
1

Higher Computing Science

Software Design and Development - Programming

Summary Notes

Design notations

A design notation is the method we use to write down our program design.

 Pseudocode is written using English words and is easily changed, line by line, into
the chosen programming language (see all of the examples in this booklet).

Since it is not a formal language there is not strict rules on writing pseudocode, other

than it should follow a similar structure to a programming language.

 A structure diagram gives a visual representation of how the program is broken
down into smaller problems. It is read from top to bottom, left to right and often

represents the main input, process and output stages.

2

 A flowchart gives a visual representation of the sequence of processes in the
program. It also shows the program flow, control constructs and branches in the

program.

 Wireframes are used to design the user interface for a program. The diagram

shows the layout of elements and is often annotated with details of the styling to
be used.

3

Data structures and types

Two data structures are available for storing information:
 a variable is used to store a single item of data

 an array (1D array) is used to store a list of items that share the same data type.

Some data types which can be used are:

 string (for text, e.g. “Hello World”)
 character (for a single character, e.g. “@”)

 integer (for whole numbers, e.g. 1,2,3)
 real (for non-whole numbers, e.g. 3.14, 7.5, 42.12)

 Boolean (for True/False results)
 records (aka User Defined Types) can hold a variety of data types in multiple

variables or arrays. Records can contain values of more than one data type.

VB examples Description

Dim name As String
Dim age As Integer

Dim names (1 To 30) As String
Dim prices (1 To 80) As Single

Private Type record

 OrderID As Integer
 ItemName As String * 20

 InStock As Boolean

End Type

Dim items (1 to 50) As record

A string variable called name
An integer variable called age

A string array called names, indexed 1 to 30
An array of real numbers called prices, indexed 1 to

80

A User Defined Type (UDT) called record, with 3

fields (integer, 20 character string, Boolean)

An array of records, called items, indexed 1 to 50

Scope of variables

The scope of a variable is the part of the program for which it is valid.

 Global variables have the whole program as their scope.

 The scope of a local variable is the subprogram in which it is declared.

In VB, global variables are declared in the General section at the start of the code.

Modularity
Splitting a program up into subprograms and modules aids readability and makes it

easier for several programmers to work on a project at the same time, speeding up the
development process.

 A procedure is a subprogram which carries out a particular task.

 A function is a subprogram which returns a single piece of data.

Procedures and functions may be defined as either:
 Private - can only be used in the module which contains it

 Public - can be used by any module

A module library is a collection of pre-written, pre-tested modules which is used to
save time in the development process. It can also allow programmers to carry out tasks

beyond their expertise.

4

Parameter passing
Procedures and functions may require certain pieces of information in order to do their

job - these are called parameters (aka formal parameters).

Using parameter passing correctly aids modularity.

Procedure parameters may be required by reference or by value.

 By reference – a pointer to the location of the data is passed, so any changes to
it will change the data for the rest of the program.

 By value – a copy of the data is passed, so any changes to it will not affect the
rest of the program.

The part of the program which calls the subprogram must pass the appropriate pieces of

data - these are the arguments (aka actual parameters).

VB examples Description

Private Sub initialise ()

Public Sub open_file (ByVal filename As String)

Private Function circle_area (ByVal radius As
Single) As Single

Defines a private procedure called

initialise with no parameters.

Defines a public procedure called
open_file which requires a string

parameter by value.

Defines a private function called
circle_area which requires a real

parameter passed by value and

returns a real result.

Pre-defined functions
Pre-defined functions are built in to the programming environment and perform useful

calculations. Some predefined functions include: Int, Rnd, Sin, Cos, Len, Left.

VB examples Description

Rnd
Int (single)

Len (string)
Left (string, integer)

Mid (string, integer, integer)

Returns a random real number between 0 and
0.099999

Returns the whole number part of a real number
Returns number of characters in a string

Returns a substring taken from the left of a string
Returns a substring taken from any point in a string

Assigning values to variables

This means “putting data into a variable”.

Pseudocode examples VB examples

SET age TO 21

SET name TO “Sherlock”

age = 21

name = “Sherlock”

5

Arithmetic operations
Arithmetic operations include +, -, *, /, ^ (to the power of) and mod (the remainder of

a division).

