 31

2.3 Storing integers . 32

2.3.1 Converting binary to decimal . 32

2.3.2 Converting decimal to binary . 34

2.3.3 Hexadecimal (optional) . 37

2.3.4 Storing negative integers . 38

2.3.5 Converting two's complement numbers into decimal 40

2.3.6 Converting negative decimal Integer into two's complement 41

2.4 Storing real numbers . 42

2.5 Storing text . 46

2.6 Storing graphics . 48

2.6.1 Bitmapped graphics . 48

2.6.2 RGB colour . 50

2.6.3 Calculating bitmapped graphic file sizes 52

2.6.4 Compression . 53

2.6.5 Vector graphics . 54

2.7 Storing sound . 56

2.7.1 MIDI format . 57

2.8 Storing video . 58

2.8.1 MPEG . 58

2.8.2 Calculating the size of video files . 59

2.9 Learning points . 61

2.10 End of topic test . 63

Prerequisite knowledge

You should already know that:

• computers use binary code made up of ones and zeros to store integers;

• computers store text using ASCII code;

• computer graphics are stored as a series of bits corresponding to the number of
pixels in the image.

30 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

Learning Objectives

By the end of this topic you will be able to:

• understand why computers store numbers as binary code;

• convert between binary and decimal;

• understand how computers store integers using two’s complement notation;

• convert between a decimal integer and two’s complement notation;

• explain how computers store real numbers using floating point notation;

• understand that text can be stored as ASCII code or as Unicode;

• understand how computers store graphics as bitmaps and as vector graphics;

• calculate graphic image file sizes explain the need for data compression;

• explain how computers store sound and video data.

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 31

2.1 Revision

Quiz: Revision

The following exercise tests the prerequisites for this topic. Ensure that you are happy
with your responses before progressing.

Q1: The decimal number 73 is expressed in binary as

a) 0100 1001
b) 0111 1100
c) 1 1111
d) 0111 0011

. .

Q2: Use the ASCII character set to translate the following bytes:

0100 0011 0110 1111 0110 0100 0110 0101

. .

Q3: A 1 bit/pixel monochrome display has 200 vertical lines. Each vertical line has 640
horizontal dots. Calculate the memory required to store a single screen shot. Express
your answer in appropriate units.

. .

2.2 Using binary code to represent and store numbers
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand why computers store numbers as binary code.

Digital computers are made from millions (and often billions) of tiny switches called
transistors. Switches can be either on or off. For this reason, all information handled
by computers must be coded into/represented by patterns of 1s and 0s. Humans are
much more familiar with the decimal system and think of numbers in terms of base 10,
so in order to understand how the computer processes numeric information; we must
be comfortable with both binary and decimal numbers.

Decimal System:

104 103 102 101 100 * 10-1 10-2

Ten
Thousands

Thousands Hundreds Tens Units * Tenths Hundredths

0 1 3 5 6 * 0 5

We would read this as: 1 x 1000 + 3 x 100 + 5 x 10 + 6 x 1 + 5 x 1/100= 1356.05

Like us, the computer must also be able to process positive and negative numbers that

© HERIOT-WATT UNIVERSITY

http://www.ascii-code.com/

32 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

can also be very large or very small. This section looks at all such numbers and how
they can be represented.

Quiz: Using binary code to represent and store numbers

Q4: Why do you think we use a base 10 number system instead of 8 or 12 for instance?

. .

2.3 Storing integers
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• convert between binary and decimal.

An integer is a whole number without a decimal fraction. An integer can be positive or
negative including the number zero.

If we consider positive integers, the binary system works in the same way as the decimal
system, but using powers of two instead of powers of ten.

2.3.1 Converting binary to decimal

27 26 25 24 23 22 21 20

128s 64s 32s 16s 8s 4s 2s Units
0 0 0 0 0 0 1 1

We would read this as: 1 x 2 + 1 = 3

27 26 25 24 23 22 21 20

128s 64s 32s 16s 8s 4s 2s Units
0 0 0 0 1 0 1 0

We would read this as: 1 x 8 + 1 x 2 = 10

27 26 25 24 23 22 21 20

128s 64s 32s 16s 8s 4s 2s Units
0 0 1 0 0 0 1 1

We would read this as: 1 x 32 + 1 x 2 + 1 = 35

27 26 25 24 23 22 21 20

128s 64s 32s 16s 8s 4s 2s Units
1 1 1 1 1 1 1 1

We would read this as: 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1= 255 (28 = 256)

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 33

Since binary code can only consist of two values, 0 and 1, transmitting binary code is
much easier and less prone to error than using a decimal system where the numbers 0
to 9 would have to be represented by 10 different voltage levels. Although this may seem
counter-intuitive to us who are used to the decimal system, binary arithmetic rules are
actually much simpler than decimal ones, and therefore make processor design easier.

Example of binary to decimal conversion

Look at the method used to convert binary to decimal in the interaction below. When
you have finished this task, see if you can answer the questions which follow by using
the method you have learned.

Convert 110 11012 to base 10:

Step 1:

26 25 24 23 22 21 20

Step 2:

26 25 24 23 22 21 20

64 32 16 8 4 2 1

Step 3:

26 25 24 23 22 21 20

64 32 16 8 4 2 1
1 1 0 1 1 0 1

Step 4:

(1 x 1) + (0 x 2) + (1 x 4) + (1 x 8) + (0 x 16) + (1 x 32) + (1 x 64)

= 1 + 0 + 4 + 8 + 0 + 32 + 64

=109

110 11012 = 10910

Q5: Convert 111 01102 to decimal

. .

Q6: Convert 011 01102 to decimal

. .

Q7: Convert 11 1101 10102 to decimal

. .

© HERIOT-WATT UNIVERSITY

34 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

2.3.2 Converting decimal to binary
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• convert between decimal and binary.

Method 1:

Find the highest column value which is less than the number to convert from decimal to
binary. Subtract it and then find the next largest power of two less than the remainder.
Keep repeating the same thing with the remainder until you end up with a 1 or a zero in
the units position.

Convert 113 to binary:

26 = 64

113 - 64 = 49

25 = 32

49 - 32 = 17

24 = 16

17 - 16 = 1

128 64 32 16 8 4 2 U
1 1 1 0 0 0 1

To convert 29 into binary:

Decimal to Binary Conversion Using Division by 2
Convert 2910 to binary

Step 1 29
14 r 1

2

Step 2
7 r 0

2 14

Step 3 7
3 r 1

2

Step 4 3
1 r

2
1

Step 5 1
0

2
r 1

2910 = 1 1 1 0 1

Remember that you must keep
dividing until this digit is 0.

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 35

Method 2:

Keep dividing by 2 and writing down the remainder until you are left with 0 then read the
answer from the bottom up.

Example of decimal to binary conversion

Look at the method used to convert binary to decimal in the interaction below. When
you have finished this task, see if you can answer the questions which follow by using
the method you have learned.

1. Write down the column values at the top of the page.

24 23 22 21 20

16 8 4 2 1

2. Select the biggest column value that is not greater than your chosen number (in this
case 16 is the largest value < 29).

3. Put a 1 in the 16s column.

24 23 22 21 20

16 8 4 2 1
1

4. Subtract 16 from 29, 29− 16 = 13.

5. Start again with the number 13.

6. Select the biggest column value that is not greater than 13 (in this case 8).

7. Put a 1 in the 8s column.

24 23 22 21 20

16 8 4 2 1
1 1

8. Subtract 8 from 13, 13 − 8 = 5.

9. Start again with the number 5.

10. Select the biggest number that is not greater than 5 (in this case 4).

© HERIOT-WATT UNIVERSITY

36 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

11. Put a 1 in the 4s column.

24 23 22 21 20

16 8 4 2 1
1 1 1

12. Subtract 4 from 5, 5− 4 = 1.

13. Start again with 1.

14. Select the biggest position value that is not greater than 1 (in this case 1).

15. Put a 1 in the 1s column.

24 23 22 21 20

16 8 4 2 1
1 1 1 1

16. Subtract 1 from 1, 1− 1 = 0.

17. Put a 0 in the empty columns.

24 23 22 21 20

16 8 4 2 1
1 1 1 0 1

2910 = 111012

Q8: Convert 13410 to binary

. .

Q9: Convert 14810 to binary

. .

Q10: Convert 39410 to binary

. .

Decimal to binary conversion

On the Web is a simulation of the repeated division method used to convert a decimal
number to binary. Using this interactivity you can enter your own numbers and test the
conversions. You should now look at how this method works and then use it to convert
from decimal to binary the list of numbers which follow.

. .

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 37

Using both methods to convert decimal to binary

Convert the following decimal numbers to binary.

Q11: 2910

. .

Q12: 1810

. .

Q13: 7910

. .

Q14: 27310

. .

Q15: 12710

. .

Q16: 74210

. .

Q17: 402310

. .

Q18: 975510

. .

2.3.3 Hexadecimal (optional)

It is very easy to make mistakes when reading long binary numbers, so you will often
see them represented in hexadecimal. Hexadecimal code is just a number system which
uses base 16 instead of base 10 or base 2. Because hexadecimal uses 16 digits instead
of 10, we use the letters A to F to represent the decimal values 10, 11, 12, 13, 14 and
15.

162 161 160

256s 16s 1s
0 4 5

Would be read as: 4 x 16 + 5 x 1 = 69

It is very easy to convert base 2 numbers into base 16 numbers - just group the binary
value into groups of 4 digits and then write them in base 16. This means that hex is a

© HERIOT-WATT UNIVERSITY

38 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

shorthand way of writing binary. Early computing scientists who had to work in binary,
would use hex, as it's easier to remember than a string of 1s and 0s.

Examples

1.

Problem:

1111 0111 (247 in base 10)

Solution:

1111 = 15 in base ten and 0111 = 7 in base 10, so 1111 0111 = F7 in base 16

. .

2.

Problem:

1011 0011 (179 in base 10)

Solution:

1011 = 11 in base ten and 0011 = 3 in base 10 so 1011 0011 = B3 in base 16

. .

You may see memory locations or colour codes represented as hexadecimal numbers
rather than binary because large binary numbers are so difficult to read and remember.

Exercise: Converting numbers

Load up the calculator on your computer and experiment with converting numbers
between binary, decimal and hexadecimal.

. .

2.3.4 Storing negative integers
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand how computers store integers using two's complement notation.

Remember: all information handled by computers is represented as patterns of 1s and
0s. We've now seen how any whole number can be represented by binary - but how
about integers, which include a sign (negative and positive). How do we represent that
in binary? Because all information handled by computers is represented as patterns of
1s and 0s.

One possibility might be to use an additional bit to represent whether the integer is
negative or positive, a zero signifying a positive number and a 1 signifying a negative
one. for example using 4 bits the numbers -1 to -7 could be stored like this:

+7 +6 +5 +4 +3 +2 +1 0 -1 -2 -3 -4 -5 -6 -7

0111 0110 0101 0100 0011
0010

0001 0000 1001 1010 1011 1100 1101 1110 1111

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 39

There are two problems with this method: we end up with two values, 1000 and 0000
which both mean zero, and using this system to add a positive number to a negative
number gives the wrong answer as you can see from this example.

The solution is to make the value of most significant bit negative instead of just
representing a + or a - sign. In this example the most significant bit has a value of
-4.

Addition now works when adding a positive and a negative number together and there
is only one code for zero.

This system of representing integers is called two's complement. In two's complement
notation, the most significant bit always has a negative value. This means that positive
integers always start with a zero and negative integers start with a one. For this reason
it is important to know how many bits are being used to represent a number in two’s
complement.

Quiz: Two's complement

Q19: What two things can you tell about this two's complement number at a glance?
1000 1011

. .

© HERIOT-WATT UNIVERSITY

40 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

Range of numbers represented by two's complement:

Since one of the bits is now representing a negative value, the range of numbers you
can store using two's complement representation is going to be placed on either side of
zero rather than from zero upwards.

+7 +6 +5 +4 +3 +2 +1 0 -1 -2 -3 -4 -5 -6 -7 -8

0111 0110 0101 0100 0011
0010

0001 0000 1001 1010 1011 1100 1101 1110 1111 1000

Storing positive integers only using an 8 bit binary code would give you the range of 0
to 28 ie. the range 0 to 255.

In binary this would be 0000 0000 to 1111 1111

However storing positive and negative integers using an 8 bit two's complement notation
gives you a range -27 to 27 -1 ie. the range -128 to 127.

In two's complement notation this would be: 1000 0000 to 0111 1111

27 26 25 24 23 22 21 20

-128s 64s 32s 16s 8s 4s 2s Units
1 0 0 0 0 0 0 0

= -128

27 26 25 24 23 22 21 20

-128s 64s 32s 16s 8s 4s 2s Units
0 1 1 1 1 1 1 1

64 + 32 + 16 + 8 + 4 + 2 + 1 = 127

2.3.5 Converting two's complement numbers into decimal
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• convert between two's complement notation and decimal integers.

27 26 25 24 23 22 21 20

-128s 64s 32s 16s 8s 4s 2s Units
0 0 0 0 0 0 1 1

Would be read as: 2 + 1 = 3

27 26 25 24 23 22 21 20

-128s 64s 32s 16s 8s 4s 2s Units
1 0 0 0 0 0 1 1

Would be read as: -128 + 2 + 1 = -125

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 41

27 26 25 24 23 22 21 20

-128s 64s 32s 16s 8s 4s 2s Units
1 1 0 1 0 0 1 0

Would be read as: -128 + 94 + 16 + 2 = -46

2.3.6 Converting negative decimal Integer into two's complement
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• convert between a decimal integer and two's complement notation.

There are 4 steps needed to convert a negative decimal integer to two's complement:

1. Establish the bit length required

2. Convert the positive version of the number to binary

3. Complement the binary number (ie. convert all 0s to 1s and vice versa)

4. Add 1

Examples

1. Convert -3 to 8 bit two's complement:

Problem:
1. +3 = 0000 0011
2. Complement 1111 1100
3. Add 1 +1
4. Result 1111 1101

Solution:

We can check this result: -128 + 64 + 32 + 16 + 8 + 4 + 1 = -3

. .

2. Convert -15 to 8 bit two's complement:

Problem:
1. +15 = 0000 1111
2. Complement 1111 0000
3. Add 1 +1
4. Result 1111 0001

Solution:

We can check this result: -128 + 64 + 32 + 16 + 1 = -15

. .

3. Convert -35 to 8 bit two's complement:

Problem:

© HERIOT-WATT UNIVERSITY

42 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

1. +35 = 0010 0011
2. Complement 1101 1100
3. Add 1 +1
4. Result 1101 1101

Solution:

We can check this result: -128 + 64 + 16 + 8 + 4 + 1 = -35

. .

Simulation of two's complement representation

On the web is a simulation of the conversion of a 4-bit binary number to two's
complement. You should now look at this simulation.

. .

2.4 Storing real numbers
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand how computers store real numbers using floating point notation.

A real number is a number with a decimal point. A real number can be positive or
negative.

Decimal representation of real numbers uses a system known as scientific notation also
known as standard form. Scientific notation allows us to represent very large or very
small numbers using a short-hand where the number is represented by a value multiplied
by a power of 10.

Scientific notation consists of three parts, the mantissa - a decimal number between 1
and 10 and the exponent - an integer representing a power of ten.

1340 can be represented as 1.34 X 103

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 43

The exponent can be positive or negative

© HERIOT-WATT UNIVERSITY

44 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

0.00134 can be represented as 1.34 X 10-3

When very large or very small numbers are being represented then this system stores
them with a limited degree of accuracy. This is an acceptable compromise because very
large or very small measurements will not always be accurate to the same number of
significant figures as would be needed to represent them as normal base 10 values.

Just as we have a decimal point, the binary point works in the same way:

23 22 21 20 * 2-1 2-2 2-3

8s 4s 2s Units * 1/2s 1/4s 1/8ths
0 0 0 1 * 0 1 1

Would be read as: 1 + 0.5 + 0.25+ 0.125 = 1.875

Computers use a similar system to scientific notation to store real numbers. This is
known as floating point representation.

• The sign bit is a single bit, zero for positive and 1 for negative.

• The Exponent is a power of two stored in a system similar to two's complement
notation because it can be positive or negative.

• The Mantissa is a positive binary fraction.

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 45

In this example the number represented is:

+23 x .1101

= 110.1

= 6.5

In this example the number represented is:

-2-3 x .1001

= -0001001

= -0.0351562

A floating point number takes up more memory and requires more processing power
to calculate than a two’s complement number and may also be less accurate.

Range of numbers represented by floating point:

The number of bits allocated to the exponent determines the range of numbers you can
store. The exponent is an integer stored as a floating point number. If there were 8 bits
allocated to the exponent this would mean that it could represent a range of numbers
between 2127 and 2-128

-128 64 32 16 8 4 2 U
0 1 1 1 1 1 1 1

= 127

-128 64 32 16 8 4 2 U
1 0 0 0 0 0 0 0

= -128

When a set number of bits is allocated to storing floating point numbers, there will always
be a trade off between the range of numbers that can be stored (the exponent) and the
accuracy with which they are stored (the mantissa). Floating Point Notation will always
be a compromise between how accurately you can store a number and how large a
range of numbers you wish to store.

© HERIOT-WATT UNIVERSITY

46 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

You do not need to be able to calculate floating point numbers in Higher Computing
Science, but you do need to know how real numbers are represented, and how the
number of bits allocated to the exponent and mantissa affect this.

2.5 Storing text
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand that text can be stored as ASCII code or as Unicode.

With any system of storing data it is important to have a common standard. Common
standards for storing data are important because it makes exchanging information
between computer systems easier. It also makes the transfer of data between
applications easier. Modern computer systems use two common standards for
representing text: ASCII and Unicode. The original standard for storing text was one
of the earliest to be developed and actually began with a system of electric typewriters
called tele-printers which could be connected together using a telephone line so that
text entered on one machine would be duplicated on the other.

Please see the following for an example of an early tele-printer:
British Pathe Teleprinter 1932

The code used in the days of tele-printers was the American Standard Code for
Information Interchange (ASCII) and used a 7 bit code. Since every bit can only be
either 1 or 0 then the total possible number of codes using 7 bits is 27 which makes 128
possible characters. There is still a legacy of the early tele-printer codes within the set
of ASCII characters. Codes 0 to 31 are control characters which were originally used to
set tabs, take a new line, move the print head back to overwrite a character etc. These
control characters are still used today, for example the ASCII character produced by
the enter key is still called a carriage return because it moved the print-head back to the
left hand side and rolled the paper up one line.

Parity: simple error detection

128 codes were enough to represent all the characters on the keyboard, and an
additional bit was added as a form of error detection called the parity bit making
each character 8 bits or 1 byte in size. The parity bit worked by adding a 1 or a
zero to ensure that the ASCII code always had an odd number of 1s in it. If a code
arrived at the receiving computer with an even number of 1s then it meant that an
error had occurred and the machine would ask for that character to be re-transmitted.
Nowadays transmitting data is much more reliable so often the parity bit is used instead
to extend the number of characters which can be represented giving 256 (28) possible
combinations.

Binary ASCII codes are not easy to read, so for this reason most programming
languages will have built-in functions which will convert a character to the decimal
equivalent of the ASCII code and vice versa.

© HERIOT-WATT UNIVERSITY

http://www.britishpathe.com/video/teleprinter/query/Teleprinter

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 47

Examples of ASCII codes for alphanumeric characters

Now that computers and computer programs are used internationally, there is a need for
more than 256 characters to account for foreign alphabets and scripts. Unicode uses 16
bits to code text, giving 216 = 65536 different possible characters. Unicode allows for all
languages/character sets to be encoded.

• One disadvantage of Unicode is that a character takes up more memory than an
ASCII code character.

• One disadvantage of ASCII code characters is that they are limited to 256 possible
symbols (224 if control characters are excluded).

© HERIOT-WATT UNIVERSITY

48 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

2.6 Storing graphics
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand how computers store graphics as bitmaps and as vector graphics.

Just as with text, it is important that computers use a standard format for storing graphics
because images are commonly used in web pages and other documents which users
need to share. We are going to look at two methods of storing graphics:

• bitmapped graphics

• vector graphics.

2.6.1 Bitmapped graphics

A bitmap is a representation of a graphic using a grid of bits to store the information
about the colour of each pixel in an image. Bitmapped images appear as pixels. Each
pixel corresponds (or maps) to one or more bits in memory - hence the terms bet-
mapped. A bitmap for a black and white image would be a simple grid with each bit
representing whether the pixel was black (off) or white (on). For example this shows
how this image would be stored using a 9 X 9 bitmap:

Calculating memory requirements (black and white)

This diagram shows a small section of a black and white screen. Each pixel can be
represented by a single bit (0 or 1).

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 49

The number of pixels possessed by a device can be found by multiplying the number
of pixels across the screen by the number of pixels down, so for a display of 80 pixels
across by 36 pixels down, the number of pixels will be 36 ∗ 80 = 2880 pixels.

2880 pixels, with one byte representing 8 pixels will thus require 2880/8 = 360 Bytes of
memory.

Pixels across Pixels down Total
Bytes of memory
needed

80 36 80 ∗ 36 = 2880 2880/8 = 360 Bytes

Calculating memory requirements

How much memory will the following monochrome screens require? Use the headings
in the table below to help you perform the calculation.

Q20: 640 * 200 pixels

. .

Q21: 800 * 600 pixels

. .

Q22: 1024 * 768 pixels

. .

Pixels across Pixels down
Total (pixels across *
pixels down)

Bytes of memory
needed (Total/8)

. .

The bit-depth of an image refers to the number of bits used to store the colour
information for each pixel.

The colour information for a black and white image can be stored using one bit per pixel.

© HERIOT-WATT UNIVERSITY

50 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

Allocating two bits per pixel would allow 4 possible colours to be stored. 3 bits allow 8
colours etc.

Experts agree that the human eye can distinguish up to 10 million colours (although an
article in New Scientist in 2004 suggested that humans and other apes can distinguish
around 2.3 million colours). If the true figure is indeed 10 million, then 24 bits per pixel
would be required to represent this number (and significantly beyond, in fact). A bit
depth of 24 bits (3 Bytes) per pixel would be required to store this amount of colour
information. (224 = 16777216)

2.6.2 RGB colour

Colours on a screen can be displayed by mixing red, green and blue light. Where they
overlap they create cyan, magenta, yellow and white.

RGB colour uses 24 bits to represent the colour of each pixel. 8 bits for red, 8 bits for
green and 8 bits for blue. These codes are often expressed in hexadecimal when they
are used in programming languages or web authoring applications.

Red Green Blue Colour Binary value
00 00 00 black 0000 0000 0000 0000 0000 0000
FF FF FF white 1111 1111 1111 1111 1111 1111
00 FF 00 green 0000 0000 1111 1111 0000 0000

00 80 00
half
green 0000 0000 1000 0000 0000 0000

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 51

RGB colour codes

Light falls onto the sensors in the CCD, resulting in an electric signal.

© HERIOT-WATT UNIVERSITY

52 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

This signal is then digitised (turned into a number).

The numbers for Red, Green and Blue are then combined to make a colour code for
each pixel which is stored as a bitmap.

. .

2.6.3 Calculating bitmapped graphic file sizes
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• calculate graphic image file sizes.

The resolution of an image refers to the total number of pixels which are used to store
the image. The larger the number of pixels in an image the larger the number of bits
needed to store that image therefore the larger the file size. The resolution of an image
determines the amount of detail which it can display.

Bitmapped graphics are easy to edit because individual pixels can be changed from
one colour to another, but when a bitmapped image is enlarged, it may become grainy
because the resolution cannot be increased by just changing the size of the graphic.

To calculate the file size of an uncompressed bitmapped graphic, you need to know
three things:

• the resolution (dots per inch);

• the area of graphic (square inches);

• the colour depth (bits per pixel).

Number of colours Bit Depth
2 colours 1 bit
4 colours 2 bit
8 colours 3 bit
16 colours 4 bit
256 colours 8 bit
65536 colours 16 bit
16777216 colours 24 bit

Example

Problem:

Resolution: 600 dots per inch

Area of graphic: 2 x 3 inches

Colour depth: 256 colours = 8 bits

Solution:

600 x 600 x 2 x 3 = 2160000 pixels

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 53

2160000 x 8 = 17280000 bits

= 2160000 Bytes = 2109 KB = 2.05 MB

(8 bits = 1 Byte, 1024 Bytes = 1 KB, 1024 KB = 1 MB)

8 bits = 1 Byte
1024 Bytes = 1 KiloByte (KB)
1024 KiloBytes = 1 MegaByte (MB)
1024 MegaByte = 1 GigaByte (GB)

. .

2.6.4 Compression

Because graphic files can be very large, particularly if they are high resolution and have
a large bit depth. Images are integral to modern web sites, and although download
speeds have improved, bandwidth is still at a premium and web developers want their
pages to load as quickly as possible. For this reason graphic images are often stored
in compressed file formats such as Graphics Interchange Format (GIF), JPEG (JPG) or
Portable Network Graphics (PNG). GIF and PNG are lossless compression formats,
but GIF is limited to 8 bit colour and PNG to 24 bit colour. JPEG is a lossy compression
format used primarily for photographic images.

Compression techniques will be covered in more detail in Unit 2.

Q23: Calculate the size in bytes of a bit map image of dimension 4 x 3 inch square
using 72 dots per inch resolution and a pixel depth of 1 bit.

. .

Q24: How many colours can be represented using a pixel depth of 16 bits?

. .

Q25: A 3 inch by 2 inch monochrome image has a resolution of 300 dots per inch. How
big will the file be (in appropriate units)?

. .

Q26: A graphic 3 inches by 2 inches at 600 dots per inch uses 256 colours. How much
storage space is needed?

. .

Q27: A digital photo is 2592 x 1944 pixels and uses RGB colour: 8 bits for red, 8 bits
for green and 8 bits for blue i.e. 24 bits per pixel. How big is the file?

. .

Example : Calculating the file size of a video

Problem:

An animation contains 1 minute of film. It is displayed in a frame size of 5 X 4 inches at
a rate of 25 frames per second using a resolution of 300 dpi and colour depth of 24 bits.
Assuming no compression, calculate the total storage requirements for this animation in
MegaBytes.

© HERIOT-WATT UNIVERSITY

54 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

Solution:

Each dot (or pixel) requires 24 bits or 3 Bytes.

There are 300 x 5 x 300 x 4 dots on each frame.

Each frame requires 300 x 5 x 300 x 4 x 3 = 5 400 000 Bytes storage.

There are 25 x 60 frames in the 1 minute clip giving 1500 frames in total.

Total storage is 1500 x 5 400 000 requiring 8 100 000 000 Bytes of storage.

Or 8 100 000 000/ 1024 x 1024 MB.

Equals 7724.76 MB Or 7.54 GB.

Hence the need for compression!

. .

2.6.5 Vector graphics

Vector graphics is an alternative method of storing graphics which stores them as a
description of the shapes in the image to enable them to be re-drawn for recreating that
image rather than storing them as individual pixels. There are two advantages of this
system: vector graphics tend to take up much less disk space, and they do not lose
resolution when enlarged, since their resolution depends on the device they are being
displayed on rather than the device which created them. Because they are stored as
a description, the disk space taken up by a vector graphics image will depend on the
complexity of the image.

For example a rectangle could be stored as a set of attributes: start point coordinates,
width, height, line colour, line thickness etc. A circle could be stored as a centre point
coordinates, a radius, line colour, line thickness, fill pattern etc.

Because images stored as vector graphics use descriptions to recreate the image, they
are not editable at pixel level in the same way as bitmapped images. Objects in a vector
graphics application can be moved and resized independently of each other, whereas
objects in an image created in a bitmapped graphics application will be stored as a
number of pixels and cannot be manipulated as separate entities. Many bitmapped
graphics applications use the concept of layers to get around this restriction. Each layer
is a separate bitmapped image and each layer can be edited individually. Once the
image is saved as a single bitmap however it can only be edited at pixel level.

Comparing the file size of bitmapped and vector graphics

20 min

1. Create a simple image such as a circle intersecting a rectangle in a bitmapped
painting package. Note the size of the file when saved.

2. Create the same image as far as possible using a vector graphics package and
compare the size of the saved file with that created by the bitmapped package.

3. Edit the bitmapped image to add more detail and save it. Does the file size
change?

4. Add some more detail to the vector graphics file and see if the file size changes
when you save it.

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 55

5. Explain your findings.

. .

Type Advantages Disadvantages

Vector
Can be scaled to large
sizes, keeping original
quality.

Difficult to create realistic
images.

Suitable for graphic,
unrealistic images and
designs.

Individual objects can be
edited, allowing an object
to be altered without
affecting the rest of the
image.

Only individual objects
can be edited (it is
sometimes impossible to
edit only part of the
object).

Are easily converted to
bitmap formats.

Dependent on output
hardware or software for
appearance & quality.

File sizes are relatively
small.

Size of image can be
increased keeping quality
and file size the same.

Bitmap
Images can be very
realistic (e.g. digital
photograph).

Scaling causes
pixellation.

Suitable for natural,
hand-drawn looking,
realistic images.

Pixel level editing is
allowed - allowing effects
such as spray paint, blur,
effects and so on.

Only the image as a
whole can be edited.

