Total marks - 40
Attempt ALL questions

1. Evaluate $3 \frac{2}{3}-1 \frac{1}{4} . \quad 2 \frac{2}{3}-\frac{1}{4}$

$$
\begin{aligned}
& =2 \frac{8}{12}-\frac{3}{12} \\
& =2 \frac{5}{12}
\end{aligned}
$$

2. Given that $f(x)=(x+3)^{2}$, evaluate $f(7)$.

$$
\begin{aligned}
f(7) & =(7+3)^{2} \\
& =10^{2} \\
& =100
\end{aligned}
$$

3. Expand and simplify $(x+1)\left(x^{2}-4 x+5\right)$.

$$
x^{3}-3 x^{2}+x+5
$$

4. Given $\mathbf{a}=\left(\begin{array}{r}3 \\ 4 \\ -1\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}5 \\ 3 \\ 2\end{array}\right)$, find the resultant vector $3 \mathbf{a}+\mathbf{b}$.

Express your answer in component form.

$$
\begin{aligned}
3 \underline{a}+\underline{b} & =\left(\begin{array}{c}
9 \\
12 \\
-3
\end{array}\right)+\left(\begin{array}{l}
5 \\
3 \\
2
\end{array}\right) \\
& =\left(\begin{array}{c}
14 \\
15 \\
-1
\end{array}\right)
\end{aligned}
$$

5. The prices, in pounds ($£$), of the cameras on display in a shop are listed below.
(a) Calculate the median and the interquartile range of these prices.

$$
\begin{aligned}
\text { Medior } & =200 \\
1 Q R & =230-160 \\
& =70
\end{aligned}
$$

On a website, a sample of camera prices have a median of $£ 195$ and an interquartile range of $£ 73$.
(b) Make two valid comments comparing the prices of the cameras in the shop and on the website.
On average, website is cheaper ($\ell 195<\ell 200$) website prices are less cousistan $(\ell 73>\ell 70)$
[Turn over
6. Simplify $\sqrt{75}-\sqrt{3}$.

$$
\begin{aligned}
& \sqrt{25} \sqrt{3}-\sqrt{3} \\
= & 5 \sqrt{3}-\sqrt{3} \\
= & 4 \sqrt{3}
\end{aligned}
$$

7. Solve, algebraically, the system of equations

$$
\begin{aligned}
& 2 p-7 r=11 \\
& 3 p+2 r=4 \\
& \text { (8) } \times 2 \quad 4 p-14 r=22 \text { (3) } \\
& \text { (2) } \times 7 \quad 21 p+14 r=28 \text { (4) } \\
& A D D \quad 25 P=50 \\
& \text { Suls } 2 \text { for } \frac{p=2}{p \text { in (2) }} \\
& 6+2 r=4 \\
& 2 r=-2 \\
& r=-1 \\
& p=2, r=-1 \\
& \text { check in (1) } \\
& 2 p-7 r \\
& =2(2)-7(-1) \\
& =4+7 \\
& =11 \checkmark
\end{aligned}
$$

8. The graph of $y=a \cos b x^{\circ}, 0 \leq x \leq 360$, is shown.

(a) State the value of a.

$$
a=7
$$

(b) State the value of b.
$b=2$
9. In a car rally, competitors start at different times.

The scattergraph shows the relationship between the length of time they have been driving, T minutes, and the distance to the finishing line, D kilometres.

A line of best fit has been drawn.
Point A represents a competitor who has been driving for 3 minutes and is 26 kilometres from the finishing line.
Point B represents a competitor who has been driving for 10 minutes and is 12 kilometres from the finishing line.
(a) Find the equation of the line of best fit in terms of D and T.

Give the equation in its simplest form.

$$
\begin{aligned}
m & =\frac{26-12}{3-10} \\
& =\frac{14}{-7} \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
y-b & =m(x-a) \\
y-12 & =-2(x-10) \\
y-12 & =-2 x+20 \\
y & =-2 x+32 \\
\therefore D & =-2 T+32
\end{aligned}
$$

9. (continued)

Another competitor has been driving for 7 minutes.
(b) Use your equation from part (a) to estimate the distance the competitor is from the finishing line.

$$
\begin{aligned}
D & =-2(7)+32 \\
& =-14+32 \\
& =18
\end{aligned}
$$

10. The diagram below shows a circle centre 0 .

- $A C$ is a tangent to the circle at the point B.
- CE is a tangent to the circle at the point D .
- DG and BF are diameters of the circle.
- Angle DFE is 125°.

(kite andes add
to 360°)
Calculate the size of shaded angle $B C D$.

11. A straight line has equation $x+4 y-24=0$.

Find the gradient of this line.

$$
\begin{aligned}
4 y & =-x+24 \\
y & =-\frac{1}{4} x+6
\end{aligned}
$$

$$
\mu=-\frac{1}{4}
$$

12. (a) Express $x^{2}-6 x+8$ in the form $(x-a)^{2}+b$.

$$
\begin{aligned}
& (x-3)^{2}+8-9 \\
= & (x-3)^{2}-1
\end{aligned}
$$

(b) Hence, or otherwise, state the coordinates of the turning point of the graph of $y=x^{2}-6 x+8$

$$
(3,-1)
$$

The diagram shows the graph of $y=x^{2}-6 x+8$.
A line PQ has been drawn parallel to the x-axis, where:

- P lies on the y-axis
- P and Q lie on the graph of $y=x^{2}-6 x+8$.

$x=3$
(c) Find the coordinates of Q.

$$
\begin{array}{rr}
y=x^{2}-6 x+8 & \text { PP@ }(3,-1) \\
y \text {-axis } x=0 & \therefore \text { axis of symmetry } \\
\therefore y=8 & x=3 \\
P=(0,8) & \therefore P \rightarrow Q=6 \text { amis } \\
& \therefore Q=(6,8)
\end{array}
$$

13. Expand and simplify fully $x\left(x^{\frac{1}{2}}+x^{-1}\right)$.

$$
\begin{aligned}
& x^{1}\left(x^{1 / 2}+x^{-1}\right) \\
&= x^{3 / 2}+x^{0} \\
&= x^{3 / 2}+1 \\
& \hline
\end{aligned}
$$

[Turn over
14. In the diagram, triangles $A B C$ and $A D E$ are mathematically similar.

- $B C=3$ centimetres
- $\mathrm{DE}=7$ centimetres
- $A D=10.5$ centimetres

Calculate the length of BD.

$$
\begin{array}{rlrl}
\frac{A B}{A D} & =\frac{B C}{D E} \\
\therefore \frac{A B}{10.5} & =\frac{3}{7} \\
A B & =\frac{3 \times 10.5}{7} \\
A B & =31.5 \div 7 \\
A B & =4.5 \mathrm{can} & & =6 \mathrm{~cm}
\end{array}
$$

[END OF QUESTION PAPER]

