Geometric shapes and forms

ometric forms are the basis for many different 'real-life' objects, and it is important you understand their properties. You need to know what they would look like after being manipulat-ed-such as cuts or being 'unfolded' into developments.

Your 'AquaJ' bottle consisted of three cylinders with extra features, and the label was the development of a cylinder. Here are some examples of prisms, cones, cylinders and prisms with cuts to them, developments and 'real-life'

Suriace developments

-urface developments are the ' $21 / 2 \mathrm{D} / 3 \mathrm{D}$ ' form 'unfolded' to form what is known as a 'flat pattern' in 3D modelling. It is this form which has to be planned out and drawn accurately before the object can be produced for its intended purpose. If it has not been accurately draw, then it shall not fit together. Even a simple 'cube' as shown here will not be successful if poorly constructedfor example all the sides must be the same height.

Octagonal-based prism

Probable development of spaghetti packetnote the 'long' sides.

This development has been arranged around the base.

Hexagonal-based prism

Geometric shapes and forms

Prisms

These are the simplest of the geo-
metric forms. They have a straight sided base-square, rectangle, hexagon, etc.- and vertically straight sides. Each prism's name is due to the shape of its base-hexagonal prism, etc. and provide the basis for many uses, especially product packaging

Using manual methods

Using 3D modelling

Geometric shapes and forms

Gylinders

ylinders are fundamentally circular -based prisms. Cylinders are widely used for many purposes and are frequently cut or truncated depending on their function.

This cylinder has been produced and cut using the Extrude feature.

This cylinder has been produced and cut using the Revolve feature
It enables more complex cylinders
to be achieved.

Geometric shapes and forms

Pyramids

P
yramids may be thought of as
prisms with a straight-edged base with sides which rise to a single point. The base can be any number of sides just like a prism. They can form the basis for a range of functions from buildings to furniture to packaging.

Using 3D modelling

This pyramid has been produced using the Loft tool.

Using manual methods

Complete the surface
development

- On the elevation, project the
labelled points $\mathbf{e} \boldsymbol{- h}$ across to the
true length
- Step these onto the surface
- Step these onto the surface development

The pyramid has been cut using the subtraction tool within extrude

Geometric shapes and forms

Cones

ones have round bases and this
They ares frewards a singularn point.
packeging and other designs.

Using manual methods

The cone has been produced using the revolve tool.

The cone has been cut and shelled here.

Geometric shapes and forms

True lengths and shapes

True Lengths

If the wall has been rotated so the man is seeing the 'slope' at an angle of 90°. This means that he is seeing the true length of the sloping wall. Note that it is now a lot higher in relation to his vertical height.

This view shows what the man would see if it was his position which had changed in relation to the sloping wall. He is still looking at the slope at an angle of 90° so he is looking at its True Length. It is this con-cept-of looking at the object at 90° to the sloping surface- that you need to understand when identifying true

True Shapes

rawing and identifying these views requires you to use the same principles adopted to achieve the true length. In this case, it is the entire surface of the sloping face which is created, rather than a single line.

So think of the third graphic above, with the man 'hovering' above the wall at an angle of 90° to the slope. Several

Cones

Prisms

Cylinders

True shape of sloping surface

Geometric shapes and forms

 True lengths and shapes using 3D modellingD modelling is an excellent way to visualise objects from different angles. It enables the user to quickly rotate it via the mouse and therefore is ideal for looking at the true shapes of many different angled surfaces. Here are several examples of various forms Doing this yourself is a very effective way to reinforce the ideas previously covered in these notes.