Same appearance in all
systems, regardless of
hardware or software.

Are very difficult to
convert to vector formats,
with unpredictable results

File sizes can be large.

Increasing the image size
needs re-sampling and
increases the file size.

© HERIOT-WATT UNIVERSITY

56 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

2.7 Storing sound
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• explain how computers store sound data;

• explain the need for data compression.

Just as bitmapped graphics files have a resolution and a bit depth, the quality of a digital
sound file depends on the sample rate (the number of times the value of the signal
is recorded) and its bit depth (the number of bits used to store the sample). Just like
graphics files, digital sound files can be very large indeed, so compression is often used
to reduce the file size.

When an analogue signal is converted into a digital one, a digital sample is taken often
enough to accurately reproduce the sound on a digital device such as a MP3 player or
computer. The sample must be taken often enough and the sample quality must be high
enough so that the human ear cannot distinguish between the analogue and the digital
version. The benefit of storing sound digitally is that reproduction becomes error-free
because every bit is either on or off and error detection and error correction can be built
into the transmission process. Analogue recordings lose quality every time they are
copied. Digital recordings are identical every time they are copied. The fact that digital
media can be copied and transmitted easily without degradation in quality has resulted
in enormous changes in the way music and other digital data is sold and distributed.

Digital Samples
Analog Signal

Volume

As a sound is played, digital signals have to be converted to analogue in order for us
to hear it. The bit rate is the number of bits each second that have to be processed in
order for a digital sound to be played.

If the sound is high quality, then there will be a greater number of bits as there will be
a greater number of samples each second to be converted back to analogue plus each
sample itself will be a larger number of bits as the sampling depth will be greater.

If a digital sound is being streamed over a computer network then the number of bits

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 57

each second is important. If the number of bits each second is very high then this will
also place demands on the computer hardware, as it all needs to be processed.

The bit rate for sounds can be calculated as follows:

Bit Rate (bits per second) = sampling depth (bits) * sampling frequency (Hz)

Consider the following examples:

Examples

1.

Problem:

A CD quality sound recorded using a sampling frequency of 44KHz and a sampling
depth of 16 bits.

Solution:

Bit rate = 44000 * 16

Bit rate = 704000 bits per second

Bit rate = 704K bits per second

. .

2.

Problem:

A low quality sound recording using a sampling frequency of 2KHz and a sampling depth
of 8 bits.

Solution:

Bit rate = 8 * 2000

Bit rate = 16000 bits per second

Bit rate = 16K bits per second

. .

This allows you to select a quality setting based on the speed that the data could be
transferred, rather than the end size of the entire file - which is much better for time-
dependent data like sound or videos.

2.7.1 MIDI format

Sound can also be stored using the audio equivalent of vector graphics. The MIDI file
format stores music as a description of the components necessary for re-creating music
rather than as a direct digital representation. MIDI files will contain details of instruments
used, timings, volume and frequency of notes, etc. Like vector graphics, the quality of
the sound output is determined by the quality of the device it's being played on. A
high-end keyboard will sound much more realistic than a cheap sound card.

© HERIOT-WATT UNIVERSITY

58 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

2.8 Storing video
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• explain how computers store video data.

Storing video requires both images and sound to be stored together. Video files will be
very large as a result so compression is always used unless the video is being recorded
for editing later.

2.8.1 MPEG

The Moving Pictures Experts Group (MPEG) have defined a series of standards for
compressing video and audio using compression based on DCT (Discrete Cosine
Transform). Each frame in an MPEG video is compressed as a JPEG. The data that
stays the same in successive frames is then removed.

There have been a series of standards based on this:

MPEG-1 (VHS video quality with 353 x 240 pixels and 30 fps frame rate support)

MPEG-2 (The standard for DVD-Video and Digital Television -to name two. Widely used)

MPEG-3 (Intended for HDTV but these revisions were incorporated into MPEG-2) (Not
the same as MPEG-Layer 3, or MP3 used for audio - this is actually the audio subset
(layer) of the MPEG-1 and MEG-2 standards)

MPEG-4 (Designed for low-bandwidth networks - e.g. video phones) (Part used by DivX)

MPEG-7 (Builds on the interactive and extra data capabilities of MPEG-4 and is a full
multimedia description format) - named "Multimedia Content Description Interface".

Not all frames are stored - just a few key frames called 'i-frames'. These are JPEGs.
The next set of frames does not store images, they just store data on what has changed
since the last i-frame.

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 59

MPEG does not store each image separately, only key frames are stored as JPEG
images, the rest of the data consists of predictions or actual changes since the last (or
next!) key frame.

MPEG is a lossy compression codec and, as with JPEG images and MP3, has
adjustable compression depending on the desired quality, file size or bit-rate.

There are different implementations of the MPEG-4 codec (for example). The playback
compatibility and compression/quality gained depends on the actual version of the codec
that is being used.

2.8.2 Calculating the size of video files

Video file sizes depend on:

• Frame size: (for example. PAL = 720 x 576 pixels; HDMI = 1920×120 pixels)

• Frame rate: measured in Frame per second rate (for example: PAL = 25fps HDMI
= 60fps)

• Bit depth (PAL = 24 bit HDMI = 36 bit)

© HERIOT-WATT UNIVERSITY

60 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

• Audio sample rate and bit depth

• Compression method (Codec)

• As video files are simply a collection of bitmap images, all we need to do is
calculate the size of one image (i.e. one frame) and multiply that by the number of
frames in the entire video.

• File Size (Bytes) = Frame Size (Bytes) x Frame Rate (frames per second [fps]) x
Video Time (seconds).

Quiz: Video

Q28: UK PAL television is approximately: 720 x 576 pixels at 25fps in 24bit colour.
Which of these bit-rates would be needed to broadcast this, uncompressed, over a
digital network?

a) 52Kbps
b) 4Mbps
c) 32Mbps
d) 237Mbps

. .

Q29: A video is captured using 24fps and 600 x 400 pixels, colour depth 24bits. Which
of these settings would half the file size of the uncompressed video?

a) 24fps, 600 x 400 pixels, 12 bits
b) 6fps, 300 x 200 pixels, 12 bits
c) 12fps, 600 x 200 pixels, 24 bits
d) 12fps, 300 x 200 pixels, 24 bits

. .

. .

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 61

2.9 Learning points

Summary

You should now know:

• integers and real numbers:

– computers store all data as binary numbers (base 2, using 0s and 1s);
– integers are stored using two's complement notation;
– to convert binary into decimal, write the binary number under its place

values, then add;
– to convert decimal to binary, use repeated division by 2, and use the

remainders read upwards;
– to convert a negative integer into two's complement, write it as a

positive binary number using the full bit length, invert it then add 1
real numbers are stored using floating point representation;

– floating point representation uses a mantissa and exponent. The
mantissa determines the accuracy of the number, the exponent
determines the range of numbers which can be stored;

– in a given number of Bytes, increasing the number of bits for the
mantissa increases the precision of the number, but decreases the
range;

• characters:

– unicode is a 16-bit code for storing characters;
– unicode uses more storage than ASCII, but allows a wider range of

characters to be represented;

• graphics:

– graphics can be stored using a bit-map, where each pixel is
represented by one (or more) bits;

– increasing the bit depth (number of bits per pixel) increases the number
of colours which can be represented, but also increases the storage
requirements;

– vector graphic representation stores a graphic as a series of objects
with attributes;

• sound and video:

– sound files are stored digitally by sampling the analogue sound wave;
– the size of a sound file depends on the frequency of the sample rate

and the bit depth of each sample;
– MIDI files have a parallel with vector graphics in that they contain

instructions for reproducing the sound rather than the sound data itself;
– uncompressed video file size depends upon the frame size, frame rate,

bit depth and audio sample rate and bit depth;
– audio and video files are often compressed as they can be very large

indeed if recorded for high quality reproduction.

© HERIOT-WATT UNIVERSITY

62 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

© HERIOT-WATT UNIVERSITY

TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA 63

2.10 End of topic test

End of topic test

Q30: The decimal number -73 (negative 73) can be represented in binary using two's
complement by:

a) 1000 1101
b) 1011 0110
c) 1100 1001
d) 1011 0111

. .

Q31: Approximately, how much storage is required to store a scanned A4 image (8.25
x 11.25 inches) at 300dpi using a bit depth of 24 bits without data compression?

a) 200 MB
b) 85 MB
c) 23.9 MB
d) 0.7 MB

. .

Q32: How many colours can be stored per pixel if the bit depth is 24 bits?

a) 65536
b) 16777216
c) 4294967296
d) 1099511627776

. .

Q33: How many bits are used to store an ASCII code character?

a) 7 bits
b) 8 bits
c) 16 bits
d) 24 bits

. .

Q34: How many characters can Unicode represent if 16 bits are used per character?

a) 128
b) 256
c) 1024
d) 65536

. .

© HERIOT-WATT UNIVERSITY

64 TOPIC 2. LOW LEVEL OPERATIONS: STORING DATA

Q35: When giving more bits to mantissa and fewer to exponent, which is true?

a) Accuracy increases, range increases
b) Accuracy decreases, range decreases
c) Accuracy increases, range decreases
d) Accuracy decreases, range increases

. .

Q36: Increasing the complexity of a vector graphic image:

a) increases the file size
b) decreases the file size
c) alters the object’s attributes
d) displays the object more clearly

. .

. .

© HERIOT-WATT UNIVERSITY

65

Topic 3

Data types and structures

Contents

3.1 Revision . 67

3.2 Data types and pseudocode . 68

3.3 Simple data types . 69

3.4 Identifying simple data types . 70

3.5 Structured data types . 71

3.5.1 Arrays . 72

3.5.2 Strings . 72

3.5.3 Records . 73

3.6 Handling records . 73

3.7 Parallel arrays and records . 74

3.8 Handling records . 78

3.9 Identifying structured data types . 79

3.10 Sequential files . 80

3.11 Learning points . 81

3.12 End of topic test . 82

Prerequisite knowledge

From your studies at National 5 you should already know:

• programming languages use a variety of simple data types including string,
integer, real and boolean;

• a collection of values of the same data type can be stored using an array.

Learning Objectives

By the end of this topic you should be able to:

• understand that all programming languages store and manipulate data;

• explain the difference between a simple and a structured data type;

• understand the connection between simple data types and how computers store
numbers and text;

• identify the different data types used by your chosen programming language;

66 TOPIC 3. DATA TYPES AND STRUCTURES

• describe how your programming language handles sequential files;

• describe how your programming language handles records.

© HERIOT-WATT UNIVERSITY

TOPIC 3. DATA TYPES AND STRUCTURES 67

Learning Objective

By the end of this topic you should be able to:

• understand that all programming languages store and manipulate data;

• explain the difference between a simple and a structured data type;

• understand the connection between simple data types and how computers
store numbers and text;

• identify the different data types used by your chosen programming
language;

• describe how your programming language handles sequential files;

• describe how your programming language handles records.

3.1 Revision

Revision

Q1: An integer is:

a) a number greater than zero
b) a negative or positive number including zero with no decimal point
c) a negative or positive number including zero with a decimal point
d) a single digit number

. .

Q2: A real number is:

a) a number greater than zero
b) a negative or positive number including zero with no decimal point
c) a negative or positive number including zero with a decimal point
d) a single digit number

. .

Q3: A Boolean is:

a) a value which can be either true or false
b) a very large number
c) a variable which can only have two possible values
d) a complex data type

. .

© HERIOT-WATT UNIVERSITY

68 TOPIC 3. DATA TYPES AND STRUCTURES

Q4: An array is:

a) a collection of values
b) a set of variables of the same type
c) a structured data type storing values of the same type
d) a list of values

. .

3.2 Data types and pseudocode
�

�

�

�

Learning Objective

By the end of this topic you should be able to:

• understand that all programming languages store and manipulate data.

All programming languages manipulate data. In this topic we are going to look at how
general purpose imperative programming languages store and manipulate data.

Throughout this unit we will be using SQA standard pseudocode to describe data types
and control structures. This means that you should be able to convert the examples into
whatever programming language your school or college is using.

Data types can be divided into two categories: simple and structured types.

The simple data types are:

• INTEGER

• REAL

• CHARACTER

• BOOLEAN

The structured data types are:

• ARRAY

• STRING

• RECORD

© HERIOT-WATT UNIVERSITY

TOPIC 3. DATA TYPES AND STRUCTURES 69

3.3 Simple data types
�

�

�

�

Learning Objective

By the end of this topic you should be able to:

• understand the connection between simple data types and how computers store
numbers and text.

We will be using the following simple data types:

• An INTEGER is a numerical value which has no decimal point. An INTEGER can
be positive or negative including zero;

• A REAL is a numerical value which includes a decimal point;

• A CHARACTER is a single character from the keyboard or other input device;

• A BOOLEAN can have two values only: true or false.

These data types correspond to the various ways which computers store information at
machine code level.

• INTEGERs are stored using two’s complement notation;

• REAL numbers are stored using floating point notation which uses an exponent
and a mantissa;

• CHARACTERs are stored as ASCII codes or if more than 128 are needed then
they are stored using Unicode;

• A BOOLEAN can be stored using a single bit which is on or off.

Storing values using floating point notation is more memory and processor intensive
than two’s complement, and since there is always a trade-off between accuracy and
range when storing values using floating point notation, it makes sense to store integer
values as INTEGER rather than REAL.

All programming languages will have a have a maximum limit (positive and negative) for
storing integers, and this limit is determined by the number of bits allocated to storing
them.

If 32 bits were being used to store integers, then the range of possible values would be
-231 to 231 - 1.

If 64 bits were being used to store integers, then the range of possible values would
be -263 to 263 - 1. For this reason very large numbers are stored as REAL rather than
INTEGER.

In maths and science, scientific notation is used to represent very large decimal numbers
anyway. This is similar to the system of floating point used by computers.

© HERIOT-WATT UNIVERSITY

70 TOPIC 3. DATA TYPES AND STRUCTURES

Activity: Simple data types

5 min

Q5: Decide what simple data type you would use to store the following values. Choose
from:

• INTEGER

• REAL

• CHARACTER

• BOOLEAN

No. Value Simple data type

1 304
2 45.78
3 @
4 -4
5 5989.4
6 -56.3
7 !
8 true

. .

3.4 Identifying simple data types
�

�

�

�

Learning Objective

By the end of this topic you should be able to:

• identify the different simple data types used by your chosen programming
language.

Practical task: Simple data types

30 min

Look in the manuals, on the Internet or in the help documents for two of the programming
languages in use in your school. List the simple data types available in your chosen
languages.

. .

© HERIOT-WATT UNIVERSITY

TOPIC 3. DATA TYPES AND STRUCTURES 71

3.5 Structured data types
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• explain the difference between a simple and a structured data type.

Most software applications require large amounts of data to be stored. If every
single item of data had to be given a unique name then not only would this be very
inconvenient, but accessing and manipulating these separate variables would be very
complex.

For instance a set of numeric values could be stored by creating a set of variables:

��� *�� ��� �� 9:

��� *�� ��9 �� �R

��� *�� ��: �� :

��� *�� ��; �� OO

��� *�� ��6 �� 9:

They could be printed using this set of commands:

���� *�� ��� �� ���%&��

���� *�� ��9 �� ���%&��

���� *�� ��: �� ���%&��

���� *�� ��; �� ���%&��

���� *�� ��6 �� ���%&��

This system becomes very cumbersome indeed if we are manipulating large quantities
of data. If a number of items of the same type have to be stored, it makes sense to
store them in a structure which can be referred to by a single identifier, and to be able
to access these items using a control structure like a loop to process them sequentially.
A structure like this is called an array.

Storing data such as numbers in a single structure makes printing and searching through
the list much easier because the index can be used to identify each one in turn.

Array

Index

23 16 3 77 23 1 11 9 45 39

0 1 2 3 4 5 6 7 8 9

In this example we could set up an integer array storing 10 items to store these numbers

VAR numbers [9]

So to print the contents of an array we could use the following code:

��
 2��*��� �
�� 	 �� P ��

���� *�� ���I2��*���J �� ���%&��

��� ��

© HERIOT-WATT UNIVERSITY

72 TOPIC 3. DATA TYPES AND STRUCTURES

We will be using the following structured data types:

ARRAY, STRING and RECORD.

3.5.1 Arrays

An ARRAY is an ordered sequence of simple data types, all of the same type.

[5, 9, 13] is an ARRAY storing three INTEGERs

["Fred","Sue","Jo","Anne"] is an ARRAY storing four STRINGS

Eg. [true, false, true, true] is an ARRAY storing four BOOLEANs

3.5.2 Strings

A STRING is a special sort of ARRAY containing CHARACTERs

Eg. "This is a message" is an example of a STRING

STRINGs can be joined together or embolden using the & symbol

So the command:

��� *�)���"*# �� 8����� 8 S 8�!"� "� � �����#�8

creates a new STRING with the value: 8����� �!"� "� � �����#�8

Although strictly speaking a string is a complex data type, some programming languages
treat a string as a simple data type rather than as an array of characters.

The arrays we will be using are one dimensional, ie. they are equivalent to an ordered
list of items, identified by a single index. The index of an ARRAY or STRING starts at
zero.

For example, the following two commands:

��� �.����� �� I8���+8B8<"�8B8����.8J

���� �.�����I9J �� ���%&��

Would create an ARRAY of three STRINGS and then print out the item: Betty

��� �.��� �� �� I6RB OB 9:B E�9J

���� �.��� ���I	J �� ���%&��

Would create an ARRAY of three INTEGERS and then print out the value: 56

© HERIOT-WATT UNIVERSITY

TOPIC 3. DATA TYPES AND STRUCTURES 73

3.5.3 Records

A RECORD can contain variables of different types, just as a record in a database can
be made up of fields of different types. So a single record would be equivalent to a list
of items of different list of different types of item.

��%� /����* ��
���
�

G��
��N -���*���B ��
��N ���*���B ��
��N �++����B ����N�
 �2���L

For example, a record for a single individual could be:

��� /����*� ��

G����*��� 7 8���+8B ���*��� 7 8��"*����*�8B �++���� 7 8��+��238B �2��� 7 �	L

A table in a database is equivalent to an ARRAY of RECORDS

Activity: Procedural language

Q6: Are the following Control Structures or Data Structures?

1. Arrays

2. Selection

3. Records

4. Iteration

. .

3.6 Handling records
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• describe how your programming language handles records.

Practical task: Handling records

60 min

Find out the syntax your programming language uses to:

• Define a record structure

• Create an array containing 3 or more records

• Print out the contents of the array.

. .

© HERIOT-WATT UNIVERSITY

74 TOPIC 3. DATA TYPES AND STRUCTURES

3.7 Parallel arrays and records

If we want to store information about the real world, we often need to store information
of different types.

For example if we wanted to store the results of a race, we would need to store both
the participants' names as a STRING and their times as a REAL number. We might
additionally want to store whether they qualified for the final or not as a BOOLEAN
value.

We could store this information in 3 parallel arrays:

��� /���"2"/�*�� �� I8���+8B 8N��#8B 8��*8B 8%����8B 8T�/!�+8B 8�*+.8J

��� �"��� �� I;A6RB ;A:9B 6A	�B ;AR�B ;A66B 6A�9J

��� U���"-"�+ �� I-����B ����B -����B -����B ����B -����J

A more intuitive way of storing this information would be to store it as a set of records.
In this case a single record would be the information about one participant - their name,
time and qualifying status.

So we can store the race information as an ARRAY of RECORDs:

��%� ��**�� ��
���
� G��
��N /���"2"/�*�B
��& �"��B ���&��� U���"-"�+L

��� ��2�I	J �� G/���"2"/�*� 7 8���+8B �"�� 7 ;A6RB U���"-"�+ 7 -����L

��� ��2�I�J �� G/���"2"/�*� 7 8N��#8B �"�� 7 ;A:9B U���"-"�+ 7 ����L

��� ��2�I9J �� G/���"2"/�*� 7 8��*8B �"�� 7 6A	�B U���"-"�+ 7 -����L

��� ��2�I:J �� G/���"2"/�*� 7 8%����8B �"�� 7 ;AR�B U���"-"�+ 7 -����L

��� ��2�I;J �� G/���"2"/�*� 7 8T�/!�+8B �"�� 7 ;A66B U���"-"�+ 7 ����L

��� ��2�I6J �� G/���"2"/�*� 7 8�*+.8B �"�� 7 6A�9B U���"-"�+ 7 -����L

This loop will print the qualifiers:

��
 2��*��� �
�� 	 �� 6 ��

�� ��2�I2��*���JAU���"-"�+ 7 ���� ����

���� ��2�I2��*���JA/���"2"/�*� S 8 !�� U���"-"�+ -�� �!� -"*��8

��� ��

��� ��

© HERIOT-WATT UNIVERSITY

TOPIC 3. DATA TYPES AND STRUCTURES 75

Practical task: Parallel arrays and records

Use your chosen programming language to create an array of records to store the race
information and print out the qualifiers.

. .

Another example could be if we wanted to store the characters in a kind of game. We
would need to create a RECORD structure, then store the characters that used to be
popular with "Dungeon and Dragon" enthusiasts as an ARRAY of RECORDS.

TYPE character IS RECORD{ string NAME, STRING weapon, INTEGER danger}

��� �*��.I	J �� G*��� 7 8�����8B)��/�* 7 8 �?�8B +�*#�� 7 :L

��� �*��.I�J �� G*��� 7 8+)��-8B)��/�* 7 8 �/���8B +�*#�� 7 :L

��� �*��.I9J �� G*��� 7 8)"M��+8B)��/�* 7 8 ���--8B +�*#�� 7 PL

��� �*��.I:J �� G*��� 7 8#!���8B)��/�* 7 8 �2��/����8B +�*#�� 7 9L

This loop will print out all the items in the array:

��
 2��*��� �
�� 	 �� 6 ��

���� 8����D 8B �*��.I2��*���JA*���B 8'��/�*D 8B

�*��.I2��*���JA)��/�*B 8��*#�� ��0��D 8 S �*��.I2��*���JA+�*#�� �� ���%&��

��� ��

Not all programming languages have a separate record structure, and use parallel arrays
instead to store information which consists of a set of different data types.

Activity: Data types 1

5 min

Q7: Decide what data type you would use to store the following values. Choose from

• INTEGER

• REAL

• CHARACTER

• BOOLEAN

• STRING

No. Value Data type

1 678
2 Open Sesame!

3 0
4 -5.7
5 4000
6 TD5 7EG
7 joe@companymail.com

. .

© HERIOT-WATT UNIVERSITY

76 TOPIC 3. DATA TYPES AND STRUCTURES

Activity: Data types 2

5 min

Q8: Decide what data type you would use to store the following values. Choose from

• INTEGER

• REAL

• CHARACTER

• BOOLEAN

• STRING

No. Value Data type

1 A UK telephone number

2 The price of a pair of trainers

3
Whether a character in a game has found a
weapon or not

4 The colour of a sprite

5 The counter in a loop

6 A URL
7 A key-press

. .

Activity: Structured data types

5 min

Q9: Decide what structured data type you would use to store the following. Choose
from

• ARRAY of INTEGER

• ARRAY of REAL

• ARRAY of CHARACTER

• ARRAY of BOOLEAN

• ARRAY of STRING

No. Value Data type

1 A list of names
2 A set of test scores out of 50
3 The characters in a sentence
4 The average temperatures during last month

5 The last five Google searches you made

6
Whether or not a class of pupils have passed an
exam

. .

© HERIOT-WATT UNIVERSITY

TOPIC 3. DATA TYPES AND STRUCTURES 77

Activity: Multiple data types

5 min

Q10: Decide what data types would be needed to create the following records, choose
from:

• STRING, STRING, INTEGER

• STRING, INTEGER, BOOLEAN

• STRING, STRING, STRING,

No. Records Data types

1
Name, address and Scottish Candidate
Number (SCN) for a list of pupils.

2
Pupil ID, test score and pass/fail for a
class

3
Weapon name, ammunition type and
damage value in a First Person Shooter
game

. .

. .

Quiz: Pseudocode

15 min
Use your chosen programming language to work out what the result would be from the
following pseudocode examples.

Q11: ��� �.����� �� I8���+8B8<"�8B8����.8B 8<���"*8B8N��#8J

���� �.�����I;J �� ���%&��

a) Fred
b) Jim
c) Betty
d) Justin
e) Greg

. .

Q12: ��� �.����� �� I8���+8B8<"�8B8����.8B 8<���"*8B8N��#8J

���� �.�����I�J �� ���%&��

a) Fred
b) Jim
c) Betty
d) Justin
e) Greg

. .

© HERIOT-WATT UNIVERSITY

78 TOPIC 3. DATA TYPES AND STRUCTURES

Q13: ��� �.��� �� I6B �9B 9�B :6J

���� �.���I�J � �.���I:J �� ���%&��

a) 5
b) 12
c) 21
d) 26
e) 33
f) 35
g) 47
h) 56

. .

Q14: ��� �.��*��*2� �� 8����� '���+8

���� �.��*��*2�IRJ �� ���%&��

a) H
b) e
c) l
d) W
e) o

. .

3.8 Handling records
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• describe how your programming language handles records.

Practical task: Handling records

60 min

Find out the syntax your programming language uses to:

• Define a record structure

• Create an array containing 3 or more records

• Print out the contents of the array and the record.

. .

© HERIOT-WATT UNIVERSITY

TOPIC 3. DATA TYPES AND STRUCTURES 79

3.9 Identifying structured data types
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• identify the different structured data types used by your chosen programming
language.

Practical task: Structured data types

30 min

Look in the manuals, on the Internet or in the help documents for two of the programming
languages in use in your school. List the structured data types available in your chosen
languages:

. .

Quiz: Identifying structured data types

5 min

Use your chosen programming language to work out what the result would be from the
following pseudocode examples:

Q15:

��%� ��*���� ��
���
� G��
��N *���B ���&��� �?"���L

��� �.��*���� �� G*��� 7 8!.+��8B �?"��� 7 -����L

���� �.��*����A*��� �� ���%&��

a) hydra
b) exists
c) myMonster
d) false
e) monster

. .

Q16:

��%� ��*���� ��
���
� G��
��N *���B ���&��� �?"���L

��� .�����*���� �� G*��� 7 82��2�+"��8B �?"��� 7 ����L

�� .�����*����A�?"��� ���� ��*+ 8
�*V8 �� ���%&��

a) crocodile
b) Run!
c) yourMonster
d) monster
e) exists

. .

© HERIOT-WATT UNIVERSITY

80 TOPIC 3. DATA TYPES AND STRUCTURES

3.10 Sequential files
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• describe how your programming language handles sequential files.

Just as a computer program can receive data from an input device such as a keyboard,
and send data to an output device such as the display, it can also receive data from and
send data to a sequential file held on backing storage. A sequential file is identified by a
path and filename which is treated as a STRING. For example "n:\myfiles\testfile.txt"
would identify the file testfile.txt in the folder n:\myfiles.

The most common sequential file format is one which uses ASCII code. A sequential
data file can be thought of as a 1-dimensional array with each array location storing a
single ASCII code.

Sequential files can contain non printable ASCII codes such as an end of line character
LF (ASCII code 10) or a carriage return CR (ASCII code 13).

All programming languages will have a syntax for the following file operations:

• creating and deleting

• opening and closing

• reading and writing

Sequential files are read from beginning to end and so a file cannot be read and written
to simultaneously, although several different sequential files can be open for reading or
writing at the same time.

When a file is opened, the operating system will lock it so that the program using it has
exclusive access to it. When a file is closed, the file can then be accessed by other
programs in the usual way. A file needs to be opened for the program to read from it or
write to it.

Practical task: Programming language syntax

60 min

Find out the syntax your programming language uses to:

• open (or create if it does not exist) an existing file;

• write a character to the file;

• close the file;

• open an existing file;

• read a character from the file;

• close the file.

. .

© HERIOT-WATT UNIVERSITY

TOPIC 3. DATA TYPES AND STRUCTURES 81

3.11 Learning points

Summary

• All programming languages work with data, and that data can be held in a
variety of ways depending on what type of data it is.

• Data types can be divided into two sorts: simple and structured.

• Simple data types are: INTEGER, REAL, CHARACTER and BOOLEAN.

• Simple data types correspond to the various ways which computers store
information at machine code level: two's complement notation, floating point
notation, ASCII code and as a single bit: 0 or 1.

• Structured data types are ARRAY and STRING (an ARRAY of
CHARACTERS) and RECORD.

• Arrays, strings and records use an index to identify their contents. Indexes
start at zero.

• Almost all programming languages are able to read and write to sequential
files.

• The syntax for reading and writing sequential files is often similar to that to
input and output for external devices such as keyboard and display.

© HERIOT-WATT UNIVERSITY

82 TOPIC 3. DATA TYPES AND STRUCTURES

3.12 End of topic test

End of topic test

Q17: From the data types listed above which would you use to store the following:

• INTEGER

• REAL

• CHARACTER

• BOOLEAN

• STRING

• ARRAY of INTEGER

• ARRAY of REAL

• ARRAY of CHARACTER

• ARRAY of BOOLEAN

• ARRAY of STRING

• RECORD

a) The average of 5 INTEGERs?

b) The visibility of a sprite in a game?

c) The room descriptions in an adventure game.

d) Time spent per day in seconds on the Internet over a month.

e) Stock levels of products in a supermarket.

f) The last 20 key-presses made while editing a document.

g) A list of Email addresses.

h) Whether a set of emails has been read or not.

i) A set of room descriptions and contents in an adventure game.

j) A set of pupil names and test scores.

