
Higher Computing Science

Database structures

Summary notes

A database is a collection of data stored in a structured, organised manner.

Flat file databases

A flat file database has all data is contained in one file (aka table or entity).

Data is organised into fields (aka columns or attributes) and records (aka rows or
occurrences).

Field types

Basic field types include: text, number, date, time.

Other field types include:

 Object (aka container) – can contain graphic, audio, video, etc.

 Link – contains a hyperlink.

 Calculation – contains a formula to calculate its contents from other data in the record.

Automatic calculation of data reduces the chance of human error.

 Boolean – stores Yes/No or True/False.

 Summary – calculates data based on data from multiple records in database. For
example, totals up the contents of a particular field across all records.

Relational databases (linked tables)

Linked tables (aka relational databases) have two or more files linked together.

Using linked tables reduces unnecessary duplication of data, therefor reducing the
opportunity for error.

Good database design avoids data duplication (by using linked tables where

appropriate) and reduces errors in data entry (by using suitable validation
techniques).

Example
In a database with a Customers table linked to a Tickets table - one customer can

have many tickets, but each ticket may only have one customer.

Example
In a database with a Customer Details table linked to an Account Details table – one

customer can only have one account, and vice versa.
However, the Customer Details table can be made available to all staff whilst the

Account Details table could only be available to senior staff.

Example
In a database with a Pupils table linked to a Teachers table – one pupil can have

many teachers, and vice versa.

Example

This ER diagram shows a one-to-many relationship between Customers and Tickets.

Relationships

There are 3 types of relationships between tables in a relational database.

One-to-one (1:1)
One record in the first table can only link to exactly one record in the second table.

One-to-one relationships are rarely used, except as a means of splitting up a large,
unwieldy table or treating part of a table differently (e.g. keeping some fields secure).

One-to-many (1:M)
One record in the first table can link to two or more records in the second table.

Each record in the second table can only be linked to exactly one record in the first
table.

This is the most common type of relationship.

Many-to-many (M:M)
One record in the first table can link to two or more records in the second table.

One record in the second table can also link to two or more records in the first table.
Many-to-many relationships are usually undesirable in relational database design.

ER diagrams

Relationships can be represented graphically using an Entity-Relationship (ER) diagram.

There are many different notations for ER diagrams, we will use crow’s foot notation.

 The names of entities are written in boxes joined by straight lines.
 At the “many” end the line forks.

 At the “one” end the line has a single line through it.

Customers Tickets

Example

Litters (Litter ID

 Sire
 Dame

 Number in litter

 DOB)

Puppies (Puppy ID
 Puppy name

 Sex
 Cost of puppy

Litter ID*)

Customers (Customer name
 Address

Puppy ID*)

There are 3 tables in this database.

 The Litters table has Litter ID as a primary key.

 The Puppies table has Puppy ID as a primary key.
 The Customers table uses Customer name and Address as a compound key.

 Litter ID is a foreign key in the Puppies table.

This creates a one-to-many relationship between Litters and Puppies.

 Puppy ID is a foreign key in the Customers table.
This creates a one-to-many relationship between Puppies and Customers.

Primary keys / foreign keys / compound keys

A primary key is a field which is a unique identifier for each record.
A file may have only one primary key.

At the design stage, primary keys are usually identified by underlining.

A foreign key is the primary key copied from another file, used to link two files.
In order to create a link, the primary key from the “one” entity gets copied into the

“many” entity as a foreign key.
At the design stage, foreign keys are usually identified using an asterisk.

A compound key is a key which consists of two or more fields in order to create a
unique identifier. This is required when no single field can be used to uniquely identify a

record.

A surrogate key can be utilised when there is no natural occurring primary key. In

other words, there is no data that can be used as a unique identifier. As a result a new
field is created to serve as the unique identifier, removing the requirement for a

compound key.

This can be implemented using an autonumber field type as this will automatically
allocates a unique number to each record in a table, reducing the need for the user to

create their own identifying data.

Field validation

Using appropriate validation reduces the chance of error when data is input.

Various validation techniques can be used to ensure data is appropriate:

 Presence check – ensures field cannot be left empty (good validation for a primary
key or any data that must be part of the record). Data must be present in the field for

the record to be stored. Appears in a data dictionary as ‘Required’.

 Restricted choice – the user is presented with a list of options to choose from (using

a drop-down menu, option buttons or similar). This is often used for the input of data
for a foreign key, by automatically generating the list of options from the linked file

(i.e. a look up validation).

 Length check – ensures an appropriate number of characters is input (e.g. minimum
of 8 characters, maximum of 20). This is almost always used for fields with the Text

data type.

 Range check – used on numeric fields to ensure number is within certain range (e.g.
between 0 and 100). This is used on fields with a Number data type.

Queries

Queries (searches) allows the user to find information in a database.

Users may perform simple queries (looking at the contents of one field) or complex

queries (looking at the contents of many fields).

When answering exam questions always state what data is being searched for and which
field it should be in.

Examples

To find all the male pupils who are over 12 SEARCH for “male” in the Gender field AND

>12 in the Age field

To find all the people who live in Edinburgh

or Glasgow

SEARCH for “Edinburgh” in the Town field

OR “Glasgow” in the Town field

To find all the people born in the 1990s SEARCH for >31/12/89 in the DOB field
AND <1/1/00 in the DOB field

Sorting

Sorting puts database records in order based on the contents of particular fields.

 Ascending order goes from A to Z, smallest number to largest number.

 Descending order goes from Z to A, largest number to smallest number.

Examples

Put the customers in alphabetical order SORT on Surname field in Ascending order

then the Forename field in Ascending

order.

Find the tallest person in the database SORT on Height field in Descending order

then look at the first record in the list.

Example

Here is part of a table storing details about a company’s employees.

Forename Surname Gender Birth Date Salary

Nancy Davolio F 8/12/68 32800

Carol Paterson F 9/5/75 25000

Andrew Fuller M 19/2/52 43700

Joseph McDowall M 27/1/81 19500

Janet Leverling F 30/8/63 36000

Here is a report which has been produced to show details of all employees who earn
more than £30000.

Remember, you also need to be able to look at a sorted database and identify the fields
it has been sorted on.

Reports

Reports (layouts) allow the presentation of selected data from the database.

The output can be customised in a variety of ways, including displaying only chosen
fields and formatting the data in a particular way.

 Only 4 of the 5 fields are included in

the report, salary is not required.

 A header with a title has been added.

 The forename and surname fields have

been given different headings.

 The birth date field has been formatted

differently.

 Different fonts have been used.

 There is a footer with summary fields

which automatically calculate male and
female numbers.

Examples

Example

Table Field PK/FK
Data

type

Data

size
Unique Required Validation Format

Pupils Pupil ID PK Text 30 Y Y Presence AB1234

 DOB Date Y dd/mm/yy

School

name
FK Text

40

Look up from

School table

Schools
School

name
PK Text

40
Y Y

Restricted

choice

 Address Text 11 Y Y

Forms

Database creators can prepare forms (layouts) specially designed for inputting data, to
help improve usability.

A well laid-out form, using suitable techniques such as drop-down menus or checkboxes,

reduces the typing required and makes data input easier and faster.

Data dictionaries

A data dictionary is a design notation used to show the fields required in each table of a
relational database, including field types, validation required, etc.