Pseudocode examples VB examples

SET answer TO 3 + 4 ^ 2

SET remainder to 17 mod 5

answer = 3 + 4 ^ 2

remainder = 17 mod 5

Concatenation
Concatenation is the process of joining strings, variables and arrays together.

Pseudocode examples VB examples

SEND “Hello “ & name TO DISPLAY MsgBox (“Hello “ & name)

Conditional statements

Conditional statements use the IF…THEN…ELSE structure.

They are used to select particular lines of code to be carried out.

Pseudocode examples VB examples

IF age >= 17 THEN

SEND “You can learn to drive” TO
DISPLAY

ELSE
SEND “You are not qualified” TO DISPLAY

END IF

If age >= 17 Then

MsgBox (“You can learn to drive”)
Else

MsgBox (“You are not qualified”)
End If

IF name ≠”Moriarty” THEN

SEND “Welcome” TO DISPLAY
END IF

If name <> “Moriarty” Then

MsgBox (“Welcome”)
End If

Logical operators
Logical operators – AND, OR, NOT – can be used to create complex conditions.

Pseudocode examples VB examples

IF score>100 AND score<500 THEN If score>100 And score<500 Then

WHILE age<21 OR name<>”Watson” DO Do While age<21 Or name<>”Watson”

Fixed loops
A fixed loop repeats a section of code a set number of times.

Pseudocode examples VB examples

REPEAT 10 TIMES
SEND name TO DISPLAY

END REPEAT

For counter = 1 To 10
List1.AddItem name

Next counter

FOR loop FROM 1 TO 20 DO

SEND loop TO DISPLAY

For loop = 1 T0 20

List1.AddItem loop

6

END FOR Next loop

Conditional loops
A conditional loop repeats a section of code either WHILE a condition is met or UNTIL a

condition is met.

Pseudocode examples VB examples

REPEAT
RECEIVE response FROM KEYBOARD

UNTIL response = “No”

Do
response = InputBox (“Continue?”)

Loop Until response = “No”

WHILE response ≠ “No” DO
RECEIVE response FROM KEYBOARD

END WHILE

Do While response <> “No”
response = InputBox (“Continue?”)

Loop

File handling operations
It is often useful for programs to work with external data files, there are a few basic

operations which can be carried out.

 Open/Create – a file must be opened or created before it can be read from or

written to.
 Read – reads data from a file into a variable or array.

 Write – writes data into a file
 Close – a file must be closed once it has been used, this frees up the memory it

was in.

Sequential files in Visual Basic
Sequential files are the most straightforward type, used to store a simple text file.

These examples give the syntax for basic sequential file operations.

Creating/writing to a sequential file
If the file already exists, any existing data will be overwritten.

If the file doesn't exist, it will be created.

Pseudocode example VB example

OPEN “H:\scores.txt”
SEND score TO “H:\scores.txt”

CLOSE “H:\scores.txt”

Open “H:\scores.txt” For Output As #1
Print #1, score

Close #1

Reading from a sequential file

This will read the entire contents of the file.

Pseudocode example VB example

OPEN “H:\scores.txt”
RECEIVE data FROM “H:\scores.txt”

CLOSE “H:\scores.txt”

Open “H:\scores.txt” For Input As #1
data = Input(LOF(1), 1)

Close #1

Adding to a sequential file without overwriting
This will add data to the end of the file.

Pseudocode example VB example

OPEN “H:\scores.txt” Open “H:\scores.txt” For Append As #1

/H:/document.txt
/H:/document.txt
/H:/document.txt

7

SEND score TO “H:\scores.txt”
CLOSE “H:\scores.txt”

Print #1, score
Close #1

Random files in Visual Basic

Random files used to store data in an organised structure using records.
By using records and fields, random files can give much more control.

For example, a specific record can be read, amended, or written to.

Creating/writing to a random file

This will add one record at a specified position.

Pseudocode example VB example

OPEN “H:\s.txt”

SEND record TO “H:\s.txt”

CLOSE “H:\s.txt”

Open “H:\s.txt” For Random As #1 Len =

Len(record)

Put #1, recordnumber, record
Close #1

Reading a single record from a random file

This will read a specific record.