. .

© HERIOT-WATT UNIVERSITY

83

Topic 4

Development methodologies

Contents

4.1 Revision . 85

4.2 The traditional software development process 86

4.2.1 Analysis . 87

4.2.2 Design . 88

4.2.3 Implementation . 91

4.2.4 Testing . 92

4.2.5 Documentation . 95

4.2.6 Evaluation . 96

4.2.7 Maintenance . 99

4.3 Rapid Application Development (RAD) . 101

4.4 Agile software development . 102

4.5 Learning points . 103

4.6 End of topic test . 104

Prerequisite knowledge

From your studies at National 5 you should already know:

• software development is a complex process which needs careful planning and
management;

• mistakes at the early stages of the planning process can mean problems and
delays at later stages;

• using meaningful identifiers (variable and procedure names) and internal
documentation makes readable source code.

Learning Objectives

By the end of this topic you will be able to:

• understand the iterative nature of the software development process;

• describe the seven stages in the traditional software development process,
analysis, design, implementation, testing, documentation, evaluation, and
maintenance;

84 TOPIC 4. DEVELOPMENT METHODOLOGIES

• understand when Rapid Application Development would be an appropriate
development methodology;

• describe the Top-Down Design / Stepwise Refinement process;

• understand when Agile Development is an appropriate development methodology.

© HERIOT-WATT UNIVERSITY

TOPIC 4. DEVELOPMENT METHODOLOGIES 85

4.1 Revision

Revision

Q1: A programmer is storing 20 customer names in an array. Which one of these
would be the best name for the data structure?

a) customerNames
b) names
c) mynames
d) strings

. .

Q2: Which one of these is in the correct order?

a) Code, design, test
b) Design, code, test
c) Test, code, design
d) Design, test, code

. .

Q3: Why is readability of source code important?

. .

Q4: When an application is built, who is responsible for reading and checking the
source code?

a) The client
b) The user
c) The developer
d) The tester

. .

© HERIOT-WATT UNIVERSITY

86 TOPIC 4. DEVELOPMENT METHODOLOGIES

4.2 The traditional software development process
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand the iterative nature of the software development process;

• describe the seven stages in the traditional software development process,
analysis, design, implementation, testing, documentation, evaluation, and
maintenance;

• describe the Top-down Design / stepwise refinement process.

In this topic we are going to look at the seven stages in the software development
process. These stages are:

The traditional software development process is often called the waterfall model
because the development is seen as a series of developments flowing down from the
analysis stage to the final evaluation stage.

This model has evolved as software developers have attempted to reduce the time and
money spent creating and maintaining the increasingly complex applications they are
being asked to create. Commercial software development is a process undertaken by
a team of people who need to be able to work together in a structured and efficient
way. The waterfall model involves constant revision and evaluation at every phase which
makes it an iterative process. This ensures quality and efficiency in the final product.
Large scale commercial software projects have traditionally followed this development
process as far as possible in order to create successful product.

© HERIOT-WATT UNIVERSITY

TOPIC 4. DEVELOPMENT METHODOLOGIES 87

4.2.1 Analysis

The analysis stage of software development is the stage where an initial description of
the problem to be solved is examined and turned into a precise description of exactly
what the software will be able to do. Analysis of a problem is usually carried out by a
Systems Analyst whose job is to take the description of the problem provided by the
client and turn it into a software specification which can be used by the development
team to create the completed application.

The Systems Analyst must be able to communicate effectively with the client in order
to discover exactly what problem is that they want to solve, and also be able to
communicate with the development team in order to accurately describe what needs
to be produced. This is often more difficult than you might think for a number of reasons.

• The client may not be able to describe the problem they want solved accurately
enough to convert directly into a clear description of a piece of software.

• The client may have unrealistic ideas of what is possible, or not be aware of what
might be possible.

• In a large organisation there is often no one single person who knows exactly how
every part of the system operates, or understands exactly what information needs
to flow from one part of the organisation to another.

The Systems Analyst will collect as much information as they can about the organisation
and the problem they want solved, because they need to know how the existing system
works in order to design a solution which will work with the new one. As a result of their
research they will create a software specification which accurately describes exactly
what the software will be able to do, and will often also describe how long it will take
to build and how much it will cost. This software specification is a legally binding
document which can be used by either party to resolve possible disputes in the future.
For this reason it is very important indeed that the document accurately describes what
the client requires, and that they fully understand its contents.

Note that the software specification describes what the software will be able to do, not
how it does it. That is the responsibility of the people who undertake the design stage.

© HERIOT-WATT UNIVERSITY

88 TOPIC 4. DEVELOPMENT METHODOLOGIES

Errors made or shortcuts taken at this stage in the software development process can
have disastrous effects on subsequent stages.

Quiz: Analysis

Q5: Why is the analysis stage of software development important?

. .

Q6: The Systems Analyst will create a software specification at the end of the Analysis
stage of software development. What is a software specification?

. .

4.2.2 Design

The design stage of software development is when the software specification created
by the systems analyst is turned into a design which can be used by the team of
programmers to write the code. The more time spent on this stage, the less time will be
needed to be spent on the next one.

In theory any software problem can be broken down into smaller more easily managed
problems. These problems can subsequently be further broken down into a set of
simple steps. This process is often referred to as Top Down Design and Stepwise
Refinement. Unfortunately things are not always as simple as this; as knowing how
to break a problem down into smaller sub-problems takes practice. If it can be done
successfully, a structure diagram will usually be created showing how the different
sub-problems relate to each other.

© HERIOT-WATT UNIVERSITY

TOPIC 4. DEVELOPMENT METHODOLOGIES 89

When a problem is broken down into smaller sub-problems, the task becomes
more manageable because each part can be worked on separately. This is called
modular design. There are several advantages to this system:

• Different modules can be worked on simultaneously by separate programming
teams.

• Modules can be tested independently.

• A well written module may be able to be re-used in another application.

• Modules can mirror the structure of the data being processed by the application.
For instance a school management system may have a timetable module, a
registration module, and an assessment module.

Eventually all the modules need to be able to communicate with each other. This means
that the flow of data around the application needs to have been made clear when the
initial structure diagram was created.

The programming language to be used will have a set of simple and structured data
types which are used to define variables.

The design of the data structures the software will use is very important indeed and the
choice of data structure will affect the entire project. As well as a structure diagram,
the design stage will also result in a data dictionary which details all the data structures
which the software will use and how they are related. Even small-scale programming
problems benefit from an initial consideration of what arrays are going to be needed,
what size they should be and what data types they will use. In larger projects this is an
essential part of the design process.

© HERIOT-WATT UNIVERSITY

90 TOPIC 4. DEVELOPMENT METHODOLOGIES

Once the data structures have been decided upon the flow of data around a system may
be represented in a data flow diagram.

Once the structure of the program and its sub modules has been determined, the
detailed logic of each component will be designed, using pseudocode.

If the pseudocode is written clearly and is thoroughly tested by working through the logic
manually, then creating source code from it should be a relatively simple process.

Stepwise Refinement

The process of designing the logic of each module is known as stepwise refinement.
This is a process of breaking the module down into successively smaller steps,
eventually resulting in a set of pseudocode instructions which can be converted into
the chosen programming language.

%
����Q
� ��+����45

(��*��

(���/19�

(���/1:�

(���/1;�

��� %
����Q
�

%
����Q
� ��*�45

���� 8��*�D /���� � -�� !��/ �� � �� 2�*�"*��8

�����G�����*/�� �
�� 4��
��N5 ������
�5

'��&� �����*/�� �= I8�8J ��� �����*/�� �= I8�8J ��

���� 8%����� /���� � �� � 8 �� ���%&��

����� �����*/�� �
�� 4��
��N5 ������
�

��� '��&�

��� %
����Q
�

Each step may be further broken down into sub steps until the logic of the program is
complete.

© HERIOT-WATT UNIVERSITY

TOPIC 4. DEVELOPMENT METHODOLOGIES 91

4.2.3 Implementation

Just as the design stage depends upon how well the analysis stage has been done, the
implementation stage depends very much upon how clear the design is. If problems
are spotted at the implementation stage, then this may well mean that the original design
needs to be re-examined. This process of looking back to a previous stage to solve
problems encountered in a subsequent one is what makes the software development
process an iterative one.

If the design has been written in enough detail, the implementation stage should just be
a matter of using the design to create the source code for the application.

The choice of high level programming language will depend on a number of factors:

• The type of problem the software is being created to solve, as many programming
languages are domain specific.

• The language and the programming environment the development team are
familiar with.

• The operating systems the software will be running on, since some programming
languages are more easily adapted to run on different operating systems than
others.

The design stage will have identified the sub-problems which the programming team
need to complete, and because there are several people working on the same project,
communication between them is very important. This means that the code they produce
must be as readable as possible. Readable code means that if staff turnover is high, it
will be easier for a new programmer to take over work from someone who has moved
jobs or from a colleague who has to take time off due to illness.

Readability of code is achieved by:

• using meaningful identifiers (variable and procedure names),

• inserting internal documentation,

• white space and indentation to make the logic of the code clear,

© HERIOT-WATT UNIVERSITY

92 TOPIC 4. DEVELOPMENT METHODOLOGIES

• using local variables and creating modular code - this makes the modules re-
usable in other parts of the program and on subsequent projects.

Code readability is so important that a software development company will often
impose a house style on their employees. A house style will stipulate how internal
documentation should be written, conventions for variable names, where and when
variables should be declared, use of indentation and white space etc. This means that
code written by one programmer should be easily read and understood by others in the
team, and of course if someone is ill or leaves the company, their code can be taken
over by another member of the team without a problem.

Debugging

Debugging is the process of finding and correcting errors in code. For obvious reasons,
readable code makes debugging easier.

Some errors in code will be discovered during the implementation stage but some will
only be identified at the testing stage which means that the implementation stage needs
to be re-visited to correct them. For example, it might turn out that an implemented
algorithm runs too slowly to be useful and that the designer will have to develop a faster
algorithm. Or it might be that the slowness of operation is due not to a poor algorithm
but to slow hardware. In such a case, the development team might have to return to the
analysis stage and reconsider the hardware specification.

At the end of the implementation stage a structured listing is produced, complete with
internal documentation. This will be checked against the design and against the original
specification, to ensure that the project remains on target.

4.2.4 Testing

Testing a piece of software has several purposes. It should check that:

• the software meets the specification;

• it is robust;

• it is reliable.

© HERIOT-WATT UNIVERSITY

TOPIC 4. DEVELOPMENT METHODOLOGIES 93

At the design stage, a set of test data will have been created which can be used to
determine whether the software meets the specification or not, so that it is possible to
see if the program does what it is supposed to do.

Modern programs are so complex that testing can never show that a program is correct
in all circumstances. Even with extensive testing, it is almost certain that undetected
errors exist.

Testing can only demonstrate the presence of errors, it cannot demonstrate their
absence.

As far as possible, testing should be both systematic, which means testing in a logical
order, and comprehensive which means testing every possible scenario.

Test data :

When you are testing software, it should be tested with three types of data.

• Normal data: data that the program is expected to deal with.

• Extreme data: data that represents the values at the boundaries of the range
of data it should accept. For instance if a program should only accept numbers
between 1 and 100 then it should be tested with 1 and 100.

• Exceptional data: data that lie beyond the extremes of the program's normal
operation; these should include a selection of what might be entered by accident
or misunderstanding, so if a program should only accept whole numbers it should
be tested with text input and decimal values. Exceptional data should also include
data which is just outside the boundaries of the range of data it should accept.

Activity: Testing

Q7:

Match three of the following phrases to their correct descriptions:

1. data that is invalid;

2. data to test the extremes of a program's operations;

3. Abnormal data;

4. data that the program has been built to process;

5. data which lies beyond the extremes of normal operations.

Descriptions:

• Normal

• Extreme

• Exceptional

. .

Q8: Give examples of normal, extreme and exceptional test data for a program that
should accept a numerical value for the months of the year.

. .

© HERIOT-WATT UNIVERSITY

94 TOPIC 4. DEVELOPMENT METHODOLOGIES

Testing should be systematic and the results recorded so that time is not wasted
repeating work done already, and the developers have a clear list of what has and what
hasn't been tested. Test results should be documented in a clear list matching test data
with results.

This kind of testing of a program within the organisation is called alpha testing.

Alpha testing will hopefully detect any logical errors in the code and if there are any
discovered this will result in that part of the program being looked at again by the
programming team and corrected. It will then have to be re-tested.

Alpha testing does not have to wait until an application is complete. It may be done on
modules or on parts of an application while other parts are still being developed.

Once the software has been fully tested and corrected by the software developers, the
next stage is to test it in the environment which it has been designed for. This is called
beta testing.

Beta testing is important for a number of reasons:

• it is essential that the client is able to test the software and make sure that it meets
the specification they agreed to at the analysis stage;

• although the programming team will have tested the software with appropriate test
data, it is can be difficult for the programming team to test their work as a user who
might make unpredictable mistakes rather than as a developer who is very familiar
with the application they have been building;

• it is important that the people who are actually going to use the software are able
to test it.

If a program has been developed for use by particular clients, it is installed on their site.
The clients use the program for a given period and then report back to the development
team. The process might be iterative, with the development team making adjustments
to the software. When the clients regard the program's operation as acceptable, the
testing stage is complete.

If a program is being developed by a software house for sale to a market rather than an
individual client, the developers will provide an alpha-tested version to a group of expert
users such as computer journalists and authors. This is of benefit to both parties; the
software house gets its product tested by people who are good at noticing faults, and
the writers get to know about products in advance.

People involved in beta testing will send back error reports to the development team.
An error report is about a malfunction of the program and should contain details of
the circumstances which lead to the malfunction. These error reports are used by the
development team to find and correct the problem.

© HERIOT-WATT UNIVERSITY

TOPIC 4. DEVELOPMENT METHODOLOGIES 95

Quiz: Testing

5 min

Q9: Which of the following statements are true of alpha testing of an application?

a) Testing is done by the users

b) Testing is done by the programmers responsible for the application

c) Testing is done by specialist companies

d) Testing is done by the client

e) Testing may be done on parts of the application
. .

Q10: Which one of the following statements describe beta testing?

a) The testing is performed by the clients
b) The testing is more rigorous than alpha
c) The testing is for market research
d) The testing is performed by specialist companies

. .

. .

4.2.5 Documentation

The documentation stage is when the guides to using and installing the software are
produced. The documents created during the previous stages such as the software
specification and test history are also collected together so that they can be referred to
in case of changes or problems discovered at a later date.

The user guide for the software should include a comprehensive guide to the menu
options, and how each one functions. On-line user guides are convenient for both the
user and the developer. The user can make use of a search facility and can access the
guide whenever they are using the software. The developer saves on distribution costs
and can update it whenever changes are made to the software.

The program should include a help facility. It is common for on-line help to be presented
in three tagged pages: Contents, Index, and Search. The contents present the help

© HERIOT-WATT UNIVERSITY

96 TOPIC 4. DEVELOPMENT METHODOLOGIES

chapter by chapter; the index refers to certain key words in the chapters; and search
offers the facility to locate key terms within the guide.

The technical guide for the software should include details of the minimum specification
of hardware required such as available RAM, processor clock speed, hard disk
capacity and graphics card specification. It will also specify the platform and operating
system versions which it is compatible with and any other software requirements or
incompatibilities. The technical guide will give details of how to install the program, and
if it is to function on a network, where to install it and how to licence it.

4.2.6 Evaluation

The evaluation stage is where the software is critically examined by both the client and
the developer. The single most important criterion for evaluating software is whether it is
fit for purpose i.e. does it match the software specification written at the analysis stage.
It will also be evaluated against the following criteria:

• Robustness

• Reliability

• Maintainability

• Efficiency

• User interface

The evaluation is useful to the client because once it is complete, they can be sure
that they have the software they need, and useful to the developer because if any
problems are found at this stage it can save work later on. An evaluation can also
help the developer improve their performance for future projects.

© HERIOT-WATT UNIVERSITY

TOPIC 4. DEVELOPMENT METHODOLOGIES 97

Robustness

Software is robust if it is able to cope with mistakes that users might make or unexpected
conditions that might occur. These should not lead to wrong results or cause the
program to hang. For examples an unexpected condition, could be something going
wrong with a printer, (it jams, or it runs out of paper) a disc drive not being available for
writing, because it simply isn't there, or the user entering a number when asked for a
letter. Put simply, a robust program is one which should never crash.

Reliability

Software is reliable if it always produces the expected result when given the expected
input. It should not stop due to design faults.

Maintainability

Software is maintainable if it can be easily changed and adapted. This is why
readability and modularity are so important in software design. The person
maintaining it may not be the same person as the one who wrote it. Even the original
author may find their code difficult to understand at a later date if it has not been written
clearly. Modularity makes a program easier to maintain because the separate functions
can be tested and changed without causing unexpected consequences with other parts
of the program. It is also easier to locate (and therefore correct) errors in a modular
program.

Efficiency

Software is considered to be efficient if it avoids using resources unnecessarily.
Resources may be processor time, RAM, hard disk space, or Internet bandwidth.
There may be a trade-off between programmer time and efficiency. The increased
processor speed and memory capacity of modern machines can encourage saving
valuable programmer time but at the expense of creating less efficient software. This
can be seen with newer versions of operating systems, which often perform more slowly
than their predecessor on the same hardware.

User Interface

The user interface of a software product is the part which has most influence on the
reaction of its users. A user interface should be:

• Customisable

• Appropriate

• Consistent

• Provide protection from error

• Accessible

A user interface should be customisable so that users can alter the way they use the
software to their own preferences.

A user interface must be appropriate to the expertise of the user expected to be using
the software. Ideally it will provide a number of different levels of interface depending on
the expertise of the user. A word processor for instance will provide a number of different
ways of performing the same function, menu options, shortcut keys, and toolbar icons.

© HERIOT-WATT UNIVERSITY

98 TOPIC 4. DEVELOPMENT METHODOLOGIES

A user interface should be consistent so that users find similar functions grouped
together under menus, dialog boxes with commonly used options like OK and Cancel in
the same place.

A user interface should provide protection from error so that critical events such as
deleting data give sufficient warning to the user before they are completed.

A user interface should be accessible so that its design does not impede those users
with disabilities. This might mean making the interface compatible with a text reader,
providing customisable colour settings for a high contrast display or the provision of
optional large size icons or toolbars.

Activity: Evaluation terminology

Q11: Match each term to the correct description:

• Reliable

• Maintainable

• Readable

• Portable

• Efficient

• Fit for purpose

• Robust

Term Description

Ability of a program to keep running even when external errors
occur.

The program always produces the expected result when given the
expected input.

Whether or not the program can easily be used on a variety of
hardware and/or operating systems.

Whether the program wastes memory or processor time.

Has the program been designed to easily altered by another
programmer.

Is the coding easy to understand, because it uses meaningful
variable names and is well-structured.

Does the program fulfil all the requirements of the specification.

. .

. .

© HERIOT-WATT UNIVERSITY

TOPIC 4. DEVELOPMENT METHODOLOGIES 99

4.2.7 Maintenance

There are three types of software maintenance:

• Corrective

• Adaptive

• Perfective

Corrective maintenance is concerned with errors that were not detected during testing
but which occur during actual use of the program. Users are encouraged to complete
an error report, stating the inputs that seemed to cause the problem and any messages
that the program might have displayed. These error reports are invaluable to the
development team, who will attempt to replicate the errors and provide a solution. The
developer will be responsible for any costs incurred by this type of maintenance.

Adaptive maintenance is necessary when the program's environment changes. For
example, a change of operating system could require changes in the program, or a new
printer might call for a new printer driver to be added. A change of computer system
will require the program to have its code adapted to run on to the new system. The
cost of adaptive maintenance is usually borne by the client but there may be negotiation
depending upon how predictable the change in circumstances was.

Perfective maintenance occurs when the client requests changes or improvements to
the program which were not in the original software specification. This may be due to
changes in the requirements or new legislation. Such maintenance can involve revision
of the entire system and can be expensive. The cost of perfective maintenance is likely
to be borne by the client.

© HERIOT-WATT UNIVERSITY

100 TOPIC 4. DEVELOPMENT METHODOLOGIES

Activity: Maintenance

Q12:

Match three of the following phrases to their correct descriptions:

1. only done under extreme circumstances;

2. errors removed that were initially undetected;

3. requirements incorrect;

4. occurs in response to requests to add new features;

5. needed when environment changes.

Descriptions:

• Corrective

• Adaptive

• Perfective

. .

Activity: Waterfall model

Q13:

Place these terms in the correct order and match them to their correct definition:

1. Checking to see how well the software meets its specification

2. Writing the source code

3. Looking at the problem and collecting information

4. Fixing problems and adapting the software to new circumstances

5. Creating a structure diagram and pseudocode

6. Trying to find ways in which the program will fail

7. Creating a user guide and technical guide

1. Documentation

2. Design

3. Analysis

4. Implementation

5. Maintenance

6. Testing

7. Evaluation

. .

© HERIOT-WATT UNIVERSITY

TOPIC 4. DEVELOPMENT METHODOLOGIES 101

4.3 Rapid Application Development (RAD)
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand when Rapid Application Development would be an appropriate
development methodology.

Although the waterfall model has traditionally been the one used for large scale software
development projects, it has often been criticised as being too rigid and too slow
a process, resulting in projects where the software specification had to be changed
substantially during the lifetime of the project, or software became out of date before it
was even complete. In theory the analysis stage should result in a software specification
which can then be used throughout the rest of the project, but in practice this is often
unrealistic.

Rapid Application Development means that the users should be involved at all stages
of the development process and that changes to the design can be made at any time
throughout the life of the project. It also means that the development process is faster
and more flexible.

There are four stages to the Rapid Application Development model:

1. Requirements Planning phase: This is similar to the analysis stage but where
users, managers and IT staff discuss and agree on what they need, the project
scope, its constraints and the system requirements. They do not necessarily
create a legally binding software specification.

2. User Design phase: During this phase the developers work with users to translate
their requirements into prototypes of the different systems required. This is
a continuous interactive process that allows users to understand, modify, and
eventually approve a working model of the system that meets their needs.

3. Construction phase: This phase is similar to the implementation and testing
stages of the waterfall model, but users continue to be involved and can still
suggest changes or improvements as the software is built.

4. Cutover phase: In this phase, the software is installed and tested on the new
system and user training and maintenance starts.

As you might guess from the name, the emphasis of Rapid Application Development is
on creating software quickly and efficiently. It is however, still considered to be more
appropriate to smaller software projects.

© HERIOT-WATT UNIVERSITY

102 TOPIC 4. DEVELOPMENT METHODOLOGIES

4.4 Agile software development
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand when Agile Development is an appropriate Development
Methodology.

Agile software development is a product of the Rapid Application Development idea,
with an emphasis on small scale developments, and with teams of people who have
a flexible approach to change in requirements. Agile software development is seen
as a more adaptable and responsive process compared to the rigid waterfall model.
Agile development has been widely seen as being more suitable for certain types of
environment using small teams of experts such as web development.

The benefits of the Agile method are:

• reduced development time;

• increased responsiveness to changing circumstances;

• more reduced costs due to the efficiency of using small groups of developers.

Agile development will make use of prototyping where working models of the proposed
system are tried out and tested throughout the development process so that client
feedback can be taken into account as early as possible. Developers and clients will
use tools such as version management software and online ticket systems to keep
track of issues and bugs and give feedback on progress.

A common feature of agile development is the frequent appearance of updates to the
software, often given sequential version numbers.

There has been some criticism of the agile software development process as being too
extreme a contrast to the tried and trusted waterfall model, or as just a management
fad that simply describes existing good practices under new jargon, and wrongly
emphasizes method over results. Agile development can also mean that it encourages
the client to make changes to the specification throughout the development process
rather than thinking clearly about what they require at the beginning.

© HERIOT-WATT UNIVERSITY

TOPIC 4. DEVELOPMENT METHODOLOGIES 103

4.5 Learning points

Summary

You should now know:

• The traditional waterfall model of software development consists of
seven stages: analysis, design, implementation, testing, documentation,
evaluation, and maintenance.

• Software development is an iterative process.

• In the analysis stage the client's project description is carefully examined
and after discussion, a legally binding software specification is written.

• In the design stage, top down design and stepwise refinement is used to
turn the software specification into structure diagrams, pseudocode and a
data dictionary which the programming team can use.

• In the implementation stage the programming team use the design to create
and debug the program code.

• In the testing stage the code is alpha tested using normal, extreme and
exceptional test data, and then beta tested using clients or individuals
outside the development team organization.

• In the documentation stage the user guide and technical guide are
produced.

• In the evaluation stage the software is examined to see if it is reliable, robust,
maintainable, efficient and user friendly.

• The maintenance stage is where problems are fixed, the software may be
adapted to new circumstances and additional features may be added.

• Rapid Application Development (RAD) is an attempt to streamline the
waterfall model by using prototyping and involving the client at more stages
in the development process.

• Agile programming is a type of RAD suited to smaller projects. It is designed
to be as flexible as possible where the specification may change throughout
the development process resulting in reduced development time and costs.

© HERIOT-WATT UNIVERSITY

104 TOPIC 4. DEVELOPMENT METHODOLOGIES

4.6 End of topic test

End of topic test

10 min

Q14: A company wishes to add a network capability to their recently acquired computer
program. In maintenance terms this would be an example of:

a) Perfective maintenance
b) Routine maintenance
c) Corrective maintenance

. .

Q15: Which one of these would not be found in the technical guide?

a) Operating system required
b) Hardware requirements
c) Memory requirements
d) Tutorial

. .

Q16: During the software development process, which one of the following is
responsible for converting the design into actual program code?

a) Programmers
b) System Analyst
c) Independent test group
d) Client

. .

Q17: A computer program is designed to accept whole numbers between 0 and 99 as
input. If the value 56.8 was entered this would be an example of:

a) Boundary data
b) Exceptional data
c) Extreme data
d) Normal data

. .

Q18: Which one of the following terms is best described by the phrase below?

"how well a program operates without stopping due to design faults"

a) Robustness
b) User friendly
c) Reliability
d) Efficiency

. .

© HERIOT-WATT UNIVERSITY

TOPIC 4. DEVELOPMENT METHODOLOGIES 105

Q19: Software is evaluated according to a number of different criteria. Which one of the
following would not be included in an evaluation report?

a) Portability
b) Efficiency
c) Editability
d) Maintainability

. .

Q20: Which one of these is NOT an advantage of agile software development

a) Reduced development time
b) Responsiveness to changed circumstances
c) Reduced costs
d) Reduced time spent on analysis

. .

Q21: Which statement is the best description of pseudocode?

a) A list of pre-written subroutines in the program.
b) An informal list of testing instructions within the code.
c) A list of statements in a high level language.
d) A high-level description of how a computer program functions.

. .

Q22: Which of these has the waterfall model stages in the right order?

a) Analysis, Design, Implementation, Documentation, Testing, Evaluation,
Maintenance

b) Analysis, Design, Implementation, Testing, Documentation, Evaluation,
Maintenance

c) Analysis, Design, Evaluation, Implementation, Testing, Documentation,
Maintenance

d) Analysis, Design, Implementation, Testing, Documentation, Maintenance,
Evaluation

. .

Q23: Who is responsible for writing the software specification during the software
development process?

a) The systems analyst
b) The programming team
c) The client
d) The beta testers

. .

© HERIOT-WATT UNIVERSITY

106 TOPIC 4. DEVELOPMENT METHODOLOGIES

© HERIOT-WATT UNIVERSITY

107

Topic 5

Software design notations

Contents

5.1 Revision . 108

5.2 Introduction . 109

5.3 Structure diagrams . 109

5.4 Data flow diagrams . 111

5.5 Pseudocode . 112

5.6 Wireframes . 114

5.7 Learning points . 116

5.8 End of topic test . 117

Prerequisite knowledge

From your studies at National 5 you should already know:

• that top down design and stepwise refinement are part of the design phase in
software development process;

• that a structure diagram is a graphical representation of the logic of a program;

• that pseudocode is an informal high-level description of how a computer program
functions.

Learning Objectives

By the end of this topic you will be able to:

• explain how design notations can help the software development process;

• describe a variety of graphical program design notations including structure
diagrams, data flow diagrams and wireframes;

• describe the relationship between pseudocode and source code; interpret
examples of pseudocode.

108 TOPIC 5. SOFTWARE DESIGN NOTATIONS

5.1 Revision

Revision

All 3 questions refer to the following:

��� ����� �� 	

��� 2��*� �� 	

'��&� 2��*� (�	 ��

����� *�?��*/�� �
�� 4����N�
5 ������
�

��� ����� �� ����� � *�?��*/��

��� 2��*� �� 2��*� � �

��� '��&�

���� ����� H �	 �� ���%&��

Q1: The above is an example of?

a) Pseudocode
b) Source code
c) Machine code
d) High level language code

. .

Q2: How many numbers will be input into this program?

a) 1
b) 9
c) 10
d) 11

. .

Q3: What is the value of the count variable when the WHILE loop ends?

a) 1
b) 9
c) 10
d) 11

. .

© HERIOT-WATT UNIVERSITY

TOPIC 5. SOFTWARE DESIGN NOTATIONS 109

5.2 Introduction
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• explain how design notations can help the software development process;

• describe a variety of graphical program design notations including structure
diagrams, data flow diagrams and wireframes.

A software specification describes what a program must do. The design stage of the
software development process is where a set of documents is created that describe how
the program will do it. These documents might describe the structure of the program
in terms of different modules, the flow of data between these modules and the detailed
logic of the modules themselves. It makes sense to discuss the user interface at an
early stage in the design process as well.

The more accurately these documents reflect the program specification, the easier it will
be for the programmers to create the program source code from them.

5.3 Structure diagrams

A structure diagram will be created as part of the top down analysis of the software
specification. This allows the developers to break this complex problem description into
a series of smaller sub-problem descriptions. These sub problems can be regarded as
modules within the system and they themselves may be further divided into smaller (and
hopefully simpler) sub problems.

Example - Structure diagram

A program is required to take in a set of test results, save the data to file, calculate the
highest score and how many failures there were. It should also print re-sit letters for all
those candidates who failed.

© HERIOT-WATT UNIVERSITY

110 TOPIC 5. SOFTWARE DESIGN NOTATIONS

This problem can be broken down into four main modules, two of which can be further
broken down into sub tasks.

A structure diagram is organised to show the level or hierarchy of each sub task. The
sequence of operations in the program is read from top to bottom, going left to right.

Once the structure of the program has been decided, the next step is to work out
what data each module will need and what data it will pass on to the next module.
This can be shown either by either annotating the structure *diagram* or by creating a
data flow diagram.

Quiz: Structure diagram

Q4: In the above example, what data structures would be used to store candidate
names?

. .

Q5: In the above example, what data structures would be used to store test scores?

. .

Q6: What is the 7th process "visited" in this structure diagram?

. .

© HERIOT-WATT UNIVERSITY

TOPIC 5. SOFTWARE DESIGN NOTATIONS 111

5.4 Data flow diagrams

The data used by the different modules can be represented by a data flow diagram. Here
the modules are shown as circles and the physical devices are shown as rectangles.
Note that not all data is needed by every module.

The data types and structures storing the information used would be:

*���� �

��I9	J �- ��
��N

�2���� �

��I9	J �- ����N�

!"#!���1�2��� ����N�

�����1-�"��+ ����N�

Like a structure diagram, a data flow diagram reads from left to right. A data flow diagram
can be used to decide on what data needs to be passed as parameters to each module.

Quiz: Data flow diagrams

Q7: What inputs are there to the output results module?

. .

Q8: Which variables have a different value at the end of the process than they did at
the beginning?

. .

There are many diagram creation tools available. Gliffy is a free tool which lets you
create structure diagrams and data flow diagrams online.

© HERIOT-WATT UNIVERSITY

http://www.gliffy.com/

112 TOPIC 5. SOFTWARE DESIGN NOTATIONS

5.5 Pseudocode
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• describe the relationship between pseudocode and source code;

• interpret examples of pseudocode.

The detailed logic of each module can now be written as pseudocode. Pseudocode is
often referred to as a "halfway house" between an algorithm (written in English) and final
code.

W "*/��+���

��� 2��*��� �� 	

��� "*/��1�3 �� ����

'��&� "*/��1�3 7 ���� ��

����� *����I2��*���J �
�� 4��
��N5 ������
�

����� �2����I2��*���J �
�� 4��
��N5 ������
�

���� 8�*��!�� ������F ���H��8 �� ���%&��

����� ���/�*�� �
�� 4��
��N5 ������
�

�� ���/�*�� 7 8��8 ����

��� "*/��1�3 �� -����

��� ��

��� 2��*��� �� 2��*��� � �

��� '��&�

W ��0� +��� �� -"��

�
���� 8*����A�?�8

��
���� *��� �
�� *���� ��

���� *��� �� 8*����A�?�8

��� ��
����

�
���� 8�2����A�?�8

��
���� �2��� �
�� �2���� ��

���� �2��� �� 8�2����A�?�8

��� ��
����

W /��2��� +���

(-"*+ !"#!��� �2����

(2��*� �2���� ���) 6	K�

(/�"*� ���"� ��������

© HERIOT-WATT UNIVERSITY

TOPIC 5. SOFTWARE DESIGN NOTATIONS 113

W -"*+ !"#!��� �2���

��� !"#!���1�2��� �� �2����I	J

��
���� �2��� �
�� �2���� ��

�� !"#!���1�2��� (�2��� ����

��� !"#!���1�2��� �� �2���

��� ��

��� ��
����

���� 8�!� !"#!��� �2���)��D8 S !"#!���1�2��� �� ���%&��

W 2��*� �2���� ���) 6	K

��� �����1-�"��+ �� 	

��
���� �2��� �
�� �2���� ��

�� �2��� (6	 ����

��� �����1-�"��+ �� �����1-�"��+ � �

��� ��

��� ��
����

���� 8�!���)��� 8 S �����1-�"��+ S 8 -�"��+ ���+�*��8 �� ���%&��

W /�"*� ��E�"� �������

��� 2��*��� �� 	

�%���

�� 4�2���I2��*���J (6	5 ����

���� 8���� 8 S *����I2��*���J S

8 ���� ���"� "� �* 8 S *�)45 � �; �� (/�"*����

��� ��

Q���& *����I2��*���J 7 88

���
�%���

The more clearly the pseudocode can be written, the easier it will be to write the final
solution in a high level language.

Practical: Creating a structure diagram and Data flow diagram

30 min

Create a structure diagram and data flow diagram for the following problem:

A custom computer company wants a piece of software which rates processors using a
points system according to their clock speed, data bus width and cache size.

The program should input the data and calculate the points awarded then allocate a
number of stars depending on the range of points allocated.

The program should calculate and display the number of processors at each star rating
then find and display the processor with the highest number of points.

© HERIOT-WATT UNIVERSITY

114 TOPIC 5. SOFTWARE DESIGN NOTATIONS

Data structures used could be:

/��2������I�	J �- ��
��N

2��23�/��+I�	J �-
��&

+������'"+�!I�	J �- ����N�

2�2!��"M�I�	J �- ����N�

/�"*��I�	J �- ����N�

����
��"*#I�	J �- ����N�

. .

5.6 Wireframes

Wireframes are one of the techniques used for user interface design. The user interface
of any software is the part which users experience and is therefore a crucial part of the
design process. A wireframe is a visual guide that represents a website or program
interface, and is normally created at an early stage in the development of an application
to give the client and developers a clear idea of how the finished product will function
and how users will interact with it.

Web pages

A wireframe can show how a website will look and how its navigations structure works. In
the case of a software application the wireframe will show how the menu and sub-menu
options will appear and how they interact with any dialog boxes used.

A wireframe for a website can be as simple as a rough sketch or can be a detailed
design showing colour combinations and images.

© HERIOT-WATT UNIVERSITY

TOPIC 5. SOFTWARE DESIGN NOTATIONS 115

A wireframe can also be a detailed design that could be used to give the client an idea
of how the final product will look:

Applications

In many modern software development environments such as Visual Basic or LiveCode,
it is possible to create the interface for an application without including any functionality
other than the menu drop down or dialog box selection. This allows the client to see the
proposed interface and request changes at an early stage in the development.

© HERIOT-WATT UNIVERSITY

116 TOPIC 5. SOFTWARE DESIGN NOTATIONS

This means that the client will have a clear idea of what the finished application will look
and feel like. The advantage for the developer is that they can be reassured that what
they are going to create is what the client actually wants.

Activity: Wireframes

20 min

A client wants a game which allows them to move around a 2D maze which is stored in
memory but not shown on screen. Each room in the maze will have a text description
which is displayed when the player enters. The program will have a library of levels
which can be loaded from file. Design a user interface and make sketches of any menu
options or dialog boxes you think should be used.

. .

5.7 Learning points

Summary

You should now know:

• Graphical design notations are used in the design stage of the software
development process to help the developers break the problem down into
manageable sub problems.

• Structure diagrams are a graphical representation of the top down design
process where blocks in the diagram correspond to modules in the program.

• Data flow diagrams are used to represent how data is passed between
modules.

• Pseudocode is an informal description of the logic of each module which
can then be used to write source code.

• Wireframes are a graphical notation which not only helps the developer
plan the application but also allows the client to influence the design and
navigation at an early stage.

• Wireframes are use in web development as well as program design.

© HERIOT-WATT UNIVERSITY

TOPIC 5. SOFTWARE DESIGN NOTATIONS 117

5.8 End of topic test

End of topic test

10 min

Q9: The design approach of breaking a large and complex problem into smaller, more
manageable sub-problems is known as:

a) Process refinement
b) Top-down refinement
c) Bottom-up design
d) Top-down design

. .

Q10: Which one of these statements is true?

a) It is not necessary to bother about the module names as these will change in the
code.

b) The modules in a structure chart will become modules in the finished program.
c) Structure charts are not hierarchical.
d) A structure chart cannot show the data flow between modules.

. .

Q11: Which one of these is not a graphical design notation?

a) Wireframe
b) Structure diagram
c) Pseudocode
d) Data flow diagram

. .

Q12: Which design notation needs the data structures to be decided on before it can
be created?

a) Wireframe
b) Structure diagram
c) Pseudocode
d) Data flow diagram

. .

Q13: Which design notation would you use to design a user interface?

a) Wireframe
b) Structure diagram
c) Pseudocode
d) Data flow diagram

. .

© HERIOT-WATT UNIVERSITY

118 TOPIC 5. SOFTWARE DESIGN NOTATIONS

Q14: Which design notation is the easiest to create source code from?

a) Wireframe
b) Structure diagram
c) Pseudocode
d) Data flow diagram

. .

Q15: Stepwise refinement is:

a) Creating pseudocode from the structure diagram and data flow diagram.
b) Breaking a large and complex problem into smaller, more manageable sub-

problems.
c) Writing source code.
d) Creating a wireframe and interface design.

. .

© HERIOT-WATT UNIVERSITY

119

Topic 6

Algorithm specification

Contents

6.1 Revision . 120
6.2 Standard algorithms . 121
6.3 Input validation . 121
6.4 Finding the minimum or the maximum value in an array 124
6.5 Counting Occurrences . 127
6.6 Linear search . 130
6.7 Learning points . 133
6.8 End of topic test . 134

Prerequisite knowledge

From your studies at National 5 you should already know:

• an algorithm is a detailed sequence of steps which, when followed, will accomplish
a task;

• an array is a data structure that stores a range of values of the same type in a
single indexed structure;

• pseudocode is a method of describing a computer program in an informal English-
like language;

• a fixed loop repeats program code a set number of times and a conditional loop
repeats program code until a condition is met.

Learning Objectives

By the end of this topic you will be able to:

• recognise appropriate use of the following standard algorithms:

– input validation;

– find minimum/maximum;

– count occurrences;

– linear search.

• describe these standard algorithms in pseudocode and implement them in a high
level programming language.

120 TOPIC 6. ALGORITHM SPECIFICATION

6.1 Revision

Revision

Q1: What complex data structure would you use to store a set of 20 student names?

a) 20 STRING variables
b) Array of CHARACTER
c) ARRAY of STRING
d) A file of STRING

. .

Q2: An index is?

a) An ARRAY of INTEGER
b) A list of numbers
c) The position in an ARRAY
d) A list of INTEGERS

. .

Q3: Which one of these is best used to describe the algorithm when designing
software?

a) Source code
b) Pseudocode
c) Binary code
d) Machine code

. .

Q4: What kind of loop is this pseudocode an example of?

��
 2��*��� -��� 	 �� P ��

���� 8�����)���+8 �� ���%&��

��� ��

a) A fixed loop
b) A conditional loop
c) A repeated loop
d) A indexed loop

. .

© HERIOT-WATT UNIVERSITY

TOPIC 6. ALGORITHM SPECIFICATION 121

6.2 Standard algorithms
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• recognise appropriate use of the following standard algorithms:

– input validation;

– find minimum/maximum;

– count occurrences;

– linear search.

There are certain algorithms that appear in program after program. These are called
standard algorithms.

The first one we are going to look at is input validation. This is the task of making
sure that the data input by the user is acceptable e.g. in a suitable format and within the
upper and lower limits of the data required by the software, so that the program is both
robust and reliable.

The other three algorithms we are going to examine all operate on lists of values: finding
the maximum or minimum value, searching for a value, and counting the occurrences of
a value. A common data structure used to store a list in a program is an array.

6.3 Input validation
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• describe the Input validation algorithm in pseudocode and implement it in a high
level programming language.

Input validation can be achieved in a number of ways: you can restrict the data the user
can input by only presenting them with a limited set of possibilities such as a drop box
or pull down menu, or you can accept their input but reject any which does not meet
the restrictions imposed by the software and ask them to input it again. This second
approach is the one we are going to study.

In this algorithm we are going to assume that the input from the user is going to come
from the keyboard, and that the user will be asked for a value repeatedly until they
provide one which meets the requirements of the program.

This means that we have to use a conditional loop to check to see whether the data is
valid or not.

This algorithm uses a WHILE . . . DO . . . END WHILE conditional loop.

© HERIOT-WATT UNIVERSITY

122 TOPIC 6. ALGORITHM SPECIFICATION

The user inputs the value then the conditional loop checks in case it is an invalid entry
and asks for the value again.

%
����Q
� �*/����"+��"�*45

����� �����*/�� �
�� 4����N�
5 ������
�

'��&� �����*/�� (��)��&"�"� �
 �����*/�� � �//��&"�"� ��

���� 8�*/�� ���� � ��)��* 8S ��)��&"�"� S 8 �*+ 8 S �//��&"�"� �� ���%&��

����� �����*/�� �
�� 4����N�
5 ������
�

��� '��&�

��� %
����Q
�

We could use a REPEAT . . . UNTIL loop to do the same job.

The user inputs the value then the IF . . . THEN . . . END IF control structure checks to
see if it is an invalid entry. Note that this algorithm is less efficient than the previous one
because the input is being checked twice.

%
����Q
� �*/����"+��"�*45

�%���

����� �����*/�� �
�� 4����N�
5 ������
�

�� �����*/�� (��)��&"�"� �
 �����*/�� � �//��&"�"� ����

���� 8�*/�� ���� � ��)��* 8 S ��)��&"�"� S 8 �*+ 8

S �//��&"�"� �� ���%&��

��� ��

Q���& �����*/�� �7 ��)��&"�"� ��� �����*/�� (7 �//��&"�"�

��� %
����Q
�

© HERIOT-WATT UNIVERSITY

TOPIC 6. ALGORITHM SPECIFICATION 123

Practical task: Algorithms 1

10 min

Implement one of these algorithms in your chosen programming language to ask the
user for a number between 1 and 100.

. .

Input validation for strings follows the same pattern:

%
����Q
� �*/����"+��"�*45

����� �����*/�� �
�� 4��
��N5 ������
�

'��&� �����*/�� �= I8�8J ��� �����*/�� �=I8�8J ��

���� 8�*/�� ���� � � �� � 8 �� ���%&��

����� �����*/�� �
�� 4��
��N5 ������
�

��� '��&�

��� %
����Q
�

Practical task: Algorithms 2

10 min

Write an input routine in your programming language which only accepts Y or N, but
accepts them in upper or lower case.

. .

Sometimes you may wish to limit the length of an input string.

This version of the input validation algorithm uses the length function to check the length
of the userInput string against the lengthLimit value.

%
����Q
� �*/����"+��"�*45

����� �����*/�� �
�� 4��
��N5 ������
�

'��&� 4��*#�!4�����*/��5 � ��*#�!&"�"�5 ��

���� 8�*/�� ���� � ���� �!�* 8 S ��*#�!&"�"� S 8 �!���2����8 �� ���%&��

����� �����*/�� �
�� 4��
��N5 ������
�

��� '��&�

��� %
����Q
�

© HERIOT-WATT UNIVERSITY

124 TOPIC 6. ALGORITHM SPECIFICATION

Using a Boolean flag

In this version of the algorithm the boolean variable 0��"+"*/�� is initialised to false,
and the conditional loop only terminates when it has been set to true. This version of
the algorithm is useful if you want to check a number of different conditions in the input
string.

%
����Q
� �*/����"+��"�*45

��� 0��"+�*/�� �� -����

�%���

����� �����*/�� �
�� 4��
��N5 ������
�

�� 4��*#�!4�����*/��5 (��*#�!&"�"�5 ����

��� 0��"+�*/�� �� �
Q�

�&��

���� 8�*/�� ���� � ���� �!�* 8 S ��*#�!&"�"� S 8 2!���2����8 �� ���%&��

��� ��

Q���& 0��"+�*/�� 7 ����

��� %
����Q
�

Practical task: Algorithms 3

30 min

You have been asked to write an input validation routine in your programming language
to input a telephone number which can only contain the characters 0,1,2,3,4,5,6,7,8,9
and must be exactly 12 characters long.

(Note: if your programming language does not store a string as an array but stores them
as a simple data type, you will have to use a string function to check each digit in turn.)

. .

6.4 Finding the minimum or the maximum value in an array
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• describe the Find Max and Min algorithm in pseudocode and implement it in a
high level programming language.

To understand this algorithm, you have to remember that the processor can only do
one thing at a time. The contents of the array to be examined can only be looked at
individually. The Finding the Maximum algorithm uses a variable which will store the
largest value in the array and at the beginning of the algorithm and makes it equal to the

© HERIOT-WATT UNIVERSITY

TOPIC 6. ALGORITHM SPECIFICATION 125

first item in the array. The rest of the array is then checked through one by one using an
fixed loop comparing the contents with this variable and updating its value whenever a
larger item is discovered.

Activity: Find the maximum value in an array

Imagine a row of cards numbered from 0 to 9, each has a numeric value shown in the
following table:

ID Value
0 42
1 13
2 56
3 20
4 34
5 74
6 29
7 105
8 149
9 64

Maximum value

Each time you select a card, the value of that card is displayed as the maximum value IF
it is greater than the value before. For example, card 4, followed by card 5 would display
the value "74".

Q5: If you check the value of cards 0 through to 4 what would be the maximum value
at this stage?

. .

Q6: If you check the value of cards 0 through to 5 what would be the maximum value
at this stage?

. .

Q7: If you check the value of cards 0 through to 7 what would be the maximum value
at this stage?

. .

Q8: If you select card 5, then 0, then 6, what value would be the maximum value?

. .

Q9: If you check the value of cards 0 through to 9 what would be the maximum value
at this stage?

. .

© HERIOT-WATT UNIVERSITY

126 TOPIC 6. ALGORITHM SPECIFICATION

Assuming we have an array of 10 values: numbers[9] OF INTEGER

This algorithm sets maximumValue to the first item in the array then compares it to every
item in the rest of the array. If one of these items is higher than the maximum, then it
becomes the new maximum.

%
����Q
� �"*+��?45

��� ��?"������� �� *�� ���I	J

��
 2��*��� �
�� � �� P ��

�� ��?"������� (*�� ���I2��*���J ����

��� ��?"������� �� *�� ���I2��*���J

��� ��

��� ��

���� 8�!� ���#��� 0����)�� 8S ��?"������� �� ���%&��

��� %
����Q
�

. .

Practical task: Finding the Maximum

10 min

Implement this algorithm in your programming language to find the maximum value in
an array of 10 numbers.

. .

The Finding the Minimum algorithm is very similar. Make the variable which will store
the smallest value equal to the first item in the array then check through the rest of the
array comparing each value in turn, swapping it if a smaller one is found.

%
����Q
� �"*+�"*45

��� �"*"������� �� *�� ���I	J

��
 2��*��� �
�� � �� P ��

�� �"*"������� � *�� ���I2��*���J ����

��� �"*"������� �� *�� ���I2��*���J

��� ��

��� ��

���� 8�!� �������� 0����)�� 8 S �"*"������� �� ���%&��

��� %
����Q
�

© HERIOT-WATT UNIVERSITY

TOPIC 6. ALGORITHM SPECIFICATION 127

If you want to know where in the array the value was found (ie. The index of the
maximum or minimum value), as before you would use a fixed loop with a counter. The
counter is then used to set the value of the foundAt variable whenever the minimumValue
variable is updated.

%
����Q
� �"*+�"*45

��� -��*+�� �� 	

��� �"*"������� �� *�� ���I	J

��
 "*+�? �
�� � �� P ��

�� �"*"������� � *�� ���I"*+�?J ����

��� �"*"������� �� *�� ���I"*+�?J

��� -��*+�� �� "*+�?

��� ��

��� ��

���� 8�!� �������� 0����)�� 8S �"*"������� S 8 �� /��"�"�* 8

S -��*+�� S 8 "* �!� �"��8 �� ���%&��

��� %
����Q
�

Practical task: Find winner

20 min
Implement this algorithm in your programming language to find the name of the winner
of a race when the results are stored in two parallel arrays: names[9] and times[9].

. .

6.5 Counting Occurrences
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• describe the Counting Occurrences algorithm in pseudocode and implement it
in a high level programming language.

The Counting Occurrences algorithm also uses an fixed loop to process an array. A
variable that stores the number of times a particular value occurs is set to zero at
the beginning of the procedure. It is then incremented every time the search value
is identified in the array.

© HERIOT-WATT UNIVERSITY

128 TOPIC 6. ALGORITHM SPECIFICATION

Activity: Counting Occurrences

Imagine a row of cards numbered from 0 to 9, each has a value shown in the following
table:

ID Value
0 A
1 B
2 C
3 D
4 B
5 A
6 A
7 B
8 E
9 C

Item to find

Occurrences

Each card has a value between A and E. Only one card can be revealed at a time in
sequential order from 0 to 9.

The Item to find box is where you enter the value you wish to find.

What would be the output in the Occurences box if the item to be found were:

Q10: A?

. .

Q11: B?

. .

Q12: C?

. .

Q13: D?

. .

Q14: E?

. .

© HERIOT-WATT UNIVERSITY

TOPIC 6. ALGORITHM SPECIFICATION 129

Assuming we have an array of 10 values: numbers[9] OF INTEGER

This algorithm sets maximumValue to the first item in the array then compares it to every
item in the rest of the array.

%
����Q
� ���*��22����*2��45

����� "������"*+ �
�� 4����N�
5 ������
�

��� *�� �����*+ �� 	

��
���� *�� �� �
�� *�� ��� ��

�� *�� �� 7 "������"*+ ����

��� *�� �����*+ �� *�� �����*+ � �

��� ��

��� ��
����

���� 8�!���)��� 8 S *�� �����*+ S 8�22����*2�� �- 8 S "������"*+ S

8 "* �!� �"��8 �� ���%&��

��� %
����Q
�

. .

Practical task: Occurrences

15 min
Implement this algorithm in your programming language to find the number of times a
the character "e" occurs in a string typed at the keyboard.

(Note: if your programming language does not store a string as an array but stores them
as a simple data type, you will have to use a string function to check each character in
turn.)

. .

Practical task: Occurrences 2

10 min
Adapt your program to ask for the character you wish to search for as well as the phrase
to be searched. Use input validation to make sure that the user only inputs a single
character.

. .

© HERIOT-WATT UNIVERSITY

130 TOPIC 6. ALGORITHM SPECIFICATION

6.6 Linear search
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• describe the Linear Search algorithm in pseudocode and implement it in a high
level programming language.

The linear search algorithm is used to find an item in a list. In this algorithm, a conditional
loop is used to compare each item to the search term; the loop terminates when the
search term is found.

A boolean variable is set to false at the beginning, then set to true when the item is
found. A counter is used to keep track of where the item was found and the algorithm
stops when either the first occurrence of the item has been found and the boolean
variable has been set to true or the end of the array has been reached.

Activity: Linear Search

Imagine a row of cards numbered from 0 to 9, each has a value shown in the following
table:

Index Value
0 A
1 B
2 C
3 D
4 E
5 F
6 G
7 H
8 I
9 J

Item to find

Found

Found at

Each card has a value between A and J. Only one card can be revealed at a time in
sequential order from 0 to 9.

© HERIOT-WATT UNIVERSITY

TOPIC 6. ALGORITHM SPECIFICATION 131

The Item to find box is where you enter the value you wish to find.

The Found box value is either TRUE or FALSE with a initial value of FALSE.

The Found at box value is the index value when your item is found.

Q15: If the item to find is C, what would be the Found at value be?

. .

Q16: If the item to find is H, what would be the Found at value be?

. .

Q17: If the item to find is D, and the Found at value is 8, what would the Found value
be?

. .

Q18: If the item to find is F, and the Found at value is 5, what would the Found value
be?

. .

Assuming we have an array of 10 values: numbers[9] OF INTEGER

This algorithm sets maximumValue to the first item in the array then compares it to every
item in the rest of the array.

%
����Q
� &"*�������2!45

����� "������"*+ �
�� 4����N�
5 ������
�

��� -��*+ �� -����

��� ����.�"M� �� !"#!����*+�?

��� 2��*��� �� 	

�%���

��� 2��*��� �� 2��*��� � �

Q���& 2��*��� � ����.�"M�

�� -��*+ 7 ���� ����

���� "������"*+ S 8 -��*+ �� /��"�"�*8 S 42��*��� E �5 �� ���%&��

�&��

���� 8���� *�� -��*+8 �� ���%&��

��� ��

��� %
����Q
�

© HERIOT-WATT UNIVERSITY

132 TOPIC 6. ALGORITHM SPECIFICATION

. .

Practical task: Linear Search

15 min
Implement this algorithm in your programming language to search for a name in a string
array names[9].

. .

Practical task: Linear Search

60 min
Create a program in your programming language which does the following:

• Fills an array with random integers between 1 and 10.

• Prints the array contents to screen.

• Finds and displays the maximum and minimum values in the array.

• Asks the user for an integer between 1 and 10 using input validation and displays
how many times it occurs in the array.

• Asks the user for an integer between 1 and 10 using input validation and displays
where in the array that number first occurs and indicates when it is not present.

. .

© HERIOT-WATT UNIVERSITY

TOPIC 6. ALGORITHM SPECIFICATION 133

6.7 Learning points

Summary

You should now know:

• Input validation is used to ensure that software is robust by repeatedly
asking the user for input data and rejecting invalid data until the data meets
the restrictions imposed by the software;

• Finding the maximum or minimum, counting occurrences and linear search
all operate on arrays;

• Finding the maximum or minimum sets an initial value to the first item in the
array then compares it to the remaining items;

• Counting occurrences sets a total to zero at the beginning and increments
it as items are found to match the search item;

• The linear search sets a boolean variable to false initially and uses a
conditional loop to set it to true when the item is found. The loop terminates
when the item is found or the end of the array is reached.

© HERIOT-WATT UNIVERSITY

134 TOPIC 6. ALGORITHM SPECIFICATION

6.8 End of topic test

End of topic test

10 min

Q19: This is an example of?

a) Counting occurrences
b) Input validation
c) Linear search
d) Finding the maximum

. .

Q20:

%�"0��� �� �����*+�1��"2345

�"� *�� ���4�	5 �� �*��#��

�"� 2��*��� �� �*��#��

��� 2��*��� 7 	 �� �	

�� ���4������5 7 �*�4
*+ X �	5 � �

��?� 2��*���

0���� 7 *�� ���4	5

��� 2��*��� 7 � �� �	

�- ���� (*�� ���42��*���5 �!�* 0���� 7 *�� ���4���*���5

��?� 2��*���

%�"*� 0����

�*+ ��

This is an example of?

a) Counting occurrences
b) Input validation
c) Linear search
d) Finding the maximum

. .

Q21: The linear search algorithm uses?

a) A fixed loop and a boolean variable
b) A conditional loop and a boolean variable
c) A maximum value and a boolean variable

© HERIOT-WATT UNIVERSITY

TOPIC 6. ALGORITHM SPECIFICATION 135

d) A minimum value and a boolean variable

. .

Q22: The counting occurrences algorithm uses?

a) A fixed loop
b) A conditional loop and a boolean variable
c) A conditional loop
d) A minimum value and a boolean variable

. .

Q23:

%�"0��� �� �����*+�1��"2345

�"� *�� ���4�	5 �� �*��#��

�"� 2��*��� �� �*��#��

��� ���*��� 7 	 �� �	

�� ���4������5 7 �*�4
*+ X �	5 � �

��?� ���*���

����� 7 	

0���� 7 6

��� 2��*��� 7 	 �� �	

�- 0���� 7 *�� ���42��*���5 �!�*

����� 7 ����� � �

�*+ �-

��?� 2��*���

%�"*� �����

�*+ ��

This is an example of?

a) Counting occurrences
b) Input validation
c) Linear search
d) Finding the maximum

. .

© HERIOT-WATT UNIVERSITY

136 TOPIC 6. ALGORITHM SPECIFICATION

© HERIOT-WATT UNIVERSITY

137

Topic 7

Computational constructs

Contents

7.1 Revision . 139

7.2 Introduction . 140

7.3 Variables and scope . 141

7.4 Sub-programs . 142

7.5 User defined functions . 146

7.6 Parameters . 148

7.7 Passing parameters by value and reference . 153

7.8 Sequential files . 155

7.9 Learning points . 156

7.10 End of topic test . 157

Prerequisite knowledge

From your studies at National 5 you should already know:

• assign a value to a variable;

• use arithmetic and logical operators;

• use fixed and conditional loops;

• use simple and complex conditional statements;

• use pre-defined functions.