Pseudocode example VB example

OPEN “H:\s.txt”
RECEIVE record FROM

“H:\s.txt”
CLOSE “H:\s.txt”

Open “H:\s.txt” For Random As #1 Len =
Len(record)

Get #1, recordnumber, record
Close #1

Reading all the records from a random file
This will loop through all records in the file and read them into an array.

Pseudocode example VB example
OPEN “H:\s.txt”

FOR EACH record FROM “H:\s.txt” DO
RECEIVE record FROM “H:\s.txt”

END FOR EACH
CLOSE “H:\s.txt”

Open “H:\s.txt” For Random As #1 Len = Len(record)
numberofrecords = LOF(1)/len(record)

For counter = 1 to numberofrecords
Get #1, counter, record

Next counter
Close #1

Errors
There are 3 main types of programming error.

 Syntax – incorrect use of the programming language.
e.g. Typing Nxt counter instead of Next counter

 Execution – errors while the program is running, usually causing an error message.
e.g. Type mismatch error if the program tries to store text in an integer variable.

 Logic – no syntax or execution error but program doesn’t produce correct results.
e.g. The program should only allow input of numbers from 1 to 10, but it allows any

number to be input.
Debugging

Various debugging techniques and tools are available to programmers:
 Dry runs - Working through the listing using pencil and paper.

 Trace tables - Used to note variable values when carrying out a dry run.

/H:/document.txt

8

 Trace tools - Allow access to extra information which is normally hidden, such as

the call stack (the list of active subprograms).
 Breakpoints - A marker in the code where the program execution is to be

paused. Allows the programmer to pinpoint the moment where an error is

occurring.
 Watchpoints -similar to a breakpoint but used to monitor the value stored in a

variable or check a certain condition. The program will stop when the specified
criteria is met and details of the current state can be displayed.

Testing

Software is tested methodically, following a systematic test plan, to make sure it is free
from errors. A good test plan should include the following types of test data:

 Normal – acceptable test data, well within acceptable limits.

 Extreme – acceptable test data but on the limits of what is acceptable.
 Exceptional – unacceptable test data, outwith acceptable limits.

Including these types of test data will help to ensure a program is tested

comprehensively.

Example

A program asks the user to input a number from 1 to 10.
Normal test data – 4, 5, 6

Extreme test data – 1, 10

Exceptional test data – 233, -15, A, %

Readability
How easily the program can be understood by another programmer.

Readability can be improved by adding:
 internal commentary – comments in the program code to explain what it is doing.

 meaningful identifiers – using sensible names for variables, arrays and
subprograms, e.g. score rather than s.

 indentation – using the tab key to help show where control structures start and

finish.
 white space (blank lines) – to help separate sections of code.

Standard algorithms – Linear search

 A standard algorithm used to check if a value is in a list.
 Loops through every item in list and compares it to the target item, setting a flag

variable to true if they match.
 Can be made more efficient by only continuing the search if the target item hasn’t

been found yet.

Basic algorithm More efficient algorithm
RECEIVE target FROM KEYBOARD
FOR EACH item FROM list DO

 IF item = target THEN
 found = TRUE
 END IF

END FOR EACH

IF found = true THEN

RECEIVE target FROM KEYBOARD
SET found TO false

WHILE found = false AND not end of list DO
 IF current_item in list = target THEN
 found = TRUE

 END IF
END WHILE

9

 SEND “Target found” TO DISPLAY
ELSE
 SEND “Target not found” TO DISPLAY

END IF

IF found = true THEN
 SEND “Target found” TO DISPLAY
ELSE

 SEND “Target not found” TO DISPLAY
END IF

Standard algorithms – Count occurrences

 A standard algorithm used to check how many times a value appears in a list.
 Loops through every item in list and compares it to the target item, adding 1 to a

counter if they match.

Count occurrences

SET hits TO 0
RECEIVE target FROM KEYBOARD

FOR EACH item FROM list DO
 IF item = target THEN

 SET hits TO hits + 1

 END IF
END FOR EACH

SEND hits TO DISPLAY

Standard algorithms – Find maximum / find minimum
 Standard algorithms used to identify the highest / lowest values in a list.