Learning Objectives

By the end of this topic you will be able to:

• understand the difference between the scope of a global variable and a local
variable;

• create and use sub-programs in your programming language;

• create your own user-defined functions;

• understand the concept of parameter passing and the difference between actual
and formal parameters;

138 TOPIC 7. COMPUTATIONAL CONSTRUCTS

• understand the difference between passing a parameter by value and passing a
parameter by reference;

• use your chosen programming language to transfer data to and from sequential
files.

© HERIOT-WATT UNIVERSITY

TOPIC 7. COMPUTATIONAL CONSTRUCTS 139

7.1 Revision

Revision

Q1:

��� �����%��"�"�* �� �

This is an example of?

a) Assignment
b) Definition
c) Declaration
d) Optimisation

. .

Q2:

��� �����*/�� �� 0��"+����

��"+���� is an example of?

a) A function
b) A procedure
c) A user defined function
d) A definition

. .

Q3:

�� �#� (79� ���� 2!�23�+

This is an example of?

a) A complex conditional
b) A simple conditional
c) A conditional loop
d) An unconditional

. .

© HERIOT-WATT UNIVERSITY

140 TOPIC 7. COMPUTATIONAL CONSTRUCTS

Q4:

�� "*/����� �� �7 � ��� "*/����� �� (7 �	 ����

���� 8��� �� ��8 �� ���%&��

�&��

���� 8�*0��"+ �*��.8 �� ���%&��

��� ��

This is an example of?

a) A simple conditional
b) A conditional loop
c) A complex conditional
d) An unconditional

. .

Q5: When the program segment in question 4 is running, what would be the result if
the value of "*/����� �� was 11?

. .

Q6: When the program segment in question 4 is running, what would be the result if
the value of "*/����� �� was 1?

. .

Q7:

��
 2��*��� �
�� 	 �� P ��

��� *�� ���I2��*���J �� ��*+4�		5

��� ��

This is an example of?

a) A fixed loop
b) A conditional loop
c) A conditional statement
d) An unconditional

. .

7.2 Introduction

A computational construct is a system of data representation and control structures
used to solve problems using a computer through a programming language. What
we are doing with any computer program is storing and manipulating information.
Computational constructs are the features of a high level language which have been
designed to make this task easier.

Although there are only three control structures: sequence, selection and iteration, to
perform all programming tasks, code can be made more understandable if these control
structures can be combined to make more powerful computational constructs.

© HERIOT-WATT UNIVERSITY

TOPIC 7. COMPUTATIONAL CONSTRUCTS 141

This unit will look at a variety of constructs which are used in modern programming
languages, and how they make the task of writing solutions to problems in a high level
programming language easier.

7.3 Variables and scope
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand the difference between the scope of a global variable and a local
variable.

When a variable is created in a program this is called variable declaration. When a
variable is declared, most languages allow it to be declared as being of a particular type
and structure, depending on the kind of data it is required to hold. Once a variable has
been declared, it can be given a value. The value it has can then be used or changed
(varied) during the running of the program.

Modern programming environments enable the programmer to create sub-programs
within their main program. These sub-programs will correspond to the tasks which have
been identified in the top down development process when the initial problem has been
broken down into smaller sub-problems. Making these sub-programs as self-contained
as possible is a good idea because if they contain variables which can change a value
elsewhere in the code, it is often difficult to predict what the effects of this will be. This
also improves the modularity of the code, so that the sub-programs can be tested
independently, and also improves the portability of the code allowing the sub-programs
to be used elsewhere without alteration.

A sub-program can only be self- contained if the variables declared and used within it are
local variables. A local variable is one which only has a value within the sub-program
where it is being used. This is often referred to as the scope of a variable. In most
programming environments, the default for a variable is to be local to the sub-programs
where they have been declared. Since a local variable only has a value inside its own
sub-program, the variable name can be used again elsewhere without the danger of
having an unexpected effect elsewhere.

A global variable has a wider scope - it exists and can be altered throughout the entire
program. This means that if its value is changed inside a sub-procedure, that value will
remain changed and will affect its value wherever in the program it is used, possibly
unintentionally. A sub-procedure which uses a global variable will not be self contained,
and is not going to be able to be used in a different context where that global variable
does not exist. For these reasons, global variables are best avoided whenever possible.

© HERIOT-WATT UNIVERSITY

142 TOPIC 7. COMPUTATIONAL CONSTRUCTS

7.4 Sub-programs
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• create and use sub-programs in your programming language.

Sub-programs are named blocks of code which can be run from within another part of
the program. When a sub-program is used like this we say that it is "called". Because
they can be called from any part of the program they can be used over again if needed.
For instance, an input validation sub-program may be called several times asking for
different inputs. This makes your program easier to understand and makes writing code
more efficient.

Sub-programs are often called procedures (which execute a set of commands), or
functions (which return a value). In the case of object-oriented programming languages
(such as Java) they are called methods. Breaking your program down into sub-
programs is a good idea because it makes your code modular, readable and therefore
more maintainable.

The structure of a program should follow the top down analysis which was originally
used to break the problem down into smaller sub-tasks.

(��"* /��#����

�� %��#����45

�� %��#���945

�� %��#���:45

�� %��#���;45

(�� %��#�����

(�� %��#���9�

(�� %��#���:�

(�� %��#���;�

© HERIOT-WATT UNIVERSITY

TOPIC 7. COMPUTATIONAL CONSTRUCTS 143

For example the exercise in topic 6 might have the following structure:

Note:

• In this example we are using a global variable: numbers[9] of INTEGER.

• rand() is a function which returns a random number, so rand(100) returns a random
number between 1 and 100.

• GetValidInteger() is a user defined function which returns an integer value between
1 and 100 when the function is called.

�"������.45

%�"*�����.45

�"*+�"*"���45

�"*+��?"���45

���*��22����*2��45

&"*�������2!45

%
����Q
� �"������.45

��
 2��*��� �
�� 	 �� P ��

��� *�� ���I2��*���J �� ��*+4�		5

��� ��

��� %
����Q
�

%
����Q
� %�"*�����.45

��
 2��*��� �
�� 	 �� P ��

���� *�� ���I2��*���J �� ���%&��

��� ��

��� %
����Q
�

%
����Q
� �"*+��?"���45

��� ��?"������� �� *�� ���I	J

��
 2��*��� �
�� � �� P ��

© HERIOT-WATT UNIVERSITY

144 TOPIC 7. COMPUTATIONAL CONSTRUCTS

�� ��?"������� (*�� ���I2��*���J ����

��� ��?"������� �� *�� ���I2��*���J

��� ��

��� ��

���� 8�!� ���#��� 0����)�� 8 S ��?"������� �� ���%&��

��� %
����Q
�

%
����Q
� �"*+�"*"���45

��� �"*"������� �� *�� ���I	J

��
 2��*��� �
�� � �� P ��

�� �"*"������� � *�� ���I2��*���J ����

��� �"*"������� �� *�� ���I2��*���J

��� ��

��� ��

���� 8�!� �������� 0����)�� 8 S �"*"������� �� ���%&��

��� %
����Q
�

%
����Q
� ���*��22����*2��45

��� "������"*+ �� N����"+�*��#��45

��� *�� �����*+ �� 	

��
 ���� *�� �� �
�� *�� ��� ��

�� *�� �� 7 "������"*+ ����

��� *�� �����*+ �� *�� �����*+ � �

��� ��

��� ��
����

���� 8�!���)��� 8 S *�� �����*+ S 8�22����*2�� �- 8 S "������"*+

S 8 "* �!� �"��8 �� ���%&��

��� %
����Q
�

�Q������ N����"+�*��#��45
��Q
�� ����N�

����� �����*/�� �
�� 4����N�
5 ������
�

'��&� �����*/�� (� �
 �����*/�� � �		 ��

���� 8�*/�� ���� � ��)��* � �*+ �		 8 �� ���%&��

����� �����*/�� �
�� 4����N�
5 ������
�

��� '��&�

��Q
� �����*/��

��� �Q������

© HERIOT-WATT UNIVERSITY

TOPIC 7. COMPUTATIONAL CONSTRUCTS 145

%
����Q
� &"*�������2!45

��� "������"*+ �� N����"+�*��#��45

��� -��*+ �� -����

��� ����.�"M� �� !"#!����*+�?

��� 2��*��� �� 	

�%���

��� -��*+ �� *�� ���I2��*���J 7 "������"*+

��� 2��*��� �� 2��*��� � �

Q���& -��*+ �
 2��*��� � ����.�"M�

�� -��*+ ����

���� "������"*+ S8 -��*+ �� /��"�"�*8 S 2��*��� E � �� ���%&��

�&��

���� 8���� *�� -��*+8 �� ���%&��

��� ��

��� %
����Q
�

Practical task: Linear search

60 min
Edit your programming language solution to the exercise at the end of Topic 6 to reflect
the pseudocode structure above.

The exercise was to write a program in your programming language which does the
following:

• Fills an array with random integers between 1 and 10.

• Prints the array contents to screen.

• Finds and displays the maximum and minimum values in the array.

• Asks the user for an integer between 1 and 10 using input validation and displays
how many times it occurs in the array.

• Asks the user for an integer between 1 and 10 using input validation and displays
where in the array that number first occurs and indicates when it is not present.

. .

© HERIOT-WATT UNIVERSITY

146 TOPIC 7. COMPUTATIONAL CONSTRUCTS

Methods

A method in an object-oriented language is a function that is defined inside a class.

In our example we would create the class ��"*%��#��� with the N����"+�*��#��

function and other methods defined within it.

Object-oriented programming languages often use the syntax:

� @�2�A-�*2�"�*����45

So our N����"+�*��#�� function would be called like this

��"*%��#���AN����"+�*��#��45

7.5 User defined functions
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• create your own user-defined functions.

A sub-program performs sequence of actions and usually have names which are verbs.
A function returns a value. Function names are usually nouns.

Your programming language will have a number of pre-defined functions available.
Examples of common numeric functions are:

• int(n) returns the integer value of n

• abs(n) returns the absolute value of n

• sqr(n) returns the square root of n

��� 0���� �� :A;

��� *�)���� �� "*�40����5

���� *�)���� �� ���%&��

Result would be 3

��� 0���� �� E6R

��� *�)���� �� � �40����5

���� *�)���� �� ���%&��

Result would be 56

© HERIOT-WATT UNIVERSITY

TOPIC 7. COMPUTATIONAL CONSTRUCTS 147

��� 0���� �� ;

��� *�)���� �� �U�40����5

���� *�)���� �� ���%&��

Result would be 2

In languages where strings are simple data structures, examples of common string
functions are:

• left(string, n) returns the first n characters of string

• right(string, n) returns the last n characters of string

• mid(string, r, n) returns n characters of string starting at r

��� �.���"*# �� 8���/!�*�8

��� *�)���"*# �� ��-�4�.���"*#B :5

���� *�)���"*# �� ���%&��

Result would be ele

��� �.���"*# �� 8���/!�*�8

��� *�)���"*# �� �"#!�4�.���"*#B :5

���� *�)���"*# �� ���%&��

Result would be ant

��� �.���"*# �� 8���/!�*�8

��� *�)���"*# �� �"+4�.���"*#B :B 65

���� *�)���"*# �� ���%&��

Result would be phant

��� �.���"*# �� 8���/!�*�8

���� ��*#�!4�.���"*#5 �� ���%&��

Result would be 8

© HERIOT-WATT UNIVERSITY

148 TOPIC 7. COMPUTATIONAL CONSTRUCTS

In the previous example we used our own user-defined function N����"+�*��#��45 to
return a value between 1 and 100.

�Q������ N����"+�*��#��45
��Q
�� ����N�

����� �����*/�� �
�� 4����N�
5 ������
�

'��&� �����*/�� (� �
 �����*/�� � �		 ��

���� 8�*/�� ���� � ��)��* � �*+ �		 8 �� ���%&��

����� �����*/�� �
�� 4����N�
5 ������
�

��� '��&�

��Q
� �����*/��

��� �Q������

Practical task: User-defined functions

30 min
Create your own user-defined functions to return the following.

�Q������ ��)
�*+��45
��Q
�� ����N�

which returns a random number between 50 and 100.

��
��N �Q������ Q�������45

which returns a string with a maximum length of 10 characters.

. .

7.6 Parameters
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand the concept of parameter passing and the difference between actual
and formal parameters.

A more flexible solution to the input validation problem in the previous section would
be to use parameters to set the range of numbers we wanted to return from the
GetValidInteger function when we called it. This would mean that the function could
be called with different values (or variables) depending on what range of number we
wanted to restrict it to.

Formal parameters are the parameters within brackets in the declaration of a function
or procedure. A function or procedure without formal parameters will still have a set

© HERIOT-WATT UNIVERSITY

TOPIC 7. COMPUTATIONAL CONSTRUCTS 149

of empty brackets after the name in its declaration. Many programming languages will
require these formal parameters to be given a data type in the declaration as well as
a name. In this example the N����"+�*��#�� function is declared with two formal
parameters, ��)��&"�"� and �//��&"�"�.

Sub-programs are defined with formal parameters and called with actual parameters.

�Q������ N����"+�*��#��4��)��&"�"�B �//��&"�"�5
��Q
�� ����N�

����� �����*/�� �
�� 4����N�
5 ������
�

'��&� �����*/�� (��)��&"�"� �
 �����*/�� � �//��&"�"� ��

���� 8�*/�� ���� � ��)��* 8S ��)��&"�"� S8 �*+ 8S �//��&"�"� �� ���%&��

����� �����*/�� �
�� 4����N�
5 ������
�

��� '��&�

��Q
� �����*/��

��� �Q������

This function can now be used in any program to return a valid number within the range
provided.

We could call this function with actual parameters, 1 and 50 to return a number between
1 and 50:

�� ����Q�� 7 N����"+���#��4�B6	5

or we could call it with the actual parameters 1 and inputRange - a variable which has a
value assigned elsewhere in the program:

����� "*/��
�*#� �
�� 4����N�
5 ������
�

�� ����Q�� 7 N����"+���#��4�B"*/��
�*#�5

This call would return a value between 1 and whatever was stored/held in the variable
"*/��
�*#�.

Practical task: Parameters 1

15 min
Edit the code for the previous exercise to use the user-defined N����"+�*��#�� function
with parameters.

. .

© HERIOT-WATT UNIVERSITY

150 TOPIC 7. COMPUTATIONAL CONSTRUCTS

Practical task: Parameters 2

15 min
Create your own user-defined functions to return the following

�Q������ ��� ��40����5
��Q
�� ����N�

which returns a number which is double the number passed into it.

�Q������ Q�������4-���*���B .����-�"��!5
��Q
�� ��
��N

which returns a string which concatenates the forename and birth year passed into it.

. .

Procedures can have formal parameters as well. For example we could declare
the %�"*�����. sub-procedure with the formal integer array, numbers. Again many
programming languages will require that formal parameters are given a data type as
well as a name.

%
����Q
� %�"*�����.4*�� ���5

��
 2��*��� �
�� 	 �� P ��

���� *�� ���I2��*���J �� ���%&��

��� ��

��� %
����Q
�

This would mean that the numbers array could be declared as a local variable within
the main program, and then passed as an actual parameter to each one of the sub-
programs.

The code for the ���*��22����*2�� sub-program would now be:

%
����Q
� ���*��22����*2��4*�� ���5

��� "������"*+ �� N����"+�*��#��4 �B �		5

��� *�� �����*+ �� 	

��
���� *�� �� �
�� *�� ��� ��

�� *�� �� 7 "������"*+ ����

��� *�� �����*+ �� *�� �����*+ � �

��� ��

��� ��
����

���� 8�!���)��� 8 S *�� �����*+ S 8�22����*2�� �- 8 S "������"*+

S 8 "* �!� �"��8 �� ���%&��

��� %
����Q
�

© HERIOT-WATT UNIVERSITY

TOPIC 7. COMPUTATIONAL CONSTRUCTS 151

If we now rewrite our original program using parameter passing throughout, we get:

%
����Q
� ��"*45

-"������.4*�� ���5

/�"*�����.4*�� ���5

-"*+�"*"���4*�� ���5

-"*+��?"���4*�� ���5

2��*��22����*2��4*�� ���5

�"*�������2!4*�� ���5

��� %
����Q
�

%
����Q
� �"������.4*�� ���5

��
 2��*��� �
�� 	 �� P ��

��� *�� ���I2��*���J �� ��*+4�		5

��� ��

��� %
����Q
�

%
����Q
� %�"*�����.4*�� ���5

��
 2��*��� �
�� 	 �� P ��

���� *�� ���I2��*���J �� ���%&��

��� ��

��� %
����Q
�

�Q������ N����"+�*��#��4��)���"�"�B �//���"�"�5
��Q
�� ����N�

����� �����*/�� �
�� 4����N�
5 ������
�

'��&� �����*/�� (��)��&"�"� �
 �����*/�� � �//��&"�"� ��

���� 8�*/�� ���� � ��)��* 8S ��)��&"�"� S8 �*+ 8S �//��&"�"� �� ���%&��

����� �����*/�� �
�� 4����N�
5 ������
�

��� '��&�

��Q
� �����*/��

��� �Q������

© HERIOT-WATT UNIVERSITY

152 TOPIC 7. COMPUTATIONAL CONSTRUCTS

%
����Q
� ���*��22����*2��4*�� ���5

��� "������"*+ �� N����"+�*��#��4�B�		5

��� *�� �����*+ �� 	

��
 ���� *�� �� �
�� *�� ��� ��

�� *�� �� 7 "������"*+ ����

��� *�� �����*+ �� *�� �����*+ � �

��� ��

��� ��
����

���� 8�!���)��� 8 S *�� �����*+ S 8�22����*2�� �- 8 S "������"*+

S 8 "* �!� �"��8 �� ���%&��

��� %
����Q
�

%
����Q
� &"*�������2!4*�� ���5

��� "������"*+ �� N����"+�*��#��4�B�		5

��� -��*+ �� -����

��� ����.�"M� �� !"#!����*+�?

��� 2��*��� �� 	

�%���

��� -��*+ �� *�� ���I2��*���J 7 "������"*+

��� 2��*��� �� 2��*��� � �

Q���& -��*+ �
 2��*��� � ����.�"M�

�� -��*+ ����

���� "������"*+ S 8 -��*+ �� /��"�"�*8 S 42��*���E�5 �� ���%&��

�&��

���� 8���� *�� -��*+8 �� ���%&��

��� ��

��� %
����Q
�

Now all the variables used in the program are local to the main sub-program and so there
are no global variables. The sub-programs are modular and each one could be used
again with a different array as their actual parameter - in elsewhere in this or another
program. In the same way that the N����"+�*��#�� function could be used again with
different actual parameters to return a value within a different range.

Practical task: Parameters 3

30 min
Create a procedure which takes two parallel arrays as parameters, a set of 10 names
and a set of 10 scores and prints out the highest scoring name.

. .

© HERIOT-WATT UNIVERSITY

TOPIC 7. COMPUTATIONAL CONSTRUCTS 153

7.7 Passing parameters by value and reference
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand the difference between passing a parameter by value and passing
a parameter by reference.

Defining a sub-program (function or procedure) with formal parameters makes it possible
call it with different actual values, making the program they are part of more efficient
and modular. Defining sub-programs with formal parameters also means that these
sub-programs can be saved as independent modules in a module library and re-used
elsewhere.

Parameters which are passed into a procedure but not changed are said to be passed by
value. When a variable is passed to a sub-program by value, a temporary copy of that
variable is made and is used while the sub-program is running. The copy is discarded
once it has finished executing.

Parameters which are passed into a procedure and may be changed by that procedure
are said to be passed by reference. When a variable is passed to a sub-program by
reference, then the formal parameter refers to the actual parameter, so any changes to
the formal parameter are changes to the actual parameter.

Although simple data structures can be passed as either a value or a reference
parameter, complex data structures such as arrays are almost always passed by
reference.

In this example we want to swap the values of two integer variables a and b.

%
����Q
� �)�/ 4
�� �B
�� 5

��� ���/ �� �

��� � ��

��� �� ���/

��� %
����Q
�

We use a the temp variable to store the value of a while it is being swapped with b

Extension material

A common task in programming is to sort the contents of an array into ascending or
descending value. A swap sub-procedure could be used to swap items in an array from
one index position to another. In this example we want to ask the user for the index
values of the two items to swap, and then swap their positions in the array. The formal
parameters a and b are reference parameters because their values are being changed
by the procedure.

%
����Q
� ��"* 45

-"������.4*�� ���5

/�"*�����.4*�� ���5

���� 8%����� �*��� �!� "*+�? /��"�"�* �- -"��� "���8 �� ���%&��

© HERIOT-WATT UNIVERSITY

154 TOPIC 7. COMPUTATIONAL CONSTRUCTS

��� "*+�?� �� N����"+�*��#��4�B�	5

���� 8%����� �*��� �!� "*+�? /��"�"�* �- ��2�*+ "���8 �� ���%&��

��� "*+�?9 �� N����"+�*��#��4�B�	5

�)�/4*�� ���I"*+�?�JB *�� ���I"*+�?9J5

/�"*�����.4*�� ���5

��� %
����Q
�

%
����Q
� �"������.4*�� ���5

��
 2��*��� �
�� 	 �� P ��

��� *�� ���I2��*���J �� ��*+4�		5

��� ��

��� %
����Q
�

%
����Q
� %�"*�����.4*�� ���5

��
 2��*��� �
�� 	 �� P ��

���� *�� ���I2��*���J �� ���%&��

��� ��

��� %
����Q
�

%
����Q
� �)�/ 4
�� �B
�� 5

��� ���/ �� �

��� � ��

��� �� ���/

��� %
����Q
�

�Q������ N����"+�*��#��4��)���"�"�B �//���"�"�5
��Q
�� ����N�

����� �����*/�� �
�� 4����N�
5 ������
�

'��&� �����*/�� (��)��&"�"� �
 �����*/�� � �//��&"�"� ��

���� 8�*/�� ���� � ��)��* 8S ��)��&"�"� S8 �*+ 8S �//��&"�"� �� ���%&��

����� �����*/�� �
�� 4����N�
5 ������
�

��� '��&�

��Q
� �����*/��

��� �Q������

Practical task: Extension material

Implement this pseudocode above in your chosen programming language.

© HERIOT-WATT UNIVERSITY

TOPIC 7. COMPUTATIONAL CONSTRUCTS 155

. .

7.8 Sequential files
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• use your chosen programming language to transfer data to and from sequential
files.

As far as the computer is concerned, data can be input from a keyboard or a file and can
be output to a display or file. If a file does not already exist, it may have to be created
with a specific command, or your programming language may create it as part of the
OPEN command.

%
����Q
� N������4*�� ���5

(�/�* -"�� 8�.+���A�?�8�

��
 2��*��� �
�� 	 �� P ��

����� *�� ���I2��*���J �
�� 4����N�
5 8�.+���A�?�8

��� ��

(2���� -"�� 8�.+���A�?�8�

��� %
����Q
�

%
����Q
� ��0�����4*�� ���5

�
���� 8*�)+���A�?�8

(�/�* -"�� 8*�)+���A�?�8�

��
 2��*��� �
�� 	 �� P ��

���� *�� ���I2��*���J �� 8*�)+���A�?�8

��� ��

(2���� -"�� 8*�)+���A�?�8�

��� %
����Q
�

Practical task: Sequential files

Adapt the parallel arrays exercise to read the scores array from a file. Use a text editor
such as Notepad to create the file.

. .

© HERIOT-WATT UNIVERSITY

156 TOPIC 7. COMPUTATIONAL CONSTRUCTS

7.9 Learning points

Summary

You should now know:

• A computational construct is a combination of control structures which
can be used to make solving programming problems more intuitive.

• The scope of a variable describes where it can be accessed from.

• Global variables have scope throughout a program, local variables can only
be accessed from within their own sub-procedure.

• If possible, global variables should be avoided and all variables in a program
should be local.

• Breaking a problem down into smaller sub-problems enables modular code
to be created where each sub-problem is coded as a separate procedure.

• A user-defined function is a sub-program which returns a value, and is
defined as being of the data type corresponding to that value.

• A method in an object-oriented language is a function that is defined inside
a class.

• Subprograms are defined with formal parameters and called with actual
parameters.

• Parameters can be passed by value or reference. Parameters which are
passed into a procedure but not changed are said to be passed by value.
(They are in fact, just a copy of the actual parameter.)

• Parameters which are passed into a procedure and may be changed by that
procedure are said to be passed by reference.

• Sequential files are treated in the same way as other input and output
devices, but with specific commands for opening and closing.

© HERIOT-WATT UNIVERSITY

TOPIC 7. COMPUTATIONAL CONSTRUCTS 157

7.10 End of topic test

End of topic test

10 min

Q8:

��� "���� �� 	

��
 ���� *�� �� �
�� *�� ��� ��

�� *�� �� 7 "��� ����

��� ����� �� ����� � �

��� ��

��� ��
����

This is an example of?

a) Find the maximum
b) Find the minimum
c) Counting occurrences
d) Linear search

. .

Q9:

�Q������ N����"+�*��#��45
��Q
�� ��
��N

����� �����*/�� �
�� 4��
��N5 ������
�

'��&� ��*#�!4�����*/�� � �	 ��

���� 8�*/�� ���� ���� �!�* �	 2!���2���� 85 �� ���%&��

����� �����*/�� �
�� 4��
��N5 ������
�

��� '��&�

��Q
� �����*/��

��� �Q������

This function N����"+�*��#��45 returns a?

a) Real value
b) Integer value
c) Boolean value
d) String value

. .

© HERIOT-WATT UNIVERSITY

158 TOPIC 7. COMPUTATIONAL CONSTRUCTS

Q10: This line of code is in a program to add the name "Fred" to an array of STRINGS:

�++������&"��48���+8B *����5

"Fred" and names are?

a) Formal parameters
b) Actual parameters
c) Real parameters
d) Reference parameters

. .

Q11:

%
����Q
� �++������&"�� 4*���B �"���-�����5

In this procedure definition, name and listOfNames are?

a) Formal parameters
b) Actual parameters
c) Real parameters
d) Reference parameters

. .

Q12:

��� �.���"*# �� 8�
��N�� ��� &�����8

��� *�)���"*# �� ��-�4PB�.���"*#5

���� *�)���"*# �� ���%&��

Would display as?

a) ORANGES A
b) ND LEMONS
c) ORANGE
d) AND LEMON

. .

Q13:

��� �.���"*# �� 8�
��N�� ��� &�����8

���� ��*#�!4�.���"*#5 �� ���%&��

Would display as?

a) 10
b) 16
c) 18
d) 20

. .

© HERIOT-WATT UNIVERSITY

TOPIC 7. COMPUTATIONAL CONSTRUCTS 159

Q14: A formal parameter whose value may be changed by the procedure where it is
defined is?

a) A reference parameter
b) A value parameter
c) An actual parameter
d) A real parameter

. .

Q15: . A formal parameter whose value can NOT be changed by the procedure where
it is defined is?

a) A reference parameter
b) A value parameter
c) An actual parameter
d) A real parameter

. .

© HERIOT-WATT UNIVERSITY

160 TOPIC 7. COMPUTATIONAL CONSTRUCTS

© HERIOT-WATT UNIVERSITY

161

Topic 8

Testing and documenting solutions

Contents

8.1 Revision . 162

8.2 Test plans . 163

8.3 Debugging . 164

8.4 Debugging tools . 165

8.4.1 Dry runs . 165

8.4.2 Trace tables . 166

8.4.3 Trace tools . 167

8.4.4 Breakpoints . 169

8.5 Learning points . 169

8.6 End of topic test . 170

Prerequisite knowledge

From your studies at National 5 you should already know:

• why we should use normal, extreme and exceptional test data;

• that using internal commentary, meaningful identifiers, and indentation aids code
readability.

Learning Objectives

By the end of this topic you will be able to:

• construct a test plan;

• describe comprehensive testing;

• describe systematic testing;

• explain the difference between syntax, execution and logic errors;

• understand how dry runs, trace tables, trace tools and breakpoints are used in the
debugging process.

162 TOPIC 8. TESTING AND DOCUMENTING SOLUTIONS

8.1 Revision

Revision

Q1: Which set of test data would be the best one to use to test an input routine asking
for numbers between 1 and 100?

a) 0, 1,10,50, 99,100, 101, X
b) 1 5 20 40, 50, 60, 90 100
c) 5,9,2,60,80 100, 101, A
d) 0, 1,5, 46, 67, 84, 90, 93

. .

Q2: Which identifier would be the best one to use for an array of integers storing test
scores?

a) score
b) scores
c) s
d) values

. .

Q3: Which lines of code in this example should be indented to make it more readable?

&"*� � ����N�
 �Q������ #��0��"+����45

&"*� 9
����� �����*/�� �
�� 4����N�
5 ������
�

&"*� : '��&� �����*/�� (� �
 �����*/�� � �		 ��

&"*� ; ���� I8�*/�� ���� � ��)��* � �*+ �		 8J �� ���%&��

&"*� 6
����� �����*/�� �
�� 4����N�
5 ������
�

&"*� R ��� '��&�

&"*� O
��Q
� �����*/��

&"*� > ��� �Q������

. .

Q4: What is internal commentary?

. .

© HERIOT-WATT UNIVERSITY

TOPIC 8. TESTING AND DOCUMENTING SOLUTIONS 163

8.2 Test plans
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• construct a test plan;

• describe comprehensive testing;

• describe systematic testing.

As we have seen in the Development Methodologies topic, testing can only demonstrate
the presence of errors, it cannot demonstrate their absence. For this reason, testing
should be both systematic and comprehensive.

Systematic testing is where tests are done in a way which is planned, and which can be
documented as a result. Comprehensive testing is when every aspect of the software
is tested.

A test plan is a set of test data which has been created in order to systematically and
comprehensively test the software which the client has requested in order to ensure that
it meets the original specification when delivered. Much of the test plan will be created
during the design stage of the software development process, because by this stage it
should be known what the inputs will be and outputs should be, and also what the what
the user interface looks like.

A test plan will include:

1. The software specification against which the results of the tests will be
evaluated.

The software specification is produced at the end of the analysis stage of the
software development process, and is a legally binding document which protects
both client and developer. The design of the test plan must take this document into
account.

2. A schedule for the testing process.

The testing schedule is necessary for the same reason as every other part of the
software development process needs to scheduled in order to deliver the project
on time.

3. Details of what is and what is not to be tested.

Exhaustive testing - where every possible input and permutations of input to
a program are tested - is not possible. Even a simple input validation routine
could theoretically need to be tested with every possible valid number, and the
possibilities run into millions once you have several different inputs which could be
applied in any order. The tests selected should be ones which are practical within
the time available. There will always be external circumstances which cannot be
tested until the software is in the hands of the client or the user base. This is where
acceptance testing (beta testing) is important.

4. The test data and the expected results.

A test plan will include normal, extreme and exceptional test data; the results

© HERIOT-WATT UNIVERSITY

164 TOPIC 8. TESTING AND DOCUMENTING SOLUTIONS

expected from inputting this data to the program and whether the result passes or
fails the test.

This is a set of test data for a sub-program which should allow the user to input a
whole number between 1 and 100.

Data
Expected
Result

Actual Result Pass / Fail

Normal 46, 62, 80 accept

Extreme 1, 100 accept

Exceptional
0, 101, -5,
15.6, A, %

reject

NB. It is important that values outside the input range, but on the boundary of
acceptable data are included in the exceptional test data.

5. Documentation of the testing process.

The testing process needs to be documented so that if problems are encountered
at a later date, the test results can be checked and duplication of work avoided.

This kind of testing of a program by the developers is called alpha testing.

8.3 Debugging
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• explain the difference between syntax, execution and logic errors.

Debugging is the process of finding and correcting errors in code.

Some errors in code will be discovered during the implementation stage. However some
will only be identified at the testing stage which means that the implementation stage
needs to be re-visited to correct them.

Errors likely to be spotted at the implementation stage are syntax errors and execution
(runtime) errors. A syntax error is one which can be spotted by a translator: by a
compiler when the source code is translated into machine code, or by an interpreter
while the code is being entered by the programmer. A syntax error could be a misspelling
of a keyword, or a mistake in the structure of a program like a missing END WHILE in a
WHILE loop or a missing END IF in an IF condition.

An execution error is one which happens when the program is run, causing it to stop
running (crash). Examples include division by zero or trying to access an array index
that's beyond the range of that array. These types of error are not identified by the
compiler or the interpreter, but appear when the program is run.

Logical errors, sometimes called semantic errors, are ones where the code is
grammatically correct as far as the interpreter or compiler is concerned, but does not
do what the programmer intended. These types of error may be spotted during the

© HERIOT-WATT UNIVERSITY

TOPIC 8. TESTING AND DOCUMENTING SOLUTIONS 165

implementation stage, but may also be spotted during the testing stage.

Quiz: Debugging

Q5: Which of these are not syntax errors?

• Missing semi colon

• Division by zero

• IF without END IF

• Out of memory

• WHILE without DO

. .

Q6: There is an error is this pseudocode. What kind of error is it?

��
 2��*��� �
�� � �� 9	 ��

��� ����� �� 	

����� �����*/�� �
�� 4����N�
5������
�

��� ����� �� ����� � �����*/��

��� ��

��� �0���#� �� ����� H 9	

���� 8�!� �0���#� �- �!��� *�� ���)�� 8 S �0���#� �� ���%&��

. .

8.4 Debugging tools
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand how dry runs, trace tables, trace tools and breakpoints are used in
the debugging process.

Debugging is made much easier if source code is well documented, and uses
meaningful variable names and indentation. Modularity makes debugging easier since
sub programs can be tested independently, especially if they are self contained and do
not use global variables.

Syntax errors will be highlighted by the interpreter or compiler while code is being written
or compiled, but logical errors can only be found by running a program and watching its
operation. There are a number of techniques which can be used to monitor the values
of variables at different points in the code execution to aid this process.

8.4.1 Dry runs

A dry run is simply a manual run-through the pseudocode or source code of the program,
usually taking notes of the values of variables at various points in the process while doing
so. In effect the person doing the dry run is taking the place of the computer in order

© HERIOT-WATT UNIVERSITY

166 TOPIC 8. TESTING AND DOCUMENTING SOLUTIONS

to check that the code is doing what they expect it to do. Keeping track of the values of
variables at different stages of the code execution is complicated so normally the tester
would use a table, either on paper or on computer to help.

8.4.2 Trace tables

A trace table is similar to the table that would be used during a dry run, but is often used
to test an algorithm for a specific sub program when the tester wants to check the result
of a number of different values of a variable.

Algorithm:

��� ����� �� 	

��
 2��*��� �
�� � �� 6 ��

����� �����*/�� �
�� 4����N�
5������
�

��� ����� �� ����� � �����*/��

��� ��

��� �0���#� �� ����� H 6

���� 8�!� �0���#� �- �!��� *�� ���)�� 8S �0���#� �� ���%&��

Trace table:

Total Counter userInput average

0 1 3 0
3 2 7 0
10 3 4 0
14 4 11 0
25 5 11 5

Output: The average of these numbers was 5.

Algorithm:

%
����Q
� �"*�������2!4*�� ���B5

��� "������"*+ �� �	

��� -��*+ �� -����

��� ����.�"M� �� ;

��� 2��*��� �� 	

�%���

�� *�� ��I2��*���J 7 "������"*+ ����

��� -��*+ �� ����

��� ��

��� 2��*��� �� 2��*��� � �

Q���& -��*+ �
 2��*��� � ����.�"M�

�� -��*+ ����

���� "������"*+ S8 -��*+ �� /��"�"�*8 S 2��*��� E � �� ���%&��

�&��

© HERIOT-WATT UNIVERSITY

TOPIC 8. TESTING AND DOCUMENTING SOLUTIONS 167

���� 8���� *�� -��*+8 �� ���%&��

��� ��

��� %
����Q
�

Trace table:

itemToFind found arraysize counter
10 false 4 0
10 false 4 1
10 false 4 2
10 true 4 3

Output: 10 was found at position 2 in the list.

Note: arrays are indexed from zero.

Practical task: Trace tables

10 min
Create a trace table for this algorithm:

��� *�� ��� �� I:B �6B ;B OB >J

%
����Q
� -"*+��?"���4*�� ���5

��� ��?"������� �� *�� ���I	J

��
 2��*��� �
�� � �� 6 ��

�� ��?"������� (*�� ���I2��*���J ����

��� ��?"������� �� *�� ���I2��*���J

��� ��

��� ��

���� 8�!� ���#��� 0����)�� 8S ��?"������� �� ���%&��

��� %
����Q
�

. .

8.4.3 Trace tools

Some programming environments have trace facilities as a debugging feature. Tracing
tools let the programmer see which lines of code are being executed and what variables
are changing their value while the program is running.

A watch takes a variable and displays its value as the program progresses. The
programmer steps through the code, one statement at a time, and the value of the
variable being traced is displayed on the watch screen which can be set to stop when
reaches a particular value.

Some trace tools also allow investigation of actual memory locations and, in particular,
the contents of the stack.

Programs that contain large number of procedures use the stack to store all their
procedure calls during program execution. By examining such data, any errors occurring

© HERIOT-WATT UNIVERSITY

168 TOPIC 8. TESTING AND DOCUMENTING SOLUTIONS

in the order of procedure or function calling from the main program can be checked and
corrected.

© HERIOT-WATT UNIVERSITY

TOPIC 8. TESTING AND DOCUMENTING SOLUTIONS 169

8.4.4 Breakpoints

Some programming environments will enable the programmer to set a breakpoint.

Setting a breakpoint in a program sets a point in the source code where the program will
stop execution, at which point the values of variables at this point can be examined.

Breakpoints can be set to stop execution at a particular point in code, or to stop when a
variable has a particular value (watch) or a particular key is pressed.

Once the program has stopped, the values of the variables in use can be examined, or
written to a file for study later.

8.5 Learning points

Summary

You should now know:

• Testing can only demonstrate the presence of errors - it cannot demonstrate
their absence.

• A test plan is a set of test data which should systematically and
comprehensively test the software to ensure that it meets the original
specification.

• A test plan will include normal, extreme and exceptional test data.

• A syntax error is where the "grammatical" rules of the language have been
broken. It is normally detected spotted by a compiler or interpreter.

• A logic error is one where the code is grammatically correct but does not do
what the programmer intended.

• An execution error is one which causes the program to stop (crash) when it
is run.

• A dry run is a manual run through pseudocode or the source code of the
program.

• A breakpoint is a set point in a program where it will stop execution so that
the values of variables can be examined.

© HERIOT-WATT UNIVERSITY

170 TOPIC 8. TESTING AND DOCUMENTING SOLUTIONS

8.6 End of topic test

End of topic test

10 min

Q7: Which of these are syntax errors?

• Missing semi colon

• Division by zero

• IF without END IF

• Out of memory

• WHILE without DO

. .

Q8: Which of these are execution errors?

• Missing semi colon

• Division by zero

• IF without END IF

• Out of memory

• WHILE without DO

. .

Q9: Fill in the missing values in this trace table:

miniimumValue counter numbers[counter]
1
2
3
4

��� *�� ��� �� I�OB �6B ;B OB >J

%
����Q
� -"*+�"*"���4*�� ���5

��� �"*"������� �� *�� ���I	J

��
 2��*��� �
�� � �� 6 ��

�� �"*"������� � *�� ���I2��*���J ����

��� �"*"������� �� *�� ���I2��*���J

��� ��

��� ��

���� 8�!� �������� 0����)�� 8S �"*"������� �� ���%&��

��� %
����Q
�

. .

Q10: A computer program is designed to accept input values between 0 and 99 as
whole numbers. If the value 99 was entered this would be an example of?

© HERIOT-WATT UNIVERSITY

TOPIC 8. TESTING AND DOCUMENTING SOLUTIONS 171

a) Exceptional data
b) Normal data
c) Invalid data
d) Extreme data

. .

Q11: Alpha testing is carried out by end users of a program.

a) True
b) False

. .

Q12: Beta testing is carried out by end users of a program.

a) True
b) False

. .

Q13: Fill in the missing values in this trace table:

value display counter

1 no display 0
1
2
3
4
5
6

%
����Q
� ��U��*2�45

��� 0���� �� �

��� 2��*��� �� 	

�%��� Q���& 2��*��� � 6

��� 0���� �� 0���� � 2��*���

���� 0���� �� ���%&��

��� 2��*��� �� 2��*��� � �

���
�%���

��� %
����Q
�

. .

Q14: Which of these source code characteristics do NOT help in debugging a program?

a) Internal documentation
b) Modular code
c) Global variables
d) Meaningful variable names

. .

© HERIOT-WATT UNIVERSITY

172 TOPIC 8. TESTING AND DOCUMENTING SOLUTIONS

© HERIOT-WATT UNIVERSITY

173

Topic 9

Computer architecture

Contents

9.1 Revision . 175

9.2 The parts of the processor . 176

9.3 Buses and their function . 177

9.4 Interfaces . 180

9.5 Cache . 182

9.6 Advances in processor design . 184

9.7 Emulators and virtual machines . 186

9.8 Mobile devices . 187

9.9 Learning points . 187

9.10 End of topic test . 189

Prerequisite knowledge

From your studies at National 5 you should already know:

• the difference between RAM and ROM;

• that the processor and memory communicate via collections of lines called buses;

• that peripheral devices need an interface in order to communicate with the
processor.

Learning Objectives

By the end of this topic you will be able to:

• describe the function of the registers, the arithmetic and logic unit and the control
unit in a processor;

• describe the role of the control, address and data buses in the fetch execute cycle;

• describe how cache memory affects processor performance;

• describe modern trends in computer architecture;

• understand what an emulator is and how it is used;

• describe the concept of a virtual machine;

174 TOPIC 9. COMPUTER ARCHITECTURE

• understand the influence that mobile devices have on the software development
process.

© HERIOT-WATT UNIVERSITY

TOPIC 9. COMPUTER ARCHITECTURE 175

9.1 Revision

Revision

Q1: Which one of these statements is false?

a) ROM is memory whose contents cannot be changed.
b) RAM is memory whose contents cannot be changed.
c) RAM stores data and instructions while a computer is running.
d) ROM can be used to store part of a computer operating system.

. .

Q2: Which function of an interface is responsible for informing the user that a printer
is out of ink?

a) Data conversion.
b) Data storage.
c) Transferring status information.
d) Protocol conversion.

. .

Q3: What is a buffer?

a) A safety device inside the processor.
b) Memory used to store information being transferred by an interface.
c) Memory which is part of the processor.
d) Part of an interface used to convert data from one format to another.

. .

Q4: Which of these buses is used to identify a memory location for reading or writing?

a) The address bus.
b) The data bus.
c) The control bus.
d) The system bus.

. .

Q5: Which of these buses is used to transfer data between processor and memory?

a) The address bus.
b) The data bus.
c) The control bus.
d) The system bus.

. .

© HERIOT-WATT UNIVERSITY

176 TOPIC 9. COMPUTER ARCHITECTURE

9.2 The parts of the processor
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• describe the function of the registers, the arithmetic and logic unit and the
control unit in a processor.

The CPU consists of several different parts: the Arithmetic and Logic Unit
which performs calculations; the Control Unit which loads, decodes and executes
instructions, and Registers which are small memory locations used by the processor.

Buses are the lines which connect the CPU to the main memory.

Processor

Memory
Address Bus Control BusData Bus

Registers are temporary storage areas in the processor which can be used to hold
information such as:

• the address of the next instruction to be fetched (Program Counter);

• the address of the memory location where data is to be read from or written to
(Memory Address Register);

• (intermediate) results of arithmetic and logic operations (Accumulator);

• data or instructions transferred between the CPU and memory (Memory Data
Register);

• the current instruction being decoded and executed (Instruction Register).

© HERIOT-WATT UNIVERSITY

TOPIC 9. COMPUTER ARCHITECTURE 177

Arithmetic & Logic Unit

Memory

Address Register Data Register

Control Unit

Instruction Register

Program Counter

Address Bus Control BusData Bus

Accumulator

9.3 Buses and their function
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• describe the role of the control, address and data buses in the fetch execute
cycle.

The address bus is a unidirectional (1 way) bus, whilst the data bus is a bi-directional
(2 way) bus.

When data is read from or written to memory:

• the processor sets up the address register with the address of the memory location
to be accessed,

• the processor activates the read or write line on the control bus,

© HERIOT-WATT UNIVERSITY

178 TOPIC 9. COMPUTER ARCHITECTURE

• and data is then transferred to or from the data register via the data bus.

Activity: Read and write operations

Q6:

Place each stage of the read operation in the right order:

Read line is activated.

Memory location is identified.

Address of memory location to be read from is placed on Address register.

Data is transferred to data register from memory location via data bus.

. .

Q7:

Place each stage of the write operation in the right order:

Write line is activated.

Address of memory location to be written to is placed on Address register.

Data is transferred from data register to memory location via data bus.

Memory location is identified.

. .

Each memory location has a unique binary address. Each line in the address bus can
be on or off (1 or 0), so the total number of memory locations which can be addressed
by the processor is determined by the number of lines in the address bus.

The total number of memory locations will be 2 to the power of the number of lines in
the address bus:

• 16 lines = 2^16 possible memory locations;

• 32 lines = 2^32 possible memory locations.

The Address and Data buses are sets of lines which work together to perform the same
sort of function, however the control bus is really just a convenient name given to a
collection of control lines including:

• Read line;

• Write line;

• Clock line;

• Interrupt line;

• Non-Maskable Interrupt line;

• Reset line.

© HERIOT-WATT UNIVERSITY

TOPIC 9. COMPUTER ARCHITECTURE 179

Quiz: Buses and their function

10 min
Q8: The purpose of the address bus is to: (Choose one option)

a) initiate a read from memory operation.
b) carry a memory address from which data can be read or to which data can be

written.
c) store results of calculations.

. .

Q9: The data bus is used:

a) to store the results of calculations.
b) to signal a read event.
c) transfer data between memory and processor.

. .

The fetch- execute cycle is the set of steps which the processor takes when reading
and executing an instruction. Such an instruction may be to read a piece of data from a
location in memory and load it into a register; increment or add data to a register; or to
write a piece of data to a memory location from a register.

The detailed steps are:

1. Transfer the contents of the Program Counter to Memory Address Register

2. Increment the Program Counter

3. Activate Read line (thereby transfering instruction to the data register)

4. Transfer contents of data register to the instruction register ready for decoding

5. Decode Instruction

6. Execute Instruction

The execute step might involve carrying out a simple instruction to increment a register;
an instruction to load data from a memory location and add it to the accumulator; or an
instruction to place a new memory location into the program counter.

© HERIOT-WATT UNIVERSITY

180 TOPIC 9. COMPUTER ARCHITECTURE

Activity: Fetch-execute cycle

Q10:

Place each stage of the Fetch-Execution cycle in the right order:

Note: of the following 9 stages, only 6 are correct.

Transfer Program Counter to Memory Address Register

Store instruction in accumulator

Decode Instruction

Increment the Program Counter

Update control unit

Execute Instruction

Activate Read line

Transfer data to memory address register

Transfer instruction to Data Register and then to Control Unit

. .

Quiz: Program counter

15 min

Q11: Why does the processor need a program counter as well as an address register?

. .

9.4 Interfaces

As well as enabling communication between processor and memory, the data bus also
enables the processor to communicate with peripheral devices. In order for this to work
however, peripheral devices need an interface.

Interfaces are needed for a number of reasons:

• Because peripherals and the CPU often operate at different speeds, an interface
will compensate for these differences when data needs to be transferred.

• Since the CPU can only perform one operation at a time, data needs to be stored in
transit between a peripheral and the CPU while data is being transferred between
the processor and a different peripheral. This data is often stored in memory called
a buffer.

• Since the CPU and peripherals often deal with data in different formats and use
different protocols. The interface will change the data into a format which the CPU
or peripheral can understand.

The functions of an interface will include:

• Temporary Data Storage in transit: because of the differences in speed of
operation, the processor is performing many other tasks as well as interfacing

© HERIOT-WATT UNIVERSITY

TOPIC 9. COMPUTER ARCHITECTURE 181

with the peripheral. For example there may be a keyboard buffer which stores key
presses until the processor next checks it for input data.

• Data Format Conversion: data used by a peripheral may be at different voltage or
use a different frequency The interface may need to convert from serial to parallel
transmission, or convert an audio signal from analog to digital.

• Transmitting Status Information: a printer may need to inform the processor that
it is low on ink or a hard disk drive may need to send data about the position of the
read/write heads.

• Transmitting control signals: the processor may need to send control signals to
a hard disk drive in order to read a file from a specific location on the disk.

• Device Selection: since several peripherals may be connected to the same bus
the processor needs to be able to send a code to identify which interface a piece
of data is intended for.

An interface will often be a combination of hardware and software. For instance a
graphics card or a sound card will often require software drivers to be installed as well
as the card itself.

© HERIOT-WATT UNIVERSITY

182 TOPIC 9. COMPUTER ARCHITECTURE

9.5 Cache
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• describe how cache memory affects processor performance.

Although accessing Random Access Memory (RAM) is much faster than retrieving data
from hard disk, processor performance can be improved by using cache memory. The
cache is a faster kind of memory which stores copies of the data from frequently
used main memory locations. The processor will use various techniques to improve
performance using the cache including reading ahead in a program to load the cache
with instructions which are likely to be needed soon. This technique is not foolproof,
however, as user menu choices or branch instructions make it difficult to predict exactly
which code will be needed next.

When writing to main memory the processor uses the cache to deposit data and then
resumes its operations immediately. The data is transferred to main memory by the
cache controller circuitry.

When reading from memory the processor first checks whether the information is
already available in the cache memory. If so then it can transfer this at high speed
to the processor. If not, then this step is a waste of time; however, more often than not,
the information being sought is indeed in cache and the benefits in terms of access time
can be quite dramatic.

Activity: Cache

Example of processor, cache and main memory operations

Programme details:

Do some action

Set loop counter to 0

Add 1 to the loop counter

Do something using data item 1

Do something using data item 2

Do something using data item 3

If loop counter < 3 return to step 3

END

Steps:

1. The processor is about to run a machine code program. The instructions and
data for the program are stored in main memory. However, this system has cache
memory between the processor and main memory.

2. The processor requires instruction 1. It checks to see if it is in the cache. It isn't,
so a block of 4 instructions, including instruction 1, is moved from main memory to

© HERIOT-WATT UNIVERSITY

TOPIC 9. COMPUTER ARCHITECTURE 183

the cache.

3. The processor can now fetch instruction 1 from the cache. This is much quicker
than fetching from main memory.

4. The processor fetches instruction 2 from cache and executes it.

5. The processor fetches instruction 3 from cache and executes it.

6. The processor fetches instruction 4 from cache and executes it. This instruction
requires data item 1, but this is not in the cache, so a block of data items is fetched
from memory to the cache.

7. Data item 1 is moved from cache to processor, and is processed.

8. The processor needs instruction 5. It is not in the cache, so a block of 4 instructions
is moved from main memory into the cache.

9. The processor fetches instruction 5 from cache and executes it. This instruction
requires data item 2, so this is fetched from the cache.

10. The processor needs instruction 6. It is fetched from cache. It needs data item 3,
which is also in cache and can be retrieved quickly.

11. The processor fetches instruction 7, which instructs the processor to go back to
instruction 3 and continue from there.

12. The processor fetches instruction 3 from cache and executes it.

13. The processor fetches instruction 4 from cache and executes it. This instruction
requires data item 1, which is also in cache, so this is fetched quickly.

14. The processor fetches instruction 5 from cache and executes it. This instruction
requires data item 2, which is also in cache, so this is fetched quickly.

15. The processor needs instruction 6. It is fetched from cache. It needs data item 3,
which is also in cache and can be retrieved quickly.

16. The processor fetches instruction 7, which instructs the processor to go back to
instruction 3 and continue from there.

17. The processor fetches instruction 3 from cache and executes it.

18. The processor fetches instruction 4 from cache and executes it. This instruction
requires data item 1, which is also in cache, so this is fetched quickly.

19. The processor fetches instruction 5 from cache and executes it. This instruction
requires data item 2, which is also in cache, so this is fetched quickly.

20. The processor needs instruction 6. It is fetched from cache. It needs data item 3,
which is also in cache and can be retrieved quickly.

21. The processor fetches instruction 7, but as the loop counter is now 3, the program
continues to instruction 8.

22. The processor fetches instruction 8, which is an END instruction, so the program
stops.

© HERIOT-WATT UNIVERSITY

184 TOPIC 9. COMPUTER ARCHITECTURE

Note that this has taken less time than the same program without cache, because it was
able to access instructions and data that were used repeatedly from cache more quickly
than having to fetch them from main memory.

In a real processor, cache can hold much larger blocks of instructions and/or data, and
typically loops are repeated many more times, so the time savings are even greater.

Please see online for related activity.

. .

9.6 Advances in processor design
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• describe modern trends in computer architecture.

In 1965, Gordon Moore (one of the founders of Intel) observed that the number of
transistors that could be fitted on a silicon chip was approximately doubling every 18-24
months. Since then this observation has held true and has become known as Moore's
Law. Moore's law stated that the number of transistors on integrated circuits is doubling
every two years. This means that computing performance per unit cost doubles roughly
every two years. So far Moore's law has held true, but the strategies for improving
processor performance are limited.

Speeding up the processor

Increasing the clock speed of the processor means that more instructions can be
executed every second. The disadvantage of this approach is that the power
consumption and heat generated by the processor increases, so the cooling required
becomes more and more complex and itself consumes more power. Modern

© HERIOT-WATT UNIVERSITY

TOPIC 9. COMPUTER ARCHITECTURE 185

supercomputers use super-cooled circuitry to reduce the resistance in their processors
and increase their speed as a result.

Increasing the size of instruction which can be executed in one operation

Increasing the width of the data bus means that larger and/or more instructions can
be processed at a time. Improving performance this way requires that the processor
decoding circuitry becomes more complex and as the size of the chip increases, more
time is taken for signals to pass from one part to another. This means that transistors
on the chip need to be smaller to benefit from the improved complexity. Densely
packed transistors mean that processor power consumption increases and again heat
dissipation becomes an issue.

Reducing the size of the transistors

Reducing the size of the transistors means that more transistors can be placed on a
chip and they can be placed closer together. Several processors can also be placed on
a single chip resulting in multi-core processors. The disadvantage of this approach is
also one of heat dissipation, as well as the need for additional circuitry to coordinate the
activities of the cores.

Increasing on-chip memory

Registers are memory locations which are physically part of the processor itself and
they are fast to access, but can only hold a single piece of data, which is the maximum
size of instruction which the processor can read in a single operation. This is known as
the word size of the processor.

Placing cache memory on the processor itself allows an improvement in performance
as this allows the processor to access frequently used instructions and data much faster
than if it had to access RAM. This type of cache is known as Level 1 Cache (L1).

Parallel computing

The classical model of the computer is a machine which can only execute one instruction
at a time. Although these instructions are simple, the fact that so many of them can be
executed in a short time means that complex tasks and the illusion of simultaneous
operation can be achieved. Parallel computing is where many processors work
together to process instructions simultaneously. There are many situations where this
approach can dramatically improve the time it takes to find a solution, however the
software required to coordinate multiple processors gets very complicated very quickly
as the number of parallel processor operations increases.

You may wish to read more about parallel computing here:

http://en.wikipedia.org/wiki/Parallel1computing

Unfortunately, computer software has not kept up with the advances in processor
architecture. Niklaus Wirth created another law which is less optimistic than Moore's
law which states that "software is getting slower more rapidly than hardware becomes
faster." This applies particularly to parallel computing because the algorithms for solving
the type of problem which are best suited to parallel computing solutions are very
complex, particularly when several processors are manipulating the same variables.

Alternative processor technologies

© HERIOT-WATT UNIVERSITY

http://en.wikipedia.org/wiki/Parallel_computing

186 TOPIC 9. COMPUTER ARCHITECTURE

Optical and quantum computing are two possible approaches to increasing the power of
the processor. Optical computers would replace electrical signals with light which should
theoretically need less power and operate at a higher speed. Quantum computing would
replace the bit which can be either on or off with the Qubit which can have a value of
both 1 and 0 at the same time. Both are very much at the experimental stage.

You may wish to read more about these technologies here:

http://en.wikipedia.org/wiki/Quantum1computer

http://en.wikipedia.org/wiki/Optical1computing

9.7 Emulators and virtual machines
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand what an emulator is and how they are used;

• describe the concept of a virtual machine.

An emulator is software which replicates the function of one computer system on
another. Emulators may be used to allow software designed for a computer system
which is no longer manufactured to run on a modern machine. An example of this is
when users wish to play games originally designed for arcade systems or games for
older consoles.

Emulators are also used to test new processor design as the new processor can be
created as an emulation and tested before the system is actually built. Emulators used
in processor design also allow software to be designed and tested before the hardware
it will run on exists.

A virtual machine can be an emulation of a complete computer system which can
be used to run alternative operating systems, or several copies of a single operating
system. One of the advantages of using virtual machines are improved security as
several virtual machines can be running independently in one physical machine. Virtual
machines, since they exist in RAM can be re-booted very quickly and can be migrated
from one physical machine to another very easily.

A virtual machine can also be an emulation of a specific process such as an interpreter
for a programming language. The advantage of using a virtual machine for this sort
of task is that the virtual machine can be run under a variety of operating systems and
means that the language is truly portable. Only one version of a piece of software is ever
needed as it runs in the virtual machine on any operating system which can support the
virtual machine. Java is frequently used in this way and the Java Virtual Machine (JVM)
is available on a wide variety of platforms.

© HERIOT-WATT UNIVERSITY

http://en.wikipedia.org/wiki/Quantum_computer
http://en.wikipedia.org/wiki/Optical_computing

TOPIC 9. COMPUTER ARCHITECTURE 187

9.8 Mobile devices
�

�

�

�

Learning Objective

By the end of this section you will be able to:

• understand the influence that mobile devices have on the software development
process.