 Loops through every item in list and compares it to the target item, assigning a new
value to maximum/minimum if necessary

Finding maximum Finding minimum

SET maximum TO list[0]

FOR EACH item FROM list DO
 IF item > maximum THEN

 SET maximum TO item
 END IF

END FOR EACH

SEND maximum TO DISPLAY

SET minimum TO list[0]

FOR EACH item FROM list DO
 IF item < minimum THEN

 SET minimum TO item
 END IF

END FOR EACH

SEND minimum TO DISPLAY

Languages and environments
Low-level languages

 Low level languages are machine dependent and require a detailed understanding
of the specific computer’s processor, registers, memory layout, etc.

 Machine code is the lowest level language.
 Slightly higher level is assembly language, which uses mnemonics like LD, RET,

etc to manipulate data between the processor and memory.

 The purpose of low level programming is to create highly efficient programs,
optimised for processor and memory usage.

 Low level programs are extremely difficult to program/debug as they contain no
high level constructs (repetition, selection, etc).

Machine code

 Originally the only means of programming a computer (in the 1950s).
 Programs would only run on the machine architecture on which they were created.

 Very difficult to read and maintain.
 Difficult and time-consuming to remember or look up opcodes.

10

11

Assembly language

 Addressed the problem of difficult to remember opcodes, by replacing them with
mnemonics (e.g. JMP instead of 1001).

 Much easier to write, read and maintain than machine code.

 Required an assembler to translate programs into machine code.

High-level languages
 Addressed the need for more powerful programming languages.

 Code resembles English and is much easier to read and maintain.
 One line of HLL code would take approximately 10 to 20 lines of low level code to

carry out the same action.
 Gives access to control structures such as repetition and selection.

 Gives access to data structures such as arrays.
 Requires a compiler to translate programs into machine code versions.

Procedural languages

 A procedural language is a HLL in which the user sets out a list of instructions in the
correct sequence in order to solve a problem.

 It has a definite start and finish point and the instructions are followed in sequence.

Declarative languages

 Rather than instructions, facts and rules are entered (this is called the knowledge
base), and the language uses these to find solutions to queries which are entered.

 Declarative languages are typically used in the development of Artificial Intelligence
and expert systems.

Object-oriented languages

 Object oriented programming is a different approach to program design.
 Use of object-oriented techniques can reduce coding and development time.

 Objects define the data (aka properties, a description of the object) and the
methods (aka operations, or things that the object can do) that can be used to

manipulate the data. Every instance of the object will have the same properties
and methods.

Development process

The software development process follows these stages:

 Analysis – clarifying requirements and producing the software specification
(precise details of the requirements, also a legally binding contract between client

and developer). Systems analyst interviews and observes clients.

 Design – planning the software, based on the specification. Creating wireframes
for user interface and using top-down design to produce an algorithm.

 Implementation – Choosing a suitable programming language (considering

available data types, control structures, operating system, expertise, etc) and
creating the program based on the design.

 Testing – using a systematic test plan to make sure the program is free from
errors. An independent test group may be used to provide more rigorous,

unbiased testing.

12

 Documentation – writing formal documentation such as the EULA (copyright
restrictions), technical guide (installation and hardware requirements) and user

guide (how to use the software).

 Evaluation - judging the program in relation to various criteria – robustness,

maintainability, efficiency, portability, reliability, fitness for purpose, etc.

 Maintenance – making changes to correct, improve or adapt the program.
Corrective maintenance involves fixing errors which weren’t previously spotted.

Perfective maintenance involves improving the software by adding new features
or streamlining code.

Adaptive maintenance changes the software to run in a new environment, such
as a new OS or different hardware.

The development process is iterative, in that earlier stages may have to be repeated as

a result of new information.

Rapid application development (RAD)

A development approach which involves quickly building a small-scale prototype then
repeatedly evaluating and improving until the final product is achieved. Design time is

reduced and problems are caught early in the process.

Agile programming
A development approach which focuses on flexibility and communication, recognising

that the analysis of a large-scale project is very difficult. The client is consulted regularly
and parts of the solution are delivered and evaluated upon their completion.

Contemporary developments

 Software development environments have become more graphical and include
many debugging tools to help the programmer.

 Improvements in hardware have allowed more complex AI techniques to be used
to create ever more advanced intelligent systems such as robots.

 The use of online systems has increased as network bandwidths, processor

power and storage capacities have increased.