With the improvement in wireless bandwidth and miniaturisation of components, mobile
devices such as smart-phones and tablets have become increasingly popular.

Most software development for mobile devices is done on conventional desktop
hardware, so the use of emulators has become a common method for testing mobile
applications. Using an emulator means that applications can be tested and debugged
on a variety of different mobile platforms before they need to be tested on the mobile
devices themselves.

Applications for mobile devices need to use a touch-screen interface, present data
on a small size display, and cope with limited bandwidth. Many applications will
make use of the additional data which a mobile device provides such as geographical
location (through the GPS unit), physical movement (through the built-in accelerometer),
user facial characteristics and eye movement (through the screen-facing camera) and
proximity of other users and mobile devices (through Bluetooth or the fact that their
location can be tracked via the mobile network).

9.9 Learning points

© HERIOT-WATT UNIVERSITY

188 TOPIC 9. COMPUTER ARCHITECTURE

Summary

You should now know:

• the CPU consists of several different parts: the Arithmetic and Logic Unit
which performs calculations; the Control Unit which loads, decodes and
executes instructions, and Registers which are small memory locations
used by the processor.

• Buses are groups of lines which connect the CPU to the main memory.

• The total number of memory locations which can be addressed by the
processor is determined by the number of lines in the address bus.

• The number of lines in the data bus determines the word size of the
processor. The control bus is not really a bus in the strict sense, merely
a collection of control lines.

• Interfaces are needed to allow the processor to communicate with
peripherals.

• Processor performance can be improved by using faster cache memory.

• Speeding up the processor and reducing the size of transistors can improve
performance at the expense of additional power consumption and heat
dissipation.

• An emulator is software which duplicates the function of one computer
system in another.

• A virtual machine is an emulation of a complete computer system which can
be used to run alternative operating systems, or several copies of a single
operating system.

• Mobile devices have features which require quite different types of software
from conventional desktop systems.

© HERIOT-WATT UNIVERSITY

TOPIC 9. COMPUTER ARCHITECTURE 189

9.10 End of topic test

End of topic test

10 min

Q12: The program counter stores the:

a) address of the next instruction to be fetched.
b) current instruction being decoded.
c) result of the last calculation.
d) address of the data to be transferred.

. .

Q13: The accumulator stores the:

a) address of the next instruction.
b) current instruction being decoded.
c) result of the last calculation.
d) address of the data to be transferred.

. .

Q14: Which one these is a unidirectional bus?

a) Address bus
b) Data bus
c) System bus
d) Control bus

. .

Q15: Which of these is not a line in the control bus?

a) Data line
b) Write like
c) Clock line
d) Interrupt line

. .

Q16: Place these in descending order of access speed:

1. RAM

2. Hard Disk

3. Cache

4. Registers

. .

Q17: The number of lines in the data bus determines:

a) the word size of the processor.
b) the maximum addressable memory.
c) the clock speed.
d) the number of instructions processed per cycle.

© HERIOT-WATT UNIVERSITY

190 TOPIC 9. COMPUTER ARCHITECTURE

. .

Q18: The number of lines in the address bus determines:

a) the word size of the processor.
b) the maximum addressable memory.
c) the clock speed.
d) the number of instructions processed per cycle.

. .

Q19: A virtual machine exists:

a) on a hard disk.
b) in the cache.
c) in the registers.
d) in RAM.

. .

© HERIOT-WATT UNIVERSITY

191

Topic 10

End of Unit 1 test

Contents

10.1 End of Unit 1 Test . 192

192 TOPIC 10. END OF UNIT 1 TEST

10.1 End of Unit 1 Test

End of Unit 1 Test

Q1: Which of these is a feature of a low level language?

1. The language is problem oriented.

2. The language uses key words similar to those used in human languages.

3. The language is processor specific.

4. There is a 1 to 1 relationship between language commands and machine
instructions.

. .

Q2: A programming language which uses a knowledge base of facts and rules and
matches them with a query to provide a solution to a problem is a description of :

a) an imperative language.
b) a declarative language.
c) a object-oriented language.
d) a domain-specific language.

. .

Q3: Which of the following statements best describes an object-oriented programming
language?

a) An object-oriented language contains special routines for handling vector images.
b) The language is particularly suited to the control of physical devices.
c) The programmer defines both the data and the operations that can be carried out

on it.
d) An object-oriented language has built-in routines for drawing objects.

. .

Q4: Which of the following statements about compilers are true?

1. Compilers are processor specific.

2. Compilers translate and execute source code into machine code line by line.

3. Compilers translate source code into machine code in a single operation.

4. A compiled program will run faster than an interpreted one.

. .

Q5: Which of the following statements about interpreters are false?

1. An interpreter will run a program until an error is found.

2. Interpreters translate source code to create an object code file.

3. Interpreters are not platform specific.

4. Interpreters translate and execute a program line by line.

. .

© HERIOT-WATT UNIVERSITY

TOPIC 10. END OF UNIT 1 TEST 193

Q6: Which data structure would be best suited to store a set of test marks for a class
of 20 pupils?

a) 20 STRING variables
b) A STRING array of 20
c) An INTEGER array of 20
d) A REAL array of 20

. .

Q7: What is type of variable should be used to identify the index of an array?

a) STRING
b) REAL
c) BOOLEAN
d) INTEGER

. .

Q8: What is the largest positive decimal number which can be stored using 8 bit two's
complement notation?

a) 256
b) 257
c) 127
d) 128

. .

Q9: Convert -35 into 8-bit two's complement notation.

a) 1101 1101
b) 1101 1100
c) 0010 0011
d) 1101 1110

. .

Q10: How many colours can be represented if the bit depth of an image is 32 bits?

a) 65536
b) 16777216
c) 4294967296
d) 1099511627776

. .

Q11: Increasing the number of bits representing the mantissa in a floating point number:

a) increases the range of numbers which can be represented.
b) increases the accuracy of the numbers represented.
c) decreases the accuracy of the numbers represented.
d) decreases the range of numbers which can be represented.

. .

© HERIOT-WATT UNIVERSITY

194 TOPIC 10. END OF UNIT 1 TEST

Q12: Increasing the number of bits representing the exponent in a floating point
number:

a) increases the range of numbers which can be represented.
b) increases the accuracy of the numbers represented.
c) decreases the accuracy of the numbers represented.
d) decreases the range of numbers which can be represented.

. .

Q13: Decreasing the number of objects in a vector graphic image:

a) increases the file size.
b) decreases the file size.
c) increases the resolution of the image.
d) decreases the resolution of the image.

. .

Q14: How will the contents of an array of integers be stored in memory?

a) Using floating point notation.
b) Using two's complement notation.
c) As binary numbers.
d) As a binary file.

. .

Q15: What would be the output from this pseudocode example?

��� �.��� �� I�B �9B �:B :6J

���� �.���I	J � �.���I:J �� ���%&��

a) 1
b) 14
c) 47
d) 36

. .

Q16: During the software development process, who is responsible for finding out the
requirements of the client?

a) Programmers
b) System Analyst
c) Independent Test Group
d) Client

. .

© HERIOT-WATT UNIVERSITY

TOPIC 10. END OF UNIT 1 TEST 195

Q17: Which of the following characteristics are true of Agile software development?

1. Responsiveness to changed circumstances.

2. Increased costs.

3. Reduced time spent on analysis.

4. Reduced development time.

. .

Q18: Which of these is not a design notation?

a) Structure diagram
b) Data flow diagram
c) Source code
d) Pseudocode

. .

Q19: Top Down Design is:

a) creating pseudocode from the structure diagram and data flow diagram.
b) breaking a large and complex problem into smaller, more manageable sub-

problems.
c) writing source code.
d) creating a wireframe interface design.

. .

Q20: Which design notation would you use to design a user interface?

a) Wireframe
b) Structure diagram
c) Pseudocode
d) Data flow diagram

. .

Q21: The competitor's names and times in a race are stored in two arrays. Which data
types will be used for the arrays?

a) STRING array and INTEGER array
b) REAL array and INTEGER array
c) STRING array and REAL array
d) STRING array and BOOLEAN array

. .

Q22: Race time data is used to calculate the number of qualifiers who have performed
better than the average race time. Which of these algorithms will be used?

a) Input validation
b) Counting occurrences
c) Linear search
d) Finding the maximum

© HERIOT-WATT UNIVERSITY

196 TOPIC 10. END OF UNIT 1 TEST

. .

Q23: Which of these does not improve the readability of code?

a) Indentation
b) Meaningful variable names
c) Global variables
d) Modularity

. .

Q24: In this procedure definition, name and times are:

%
����Q
� -"*+'"**��4*���B �"���5

a) formal parameters
b) actual parameters
c) real parameters
d) reference parameters

. .

Q25: In this function call the parameters 1 and 100 are:

Q���"*/�� 7 0��"+��� ��4 �B �		5

a) formal parameters
b) actual parameters
c) real parameters
d) reference parameters

. .

Q26: Beta testing is done by:

a) the systems analyst.
b) the project manager.
c) the programmers.
d) the client.

. .

Q27: A formal parameter whose value is changed by the procedure where it is defined
is:

a) a reference parameter.
b) a value parameter.
c) an actual parameter.
d) a real parameter.

. .

© HERIOT-WATT UNIVERSITY

TOPIC 10. END OF UNIT 1 TEST 197

Q28: The number of lines in the data bus determines:

a) the word size of the processor.
b) the maximum addressable memory.
c) the maximum clock speed.
d) the minimum number of instructions processed per cycle.

. .

Q29: The number of lines in the address bus determines:

a) the maximum word size of the processor.
b) the maximum clock speed.
c) the number of instructions processed per cycle.
d) the maximum amount of addressable memory.

. .

Q30: Why does the linear search algorithm need a Boolean variable?

a) To count the number of items found
b) To terminate the loop when the item is found.
c) To store where the item is found.
d) To terminate the loop when the end of the array is reached.

. .

Q31: Which of these statements are true?

1. A function returns a value.

2. A function can be called with formal parameters.

3. A function can be user-defined.

4. A function is the same a procedure.

. .

Q32: Parallel arrays are:

a) two arrays containing linked data with the same index values.
b) two arrays with different index values containing different data.
c) arrays with identical information content.
d) arrays which are part of the same procedure.

. .

Q33: Which of these are syntax errors?

1. Missing semi colon

2. Division by zero

3. IF without END IF

4. Overflow error

5. Out of memory

6. WHILE without DO

© HERIOT-WATT UNIVERSITY

198 TOPIC 10. END OF UNIT 1 TEST

. .

Q34: Registers are:

a) areas on a hard disk.
b) memory locations in RAM.
c) memory locations in the processor.
d) memory locations in the cache.

. .

Q35: Which standard algorithm is being used in this pseudocode segment?

���� 8%����� �*��� � �� �8 �� ���%&��

����� �����*/�� �
�� 4��
��N5 ������
�

'��&� �����*/�� �= I8�8J ��� �����*/�� �= I8�8J ��

���� 8�*/�� ���� � � �� �8 �� ���%&��

����� �����*/�� �
�� 4��
��N5 ������
�

��� '��&�

a) Counting occurrences
b) Input validation
c) Finding the Maximum
d) Linear search

. .

Q36: Which standard algorithm is being used in this pseudocode segment?

����� "��� �
�� 4����N�
5 ������
�

��� ����� �� 	

��
 ���� *�� �� �
�� *�� ��� ��

�� *�� �� 7 "��� ����

��� ����� �� ����� � �

��� ��

��� ��
����

���� ����� �� ���%&��

a) Counting occurrences
b) Input validation
c) Finding the Maximum
d) Linear search

. .

© HERIOT-WATT UNIVERSITY

TOPIC 10. END OF UNIT 1 TEST 199

The next three questions refers to the following information:

Q37:

Data for a cycle race stores the following information using these data structures:

Race times: REAL array

Names: STRING array

Nationalities: STRING array

Qualifiers: BOOLEAN array

Which standard algorithm would you use to find the name of the winner?

a) Counting occurrences
b) Finding the Minimum
c) Finding the Maximum
d) Linear search

. .

Q38: Which standard algorithm would you use to find out how many qualifiers there
were?

a) Counting occurrences
b) Finding the Minimum
c) Finding the Maximum
d) Linear search

. .

Q39: Which standard algorithm would you use to find the time of a specific contestant?

a) Counting occurrences
b) Finding the Minimum
c) Finding the Maximum
d) Linear search

. .

Q40: Runners in a race have the following information stored about them: name,
nationality, previous personal best time, and lane number. What is the best way of
storing this data?

a) A set of 4 variables for each runner
b) 4 separate arrays
c) A single record structure
d) A single variable for each runner

. .

© HERIOT-WATT UNIVERSITY

200 GLOSSARY

Glossary

Accessible

an interface is said to be accessible if its design does not impede those users with
disabilities such as impaired vision or hearing

Actual parameter

the parameters which are used when a procedure or function is called.

Address bus

the address bus is used by the processor to identify a memory location for reading
from or writing to.

Algorithm

a detailed sequence of steps which, when followed, will accomplish a task.

Alpha testing

testing of software within the development organisation which does not necessarily
wait until the product is complete.

Arithmetic and Logic Unit

the part of a CPU where data is processed and manipulated.

Array

an array is a way of storing a range of values of the same type in a single indexed
structure.

ASCII

American Standard Code for Information Interchange. An 8 bit system for storing
text.

Attributes

in object-oriented programming, this refers to the data associated with an object

Beta testing

testing of software outside the development organisation using clients or selected
members of the public.

Bit

a single unit of binary data.

Bitmap

a representation of image data where each bit corresponds to an individual pixel
on the screen.

Boolean

a value which can only be true or false.

© HERIOT-WATT UNIVERSITY

GLOSSARY 201

Breakpoint

a breakpoint is a marker set within the code of a program to halt program execution
at a predefined spot. The statement or variable expression responsible will be
highlighted and can be inspected while the program is temporarily interrupted. The
program then continues, either to completion or until it hits another breakpoint.

Class libraries

collections of classes that can be used in software development, as building blocks
for further class definitions.

Compiler

a program that translates a complete high level language program (source code)
into an independent machine code program.

Computational construct

a computational construct is a system of data representation and control structures
used to solve problems using a computer through a programming language.

Concatenation

when two strings are joined together to make a new string.

Conditional loop

a control construct which allows a block of code to be repeated until a condition is
met, often depending on user input.

Control Characters

special non-printing characters in a character set, used for special purposes, e.g.
carriage return and end of file.

Control structures

a programming language structure which determines the flow of execution through
the code.

Control Unit

includes timing/control logic and an instruction decoder. It sends signals to other
parts of the computer to direct the fetch and execution of machine instructions.

Data bus

used to transfer data to and from the processor. The data bus can be common to
devices and main memory allowing transfers to take place from and to peripherals
or from and to main memory.

Data dictionary

a detailed list of data structures and relationships in a programming project.

Data flow diagram

a diagram that shows how data flows between the different modules in a piece of
software.

© HERIOT-WATT UNIVERSITY

202 GLOSSARY

Encapsulation

a characteristic of objects in object-oriented programming which means that
objects are closed systems which cannot be altered from outside.

Execution error

an error which only manifests itself when a program is run rather than when its
source code is translated.

Expert system

a system consisting of a database of facts and rules, an inference engine and a
user interface used to help people make decisions.

Exponent

represents the range of a floating point number.

Fetch-Execute cycle

the repeated process of fetching instructions from main memory, decoding the
instructions and executing them.

Fixed loop

a loop which repeats a set number of times.

Floating Point

a method of representing an approximation of a real number in a way that can
support a wide range of values.

Formal parameter

the parameters in the definition of a procedure or function.

Function

a function is a sub-program which returns a value.

GIF

a lossless data compression format for graphics.

Global variable

a global variable is one which has scope throughout the entire program where it
occurs.

Hexadecimal

a number system which uses base 16 instead of 10. Binary numbers can be very
easily converted to hexadecimal because 1 hexadecimal digit is equivalent to 4
binary digits. This makes them much clearer for humans to read.

High level language

English-like programming language which has to be translated into machine code
before computers can understand it.

House style

a set of rules for writing readable code imposed by a software development
company on their programmers.

© HERIOT-WATT UNIVERSITY

GLOSSARY 203

Increment

incrementing a variable means to increase its value by a fixed amount (usually 1).

Index

an integer value which identifies the position of an item in an ARRAY.

Inheritance

used in object-oriented programming, the sharing of characteristics between a
class of objects and a newly created sub-class. This allows code re-use by
extending an existing class.

Interpreter

a program that translates a high level program line by line, which it then tries to
execute. No independent object code is produced.

Iterative

an iterative process is one that incorporates feedback and involves an element of
repetition.

JPEG

a lossy compression format for graphics used for photographic images.

Keyword

a reserved word with a specific meaning in a high level language. Keywords
will often be highlighted in colour or by some other means in the programming
environment and cannot be used as variable names. Examples are IF, THEN,
WHILE DO in BASIC.

Level 1 Cache

the fastest form of cache memory, located on the processor itself.

Local variable

a local variable is one which only has scope within the sub-procedure it has been
declared in.

Low level language

the machine code language which computers use.

Mantissa

a non-zero value used to represent the precision of a floating point number.

Messages

in object oriented programming, objects are closed systems and communicate by
passing messages between them.

Method

a method in an object oriented language is a function that is defined inside a class.

MIDI

(Musical Instrument Digital Interface) is a file format that provides a standardized
way of storing musical sequences.

© HERIOT-WATT UNIVERSITY

204 GLOSSARY

Modular design

organising a large complex program into smaller parts coded as separate modules.
Modular design is often the result of breaking a complex problem down into smaller
sub-problems.

Modularity

a program is said to be modular if it is composed of sub-programs which can be
tested independently.

Module library

a self contained pre-written and pre-tested blocks of code which can be re-used in
other programs.

Multi-core processor

one which has several CPUs on a single chip.

Natural language

a language spoken by human populations

Object code

the machine code produced by a compiler, ready for execution by a processor.

Operations

in object-oriented programming this refers to the behaviour of an object is how it
can manipulate data.

Parity Bit

an additional bit that is transmitted as part of a byte to make the total number of
ones odd (odd parity) or even (even parity). Data transmitted can be checked by
counting the number of ones in a character code to check that there have been no
errors during transmission.

Portable

the ability of a program to run on different machine architectures with different
operating systems.

Portable Network Graphics

a lossless data compression format for graphics created as an improvement on
the GIF file format.

Problem oriented

used to describe a programming language where the focus is on the problem and
how it is to be solved rather than on the hardware on which the program will run.

Procedural language

a programming language which follows a specific set of steps.

Procedure

a sub-program which can be called from within it's main program.

© HERIOT-WATT UNIVERSITY

GLOSSARY 205

Program listing

the text version of the object code created by the programmer before translation.
This should contain internal documentation, white space and indentation to make
the code as readable as possible.

Prototyping

the process of creating partly working models of a system in order to test feasibility
or to get customer feedback before the project is complete.

Pseudocode

an informal high-level description of how a computer program functions.

Readable

high level language code is said to be readable when it is made easy to understand
using meaningful variable names and internal documentation.

Record

a structured data type which can contain values of different types in a single
indexed structure.

Reference parameter

a reference or variable parameter in a sub program definition is one whose value
is changed by that function or procedure.

Registers

internal memory locations which the processor uses to store data temporarily
during the fetch execute cycle.

Reliable

a program is reliable if it runs well and is never brought to a halt by a design flaw.

Resolution

the total number of pixels in the width and height of an image determines the
amount of detail represented in an image.

Robust

a program is robust if it can cope with problems that come from outside and are
not of its own making. A robust program should not crash.

Scope

the scope of a variable is the range of sub-programs where it has a value.

Semantic error

a logical error in a program when the code is grammatically correct, but does not
do what it is intended to do.

Simple data type

a programming language data type which is not made up of other data types.

© HERIOT-WATT UNIVERSITY

206 GLOSSARY

Software specification

a legally binding document which describes exactly what a program will be able to
do.

Source code

the high level language program code for an application before it has been
translated into machine code.

Stack

a dynamic data structure much used by software applications and the computer
for storing temporary data. Data can only be accessed via the top of the stack.

Structured data type

a programming language data type which is created using a collection of items.
which are simple data types.

Structure diagram

a diagrammatic method of designing a solution to solve a software problem.

Structured listing

a structured listing is documented source code.

Syntax

the grammatical rules of a language.

Syntax error

an error in a program where the code is grammatically incorrect and cannot be
translated into machine code.

Two's complement

a system for storing positive and negative integers where the most significant bit
has a negative value.

Unicode

a symbol representation system for storing text which uses more bits than ASCII
in order to represent character sets form around the world.

Value parameter

a value parameter in a function or procedure definition is one which does not
change. It is a copy of the value being passed into the sub-program. The original
outside the sub-program does not change.

Variable declaration

when a variable is defined for the first time giving it a name and a data type.

Vector Graphic

a method of storing a graphical object as a description which can be used to
recreate it on an output device.

© HERIOT-WATT UNIVERSITY

GLOSSARY 207

Version management software

is software which keeps track of versions of a program during development,
allowing changes to be tracked and members of the programming team informed
of their implications.

VHS

(Video Home System) was an analogue video recording system using magnetic
tape video cassettes.

Watch

where the programmer identifies a variable whose value can be displayed in a
separate window while a program is running in order to help with de-bugging.

Waterfall model

the traditional iterative model of software development using the 7 stages:
Analysis, Design, Implementation, Testing, Documentation, Evaluation, and
Maintenance.

Wireframe

a wireframe is a pictorial representation of the design of a website or piece of
software.

Word size

the word size of a processor is the maximum length of instruction which it can read
in any one operation.

© HERIOT-WATT UNIVERSITY

208 ANSWERS: TOPIC 1

Answers to questions and activities

1 Languages and environments

Quiz: Revision (page 3)

Q1: a) Computers only understand machine code

Q2: b) High level languages are often written to solve particular types of problem

Q3: Natural languages have more complex syntax rules, and can be more ambiguous.

Activity: Control structures (page 4)

Q4: a) A

Q5: d) A and B

Q6: g) A, B, and C

Activity: Programming languages (page 6)

Q7:

Language Description

BASIC
A high level procedural language designed to be easy to learn
which became the popular language when computers became
cheaper and popular in the 1970s.

COBOL
One of the earliest procedural programming languages designed
for business and finance users.

Pascal
A general purpose procedural language developed by Niklaus
Wirth and designed to encourage good programming practice.

Java
A highly portable object-oriented general purpose programming
language designed to be platform independent and used for
client-server web applications.

HTML
A domain specific page description language used to instruct web
browsers how to display web pages.

FORTRAN
A general-purpose, procedural programming language designed
for numeric and scientific computing.

Smalltalk
An early object-oriented programming language originally
designed for educational use.

PROLOG
A declarative logic language designed for artificial intelligence
applications.

PHP
a server-side scripting language designed for web development,
often in combination with the MySQL database application.

Python
A general purpose procedural programming language designed by
Guido van Rossum with an emphasis on readability of code.

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 1 209

Answers from page 8.

Q8:

The program output is:

Activity: PROLOG (page 10)

Q9: a) Yes

Q10: b) No

Q11: a) Yes

Q12: d) X = jim, X = justin

Activity: Object-oriented table (page 12)

Q13:

Object Attributes Operations
Button Name, Size, Position, Colour Click, Mouse-over

Window
Name, Size, Position, Focus,
Border

Maximise, Minimise, Resize,
Open, Close

Dialog box Contents, Priority Open, Close, OK, Cancel
Text box Name, Size, Position Create, Drag, Drop
Radio button Name, Position, Initial state Click
Pulldown menu Name, Contents Select, Mouse-over

© HERIOT-WATT UNIVERSITY

210 ANSWERS: TOPIC 1

Activity: Inheritance diagram (page 13)

Q14:

Quiz: Object-oriented languages (page 16)

Q15: Increasing complexity of programs produced problems in managing and
maintaining them. GUI environments cannot be programmed by the constructs of
conventional languages. Use of global variables meant that it became more and more
difficult to keep errors from occurring where data was changed accidentally.

Q16: Encapsulation, inheritance and message passing

Q17: Inheritance means that new classes can be created by extending existing classes.
The new classes will have all the properties of the existing classes. This promotes the
reuse of code that can be used elsewhere in other programs.

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 1 211

Compiler and interpreter (page 22)

Q18:

Description 1, 2, 3, or 4?

Can test code while it is being written
3. Interpreter
advantage

Creates fast executable machine code
1. Compiler
advantage

Does not provide clear error messages
2. Compiler
disadvantage

Must be re-translated if changes have to be made to the source
code

2. Compiler
disadvantage

Source code needs to be translated every time it is run
4. Interpreter
disadvantage

Can partially translate source code
3. Interpreter
advantage

Cannot translate code which contains errors
2. Compiler
disadvantage

Provides helpful error messages
3. Interpreter
advantage

No need for the translation software once the source coded has
been converted to machine cod

1. Compiler
advantage

Machine code cannot be converted back into source code
1.Compiler
advantage

The translation software is needed along with the source code
every time it is run

4. Interpreter
disadvantage

Programs run more slowly because they are being translated
while they are running

4. Interpreter
disadvantage

Quiz: Programming environments (page 23)

Q19: c) A compiler creates an independent machine code program

Q20: a) Looping structures have to be interpreted each time they are executed

Q21: a) Computers can only understand machine code

Q22: d) A compiled program takes up less memory than an interpreted one

End of topic test (page 25)

Q23: b) Declarative

Q24: d) They can contain statements which are ambiguous

Q25: a) Procedural

Q26: b) Declarative

Q27: a) Knowledge base

© HERIOT-WATT UNIVERSITY

212 ANSWERS: TOPIC 1

Q28: c) SQL

Q29: c) Easy for humans to understand

Q30: a) Keyword highlighting b) Automatic indentation c) Search and replace d)
Debugging tools, and e) Spell check

Q31: a) Different platforms require different compilers

Q32: d) A set of pre-tested classes which can be used in a program

Q33: b) Interpreters translate source code to create an object code file

Q34: c) The programmer defines both the data and the operations that can be carried
out on it

Q35: b) The software can be easily re-translated for different platforms

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 2 213

2 Low level operations: Storing data

Quiz: Revision (page 31)

Q1: a) 0100 1001

Q2:

0100 0011 0110 1111 0110 0100 0110 0101
67 111 100 101
C o d e

Q3: 200 x 640 pixels requires 128 000 bits of memory
= 128 000/8 = 16 000 Bytes
= 16 000/1024 = 15.6 KBytes

Quiz: Using binary code to represent and store numbers (page 32)

Q4: Arithmetically things would have been simpler for humans if we had evolved with
six digits on each hand rather than five, because this would have probably meant that
we would have used a base 12 number system instead of base 10. 10 is not easily
divisible by anything other than 2 and 5 making fractions like a third and two thirds an
inconvenience. We are stuck with the decimal system however and are unlikely to be
changing it in the near future due to the fact that we have 5 digits on each hand.

Example of binary to decimal conversion (page 33)

Q5: 118

Q6: 54

Q7: 986

Example of decimal to binary conversion (page 35)

Q8: 1000 0110

Q9: 1001 0100

Q10: 1 1000 1010

Using both methods to convert decimal to binary (page 37)

Q11: 1 1101

Q12: 1 0010

Q13: 100 1111

Q14: 1 0001 0001

© HERIOT-WATT UNIVERSITY

214 ANSWERS: TOPIC 2

Q15: 111 1111

Q16: 10 1110 0110

Q17: 1111 1011 0111

Q18: 10 0110 0001 1011

Quiz: Two's complement (page 39)

Q19: the number is negative because its most significant (leftmost) bit is a 1 and it is
odd because there is a 1 at the end whose value is 1.

Calculating memory requirements (page 49)

Q20: 16000 Bytes

Q21: 60000 Bytes

Q22: 98304 Bytes

Answers from page 53.

Q23: 4x3x72x72pixels = 62208bits = 7776Bytes

Q24: 65536

Q25: 300x300x3x2 = 540000bits540000/8 = 67500 = 65.9KByte

Q26:

3 x 2 x 600 x 600 = 2160000 pixels

2160000 x 8 = 17280000 bits

17280000 / 8 = 2160000 Bytes

2160000 / 1024 = 2109 KB

2109 / 1024 = 2.06 MB

Q27:

2592 x 1944 = 5038848 pixels

5038848 x 24 = 120932352 bits

120932352 / 8 = 15116544 Bytes = 14.4 MB

Quiz: Video (page 60)

Q28: d) 237Mbps

Q29: a) 24fps, 600 x 400 pixels, 12 bits

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 2 215

End of topic test (page 63)

Q30: d) 1011 0111

Q31: c) 23.9 MB

Q32: b) 16777216

Q33: b) 8 bits

Q34: d) 65536

Q35: c) Accuracy increases, range decreases

Q36: a) increases the file size

© HERIOT-WATT UNIVERSITY

216 ANSWERS: TOPIC 3

3 Data types and structures

Revision (page 67)

Q1: b) a negative or positive number including zero with no decimal point

Q2: c) a negative or positive number including zero with a decimal point

Q3: a) a value which can be either true or false

Q4: c) a structured data type storing values of the same type

Activity: Simple data types (page 70)

Q5:

No. Value Simple data type

1 304 Integer

2 45.78 Real
3 @ Character
4 -4 Integer

5 5989.4 Real
6 -56.3 Real
7 ! Character
8 true Boolean

Practical task: Simple data types (page 70)

Example answer

Data Type Visual Basic 6 Snap! (formerly called BYOB)

Integer Integer

Real Single, Double

Character String

Boolean Boolean

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 3 217

Activity: Procedural language (page 73)

Q6:

Control Structures Data Structures
Selection Arrays
Iteration Records

Practical task: Handling records (page 73)

Example answers

Visual Basic 6:

Module code:

�./� #���12!���2���

��� �� ���"#

)��/�* �� ���"*#

+�*#�� �� �*��#��

�*+ �./�

Program code:

�"� �*��.4:5 �� #���12!���2���

%�"0��� �� -"��1����.45

�*��.4	5A*��� 7 8�����8

�*��.4	5A)��/�* 7 8�?�8

�*��.4	5A+�*#�� 7 :

�*��.4�5A*��� 7 8�)��-8

�*��.4�5A)��/�* 7 8�/���8

�*��.4�5A+�*#�� 7 6

�*��.495A*��� 7 8)"M��+8

�*��.495A)��/�* 7 8���--8

�*��.495A+�*#�� 7 P

�*��.4:5A*��� 7 8#!���8

�*��.4:5A)��/�* 7 8�2��/����8

�*��.4:5A+�*#�� 7 9

�*+ ��

%�"0��� �� ��+�"�/��.
�2��+1��"2345

-"��1����.

��� ���*��� 7 	 �� :

%"2�����A%�"*� 8����D 8 =�*��.4���*���5A*���

%"2�����A%�"*� 8'��/�*D 8=�*��.4���*���5A)��/�*

%"2�����A%�"*� 8��*#�� ��0��D8=�*��.4���*���5A+�*#��

��?� ���*���

�*+ ��

© HERIOT-WATT UNIVERSITY

218 ANSWERS: TOPIC 3

Python

W+�2���� +"2�"�*��.

�*��. 7 GL

�*��.I	J 7 I8�����8B8�?�8B:J

�*��.I�J 7 48+)��-8B8�/���8B65

�*��.I9J 7 48)"M��+8B 8���--8BP5

�*��.I:J 7 48#!���8B8�2��/����8B95

-�� 2��*��� "* �*��.D

/�"*� 48����D8B �*��.I2��*���JI	J5

/�"*� 48'��/�*D8B �*��.I2��*���JI�J5

/�"*� 48��*#�� ��0��D8B �*��.I2��*���JI9J5

/�"*�45

Java

In Java a record is just an object which has instance variables but not instance methods

����� �*��.G

���"*# *���=

���"*#)��/�*=

"*� +�*#��=

L

Activity: Data types 1 (page 75)

Q7:

No. Value Data type

1 678 INTEGER
2 Open Sesame! STRING
3 0 CHARACTER
4 -5.7 REAL
5 4000 INTEGER
6 TD5 7EG STRING
7 joe@companymail.com STRING

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 3 219

Activity: Data types 2 (page 76)

Q8:

No. Value Data type

1 A UK telephone number STRING *

2 The price of a pair of trainers REAL

3
Whether a character in a game has found a
weapon or not BOOLEAN

4 The colour of a sprite STRING

5 The counter in a loop INTEGER
6 A URL STRING
7 A key-press CHARACTER

* Telephone numbers can start with a leading zero which would be ignored if they were
stored as an integer.

Activity: Structured data types (page 76)

Q9:

No. Value Data type

1 A list of names ARRAY of STRING
2 A set of test scores out of 50 ARRAY of INTEGER
3 The characters in a sentence ARRAY of CHARACTER

4
The average temperatures during last
month

ARRAY of REAL

5 The last five Google searches you made ARRAY of STRING

6
Whether or not a class of pupils have
passed an exam ARRAY of BOOLEAN

Activity: Multiple data types (page 77)

Q10:

No. Records Data types

1
Name, address and Scottish Candidate
Number (SCN) for a list of pupils.

STRING, STRING, STRING

2
Pupil ID, test score and pass/fail for a
class

STRING, INTEGER,
BOOLEAN

3
Weapon name, ammunition type and
damage value in a First Person Shooter
game

STRING, STRING, INTEGER

© HERIOT-WATT UNIVERSITY

220 ANSWERS: TOPIC 3

Quiz: Pseudocode (page 77)

Q11: e) Greg

Q12: b) Jim

Q13: g) 47

Q14: d) W

Practical task: Handling records (page 78)

Example answers

Visual Basic 6:

Module code:

�./� #���12!���2���

��� �� ���"#

)��/�* �� ���"*#

+�*#�� �� �*��#��

�*+ �./�

Program code:

�"� �*��.4:5 �� #���12!���2���

%�"0��� �� -"��1����.45

�*��.4	5A*��� 7 8�����8

�*��.4	5A)��/�* 7 8�?�8

�*��.4	5A+�*#�� 7 :

�*��.4�5A*��� 7 8�)��-8

�*��.4�5A)��/�* 7 8�/���8

�*��.4�5A+�*#�� 7 6

�*��.495A*��� 7 8)"M��+8

�*��.495A)��/�* 7 8���--8

�*��.495A+�*#�� 7 P

�*��.4:5A*��� 7 8#!���8

�*��.4:5A)��/�* 7 8�2��/����8

�*��.4:5A+�*#�� 7 9

�*+ ��

%�"0��� �� ��+�"�/��.
�2��+1��"2345

-"��1����.

��� ���*��� 7 	 �� :

%"2�����A%�"*� 8����D 8 =�*��.4���*���5A*���

%"2�����A%�"*� 8 '��/�*D 8=�*��.4���*���5A)��/�*

%"2�����A%�"*� 8 ��*#�� ��0��D8=�*��.4���*���5A+�*#��

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 3 221

��?� ���*���

�*+ ��

Python

W+�2���� +"2�"�*��.

�*��. 7 GL

�*��.I	J 7 I8�����8B8�?�8B:J

�*��.I�J 7 48+)��-8B8�/���8B65

�*��.I9J 7 48)"M��+8B 8���--8BP5

�*��.I:J 7 48#!���8B8�2��/����8B95

-�� 2��*��� "* �*��.D

/�"*� 48����D8B �*��.I2��*���JI	J5

/�"*� 48'��/�*D8B �*��.I2��*���JI�J5

/�"*� 48��*#�� ��0��D8B �*��.I2��*���JI9J5

/�"*�45

Java

In Java a record is just an object which has instance variables but not instance methods

����� �*��.G

���"*# *���=

���"*#)��/�*=

"*� +�*#��=

L

Practical task: Structured data types (page 79)

Example answer

Data Type Visual
Basic 6

Snap! (formerly called BYOB) Python

ARRAY Array list / array

STRING String list / string

RECORD Record dictionary

Quiz: Identifying structured data types (page 79)

Q15: a) hydra

© HERIOT-WATT UNIVERSITY

222 ANSWERS: TOPIC 3

Q16: b) Run!

Practical task: Programming language syntax (page 80)

Example answers

Python

W �/�* �!� -"�� �� ���+4�5

"*/��-"�� 7 �/�*48�.-"��A�?�8B8�85

W /�"*� ��2! "��� "* ���* �� +"�/��.

-�� �"*� "* "*/��-"��D

/�"*� �"*�

W 2���� �!� -"��

"*/��-"��A2����45

W �/�* �!� -"�� ��)�"��4)5

���/��-"�� 7 �/�*48�.-"��A�?�8B8)85

���/��-"��A)�"��48�!"� "� �* �?��/�� �- � ��?� -"��85

W 2���� �!� -"��

���/��-"��A2����45

Visual Basic 6

%�"0��� �� 2�+
��+�"��1��"2345 �"��*��� 7 8�.-"��A�?�8

�/�* �"��*��� ��� �*/�� �� W�

��?� �?A��?� 7 �*/��Y4&��4�5B �5

����� W�

�*+ ��

%�"0��� �� 2�+'�"���"��1��"2345

�"��*��� 7 8�.-"��A�?�8

�/�* �"��*��� ��� ���/�� �� W�

��?���'�"�� 7 8�!"� "� �* �?��/�� �- � ��?� -"��8

%�"*� W�B ��?���'�"��

����� W�

�*+ ��

Java

"�/��� @�0�A"�AX=

/� �"2 ���"*# ���+�"��4���"*# -"��*���5

G

���"*# 2�*��*� 7 *���=

�"�� -"�� 7 *�) �"��4-"��*���5=

��. G

�"��
��+�� ���+�� 7 *�) �"��
��+��4-"��5=

2!��IJ 2!��� 7 *�) 2!��I4"*�5 -"��A��*#�!45J=

���+��A���+42!���5=

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 3 223

2�*��*� 7 *�) ���"*#42!���5=

���+��A2����45=

L 2��2! 4���?2�/�"�* �5 G

�A/�"*����23���2�45=

L

�����* 2�*��*�=

L

"�/��� @�0�A"�AX=

/� �"2 2���� '�"���"��

G

/� �"2 ����"2 0�"+ ��"*4���"*#IJ ��#�5

G

��.

G

�"��'�"��� -) 7 *�) �"��'�"���4��#�I	J5=

-)A)�"��48�!"� "� �* �?��/�� �- � ��?� -"��Z*85=

-)A2����45=

L

2��2! 4�?2�/�"�* �5

G �.����A���A/�"*��*4�5= L

L

L

End of topic test (page 82)

Q17:

a) REAL

b) BOOLEAN

c) ARRAY of STRING

d) ARRAY of INTEGER

e) ARRAY of INTEGER

f) ARRAY of CHARACTER

g) ARRAY of STRING

h) ARRAY of BOOLEAN

i) RECORD

j) RECORD

© HERIOT-WATT UNIVERSITY

224 ANSWERS: TOPIC 4

4 Development methodologies

Revision (page 85)

Q1: a) customerNames

Q2: b) Design, code, test

Q3: Source code should be readable so that it can be understood by other
programmers in case it needs changed or debugged.

Q4: c) The developer

Quiz: Analysis (page 88)

Q5: The analysis stage is important because unless the initial problem description is
clearly stated and the software specification agreed upon, then subsequent stages will
suffer from delays and difficulties due to the need to re analyse the task and rewrite the
software specification.

Q6: The software specification describes what the software to be created must be able
to do.

Activity: Testing (page 93)

Q7: 2) Extreme, 4) Normal, and 5) Exceptional

Q8:

Normal: 2, 4, 5

Extreme: 1, 7

Exceptional: 0, 8, @, 67

Quiz: Testing (page 95)

Q9:

b) Testing is done by the programmers responsible for the application

e) Testing may be done on parts of the application

Q10: a) The testing is performed by the clients

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 4 225

Activity: Evaluation terminology (page 98)

Q11:

Term Description

Robust
Ability of a program to keep running even when external errors
occur.

Reliable
The program always produces the expected result when given the
expected input.

Portable
Whether or not the program can easily be used on a variety of
hardware and/or operating systems.

Efficient Whether the program wastes memory or processor time.

Maintainable
Has the program been designed to easily altered by another
programmer.

Readable
Is the coding easy to understand, because it uses meaningful
variable names and is well-structured.

Fit for purpose Does the program fulfil all the requirements of the specification.

Activity: Maintenance (page 100)

Q12: 2) Corrective, 4) Perfective, and 5) Adaptive

Activity: Waterfall model (page 100)

Q13:

Analysis: Looking at the problem and collecting information

Design: Creating a structure diagram and pseudocode

Implementation: Writing the source code

Testing: Trying to find ways in which the program will fail

Documentation: Creating a user guide and technical guide

Evaluation: Checking to see how well the software meets its specification

Maintenance: Fixing problems and adapting the software to new circumstances

End of topic test (page 104)

Q14: a) Perfective maintenance

Q15: d) Tutorial

Q16: a) Programmers

© HERIOT-WATT UNIVERSITY

226 ANSWERS: TOPIC 4

Q17: b) Exceptional data

Q18: c) Reliability

Q19: c) Editability

Q20: d) Reduced time spent on analysis

Q21: d) A high-level description of how a computer program functions.

Q22: b) Analysis, Design, Implementation, Testing, Documentation, Evaluation,
Maintenance

Q23: a) The systems analyst

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 5 227

5 Software design notations

Revision (page 108)

Q1: a) Pseudocode

Q2: c) 10

Q3: c) 10

Quiz: Structure diagram (page 110)

Q4: ARRAY of STRING

Q5: ARRAY of INTEGER

Q6: Find highest score.

Quiz: Data flow diagrams (page 111)

Q7: highest1score and total1failed

Q8: highest1score and total1failed

Practical: Creating a structure diagram and Data flow diagram (page 113)

Diagram solutions

Possible structure diagram solution:

© HERIOT-WATT UNIVERSITY

228 ANSWERS: TOPIC 5

Possible data flow diagram solution:

Note: There is more than one solution to this problem, this is only one possibility.

End of topic test (page 117)

Q9: d) Top-down design

Q10: b) The modules in a structure chart will become modules in the finished program.

Q11: c) Pseudocode

Q12: d) Data flow diagram

Q13: a) Wireframe

Q14: c) Pseudocode

Q15: a) Creating pseudocode from the structure diagram and data flow diagram.

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 6 229

6 Algorithm specification

Revision (page 120)

Q1: c) ARRAY of STRING

Q2: c) The position in an ARRAY

Q3: b) Pseudocode

Q4: a) A fixed loop

Practical task: Algorithms 1 (page 123)

Possible algorithm for solution

%
����Q
� �*/����"+��"�*45

����� �����*/�� �
�� 4����N�
5 ������
�

'��&� �����*/�� (�
 �����*/�� � �		 ��

���� 8�*/�� ���� � ��)��* � �*+ �		 "*2���"0�8 �� ���%&��

����� �����*/�� �
�� 4����N�
5 ������
�

��� '��&�

��� %
����Q
�

Practical task: Algorithms 2 (page 123)

Possible solution

%
����Q
� �*/����"+��"�*45

����� �����*/�� �
�� 4��
��N5 ������
�

'��&� �����*/�� �=I8�8J ��� �����*/�� �= I8�8J ��� �����*/�� �= I8.8J

��� �����*/�� �= I8*8J ��

���� 8�*/�� ���� � � �� . �� � �� *8 �� ���%&��

����� �����*/�� �
�� 4��
��N5 ������
�

��� '��&�

��� %
����Q
�

© HERIOT-WATT UNIVERSITY

230 ANSWERS: TOPIC 6

Practical task: Algorithms 3 (page 124)

Possible solution

%
����Q
� �*/����"+��"�*45

0��"+�*/�� 7 -����

0��"+&�*#�! 7 �9

�%���

����� �����*/�� �
�� 4��
��N5 ������
�

�� ��*#�!4�����*/��5 7 0��"+&�*#�! ����

0��"+�*/�� 7 ����

��� ��

��
 ���� ������ �
�� �����*/�� ��

�� ������ (�
 ������ � P

���� 0��"+�*/�� 7 -����

��� ��

��� ��
 ����

�� 0��"+�*/�� 7 -���� ����

���� 8�*/�� ���� 2�*��"* �?�2��. 8 S 0��"+&�*#�! S 8 +"#"��8 �� ���%&��

��� ��

Q���& 0��"+�*/�� 7 ����

��� %
����Q
�

Possible solution using mid$ function:

%
����Q
� �*/����"+��"�*45

��� 0��"+�*/�� �� -����

��� 0��"+&�*#�! �� �9

�%���

����� �����*/�� �
�� 4��
��N5 ������
�

�� ��*#�!4�����*/��5 7 0��"+&�*#�! ����

��� 0��"+�*/�� �� ����

��� ��

��
 2��*��� �
�� � �� 0��"+��*#�! ��

�� �"+Y4�����*/��B 2��*���B �5 (�
 �"+Y4�����*/��B 2��*���B �5 � P ����

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 6 231

��� 0��"+�*/�� �� -����

��� ��

��� ��

�� 0��"+�*/�� 7 -���� ����

���� 8�*/�� ���� 2�*��"* �?�2��. 8 S 0��"+&�*#�! S 8 +"#"��8 �� ���%&��

��� ��

Q���& 0��"+�*/�� 7 ����

��� %
����Q
�

Activity: Find the maximum value in an array (page 125)

Q5: 56

Q6: 74

Q7: 105

Q8: 74

Q9: 149

Practical task: Find winner (page 127)

Possible solution

%
����Q
� �"*+'"**��45

��� -��*+�� �� 	

��� ����"�� �� �"���I	J

��
 "*+�? �
�� � �� P ��

�� ����"�� � �"���I"*+�?J ����

��� ����"�� �� �"���I"*+�?J

��� -��*+�� �� "*+�?

��� ��

��� ��

���� 8�!�)"**��)�� 8S *����I-��*+��J S 8)"�! � �"�� �- 8S ����"�� �� ���%&��

��� %
����Q
�

Activity: Counting Occurrences (page 128)

Q10: 3

Q11: 3

© HERIOT-WATT UNIVERSITY

232 ANSWERS: TOPIC 6

Q12: 2

Q13: 1

Q14: 1

Practical task: Occurrences (page 129)

Possible solution

%
����Q
� ���*��22����*2��45

����� /!���� �
�� 4��
��N5 ������
�

��� *�� �����*+ �� 	

��� "������"*+ �� 8�8

��
���� ������ �
�� /!���� ��

�� ������ 7 "������"*+ ����

��� *�� �����*+ �� *�� �����*+ � �

��� ��

��� ��
����

���� 8�!���)��� 8 S *�� �����*+ S 8�22����*2�� �- �!� ������ �

"* �!� /!���� .�� �./�+8 �� ���%&��

��� %
����Q
�

Possible solution using mid$ function:

%
����Q
� ���*��22����*2��45

����� /!���� �
�� 4��
��N5 ������
�

��� *�� �����*+ �� 	

��� "������"*+ �� 8�8

��
 2��*��� �
�� � �� ��*#�!4/!����5 ��

�� �"+Y4/!����B 2��*���B �5 7 "������"*+ ����

��� *�� �����*+ �� *�� �����*+ � �

��� ��

��� ��

���� 8�!���)��� 8 S *�� �����*+ S 8�22����*2�� �- �!� ������ �

"* �!� /!���� .�� �./�+8 �� ���%&��

��� %
����Q
�

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 6 233

Activity: Linear Search (page 130)

Q15: 2

Q16: 7

Q17: FALSE

Q18: TRUE

End of topic test (page 134)

Q19: b) Input validation

Q20: d) Finding the maximum

Q21: b) A conditional loop and a boolean variable

Q22: a) A fixed loop

Q23: a) Counting occurrences

© HERIOT-WATT UNIVERSITY

234 ANSWERS: TOPIC 7

7 Computational constructs

Revision (page 139)

Q1: a) Assignment

Q2: c) A user defined function

Q3: b) A simple conditional

Q4: c) A complex conditional

Q5: "Number OK"

Q6: "Invalid Entry"

Q7: a) A fixed loop

Practical task: User-defined functions (page 148)

Possible solutions:

�Q������ ��)
�*+��45
��Q
�� ����N�

��*+����� �� 7 ��*+46	5 � 6	

��Q
� ��*+����� ��

��� �Q������

��
��N �Q������ Q�������45
��Q
�� ��
��N

����� �����*/�� �
�� 4��
��N5 ������
�

'��&� ��*#�!4�����*/��5 � �	

���� 8�*/�� ���� � &��� �!�* �	 �!���2����8 �� ���%&��

����� �����*/�� �
�� 4��
��N5 ������
�

��� '��&�

��Q
� �����*/��

��� �Q������

Practical task: Parameters 2 (page 150)

Possible solution

�Q������ ��� ��40����5
��Q
�� ����N�

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 7 235

0���� 7 0���� X 9

��Q
� 0����

��� �Q������

�Q������ Q�������4-�������B .����-�"��!5
��Q
�� ��
��N

�)���"# 7 -������� S .����-�"��!

��Q
� *�)���"*#

��� �Q������

Practical task: Parameters 3 (page 152)

Possible solution

��� *�� ��� �� I;B�9BRB9:BRB:;B9BRB�OB9J

��� *���� ��I,���+,B,���*�.,B,'"���,B,����.,B,<"�,B,����.,B,<��,B

,T�/!�+,B,N��#,B,<�,J

%
����Q
� �"*+'"**��4*����B �2����5

��� ��?"����2��� �� �2����I	J

���)"**�� �� *����I	J

��
 2��*��� �
�� � �� P ��

�� ��?"����2��� (�2����I2��*���J ����

��� ��?"����2��� �� �2����I2��*���J

���)"**�� �� *����I2��*���J

��� ��

��� ��

���� 8�!�)"**��)�� 8 S)"**�� �� ���%&��

��� %
����Q
�

Practical task: Sequential files (page 155)

Possible solution

��� *���� ��I,���+,B,���*�.,B,'"���,B,����.,B,<"�,B,����.,B

,<��,B,T�/!�+,B,N��#,B,<�,J

%
����Q
� �"*+'"**��4*����B �2����5

© HERIOT-WATT UNIVERSITY

236 ANSWERS: TOPIC 7

N������4�2����5

��� ��?"����2��� �� �2����I	J

���)"**�� �� *����I	J

��
 2��*��� �
�� � �� P ��

�� ��?"����2��� (�2����I2��*���J ����

��� ��?"����2��� �� �2����I2��*���J

���)"**�� �� *����I2��*���J

��� ��

��� ��

���� 8�!�)"**��)�� 8 S)"**�� �� ���%&��

��� %
����Q
�

%
����Q
� N������4�2����5

(�/�* -"�� 8�2����A�?�8�

��
 2��*��� �
�� 	 �� P ��

����� �2����I2��*���J �
�� 4����N�
5 8�2����A�?�8

��� ��

(2���� -"�� 8�2����A�?�8�

��� %
����Q
�

End of topic test (page 157)

Q8: c) Counting occurrences

Q9: d) String value

Q10: b) Actual parameters

Q11: a) Formal parameters

Q12: a) ORANGES A

Q13: c) 18

Q14: a) A reference parameter

Q15: b) A value parameter

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 8 237

8 Testing and documenting solutions

Revision (page 162)

Q1: a) 0, 1,10,50, 99,100, 101, X

Q2: b) scores

Q3:

&"*� ; ���� I8�*/�� ���� � ��)��* � �*+ �		 8J �� ���%&��

&"*� 6
����� �����*/�� �
�� 4����N�
5 ������
�

Q4: Short statements embedded in the source code describing how a that part of the
program functions in order to aid code readability.

Quiz: Debugging (page 165)

Q5:

• Division by zero

• Out of memory

Q6: The error is a logic (semantic) error. because the total variable is set to zero every
time the loop repeats. It should be set to zero before the loop starts.

Practical task: Trace tables (page 167)

Possible solutions:

maximumValue counter numbers[counter]
3 1 15

15 2 4
15 3 7
15 4 8

Output: The largest value was 15.

End of topic test (page 170)

Q7:

• Missing semi colon

• IF without END IF

• WHILE without DO

Q8:

• Division by zero

• Overflow error

© HERIOT-WATT UNIVERSITY

238 ANSWERS: TOPIC 8

Q9:

miniimumValue counter numbers[counter]

17 1 15
15 2 4
4 3 7
4 4 8

Output: The smallest value was 4.

Q10: d) Extreme data

Q11: b) False

Q12: a) True

Q13:

value no display counter
1 0
1 1 1
2 2 2
4 4 3
7 7 4
11 11 5
16 16 6

Q14: c) Global variables

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 9 239

9 Computer architecture

Revision (page 175)

Q1: b) RAM is memory whose contents cannot be changed.

Q2: c) Transferring status information.

Q3: b) Memory used to store information being transferred by an interface.

Q4: a) The address bus.

Q5: b) The data bus.

Activity: Read and write operations (page 178)

Q6:

1. Address of memory location to be read from is placed on Address register.

2. Memory location is identified.

3. Read line is activated.

4. Data is transferred to data register from memory location via data bus.

Q7:

1. Address of memory location to be written to is placed on Address register.

2. Memory location is identified.

3. Write line is activated.

4. Data is transferred from data register to memory location via data bus.

Quiz: Buses and their function (page 179)

Q8: b) carry a memory address from which data can be read or to which data can be
written.

Q9: c) transfer data between memory and processor.

Activity: Fetch-execute cycle (page 180)

Q10:

1. Transfer Program Counter to Memory Address Register

2. Increment the Program Counter

3. Activate Read line

4. Transfer instruction to Data Register and then to Control Unit

5. Decode Instruction

6. Execute Instruction

© HERIOT-WATT UNIVERSITY

240 ANSWERS: TOPIC 9

Quiz: Program counter (page 180)

Q11: An instruction in a program may be to load additional data from memory. The
address of this data will need to be placed on the address bus using the address register,
but the program counter is still needed to keep track of the address of the next instruction
in the program.

End of topic test (page 189)

Q12: a) address of the next instruction to be fetched.

Q13: c) result of the last calculation.

Q14: a) Address bus

Q15: a) Data line

Q16:

1. Registers

2. Cache

3. RAM

4. Hard Disk

Q17: a) the word size of the processor.

Q18: b) the maximum addressable memory.

Q19: d) in RAM.

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 10 241

10 End of Unit 1 test

End of Unit 1 Test (page 192)

Q1:

3. The language is processor specific

4.
There is a 1 to 1 relationship between language commands and machine
instructions.

Q2: b) a declarative language.

Q3: c) The programmer defines both the data and the operations that can be carried
out on it.

Q4: answer

1. Compilers are processor specific.

3. Compilers translate source code into machine code in a single operation.

4. A compiled program will run faster than an interpreted one.

Q5: answer

2. Interpreters translate source code to create an object code file.

3. Interpreters are not platform specific.

Q6: c) An INTEGER array of 20

Q7: d) INTEGER

Q8: c) 127

Q9: a) 1101 1101

Q10: c) 4294967296

Q11: b) increases the accuracy of the numbers represented.

Q12: a) increases the range of numbers which can be represented.

Q13: b) decreases the file size.

Q14: b) Using two's complement notation.

Q15: c) 47

Q16: b) System Analyst

Q17:

1. Responsiveness to changed circumstances.

4. Reduced development time.

Q18: c) Source code

© HERIOT-WATT UNIVERSITY

242 ANSWERS: TOPIC 10

Q19: b) breaking a large and complex problem into smaller, more manageable sub-
problems.

Q20: a) Wireframe

Q21: c) STRING array and REAL array

Q22: b) Counting occurrences

Q23: c) Global variables

Q24: a) formal parameters

Q25: b) actual parameters

Q26: d) the client.

Q27: a) a reference parameter.

Q28: a) the word size of the processor.

Q29: d) the maximum amount of addressable memory.

Q30: b) To terminate the loop when the item is found.

Q31:

1. A function returns a value.

3. A function can be user-defined.

Q32: a) two arrays containing linked data with the same index values.

Q33:

1. Missing semi colon

3. IF without END IF
6. WHILE without DO

Q34: c) memory locations in the processor.

Q35: b) Input validation

Q36: a) Counting occurrences

Q37: b) Finding the Minimum

Q38: a) Counting occurrences

Q39: d) Linear search

Q40: c) A single record structure

© HERIOT-WATT UNIVERSITY

	Languages and environments
	Revision
	Low level and high level languages
	Control structures
	Why so many programming languages?
	Classifying programming languages
	Programming environments
	Learning points
	End of topic test

	Low level operations: Storing data
	Revision
	Using binary code to represent and store numbers
	Storing integers
	Storing real numbers
	Storing text
	Storing graphics
	Storing sound
	Storing video
	Learning points
	End of topic test

	Data types and structures
	Revision
	Data types and pseudocode
	Simple data types
	Identifying simple data types
	Structured data types
	Handling records
	Parallel arrays and records
	Handling records
	Identifying structured data types
	Sequential files
	Learning points
	End of topic test

	Development methodologies
	Revision
	The traditional software development process
	Rapid Application Development (RAD)
	Agile software development
	Learning points
	End of topic test

	Software design notations
	Revision
	Introduction
	Structure diagrams
	Data flow diagrams
	Pseudocode
	Wireframes
	Learning points
	End of topic test

	Algorithm specification
	Revision
	Standard algorithms
	Input validation
	Finding the minimum or the maximum value in an array
	Counting Occurrences
	Linear search
	Learning points
	End of topic test

	Computational constructs
	Revision
	Introduction
	Variables and scope
	Sub-programs
	User defined functions
	Parameters
	Passing parameters by value and reference
	Sequential files
	Learning points
	End of topic test

	Testing and documenting solutions
	Revision
	Test plans
	Debugging
	Debugging tools
	Learning points
	End of topic test

	Computer architecture
	Revision
	The parts of the processor
	Buses and their function
	Interfaces
	Cache
	Advances in processor design
	Emulators and virtual machines
	Mobile devices
	Learning points
	End of topic test

	End of Unit 1 test
	End of Unit 1 Test

	Glossary
	Answers to questions and activities
	 Languages and environments
	 Low level operations: Storing data
	 Data types and structures
	 Development methodologies
	 Software design notations
	 Algorithm specification
	 Computational constructs
	 Testing and documenting solutions
	 Computer architecture
	 End of Unit 1 test

