Compound Shapes (Squares, Rectangles and Triangles)

When we combine two (or more) 2-D shapes we get a compound shape (or composite 2-D shape). The shapes we will be combining will be squares, rectangles and triangles.

$$
\begin{array}{lll}
\text { Area of a square } & =\text { length } \times \text { length } & \mathrm{A}=l \times l \\
\text { Area of a rectangle } & =\text { length } \times \text { breadth } & \mathrm{A}=l \times b \\
\text { Area of a triangle } & =\frac{1}{2} \text { base } \times \text { perpendicular height } & \mathrm{A}=\frac{1}{2} \times b \times h
\end{array}
$$

Here the units for area are $\mathbf{m m}^{\mathbf{2}}, \mathbf{c m}^{\mathbf{2}}, \mathbf{m}^{\mathbf{2}}$ and $\mathbf{k m}{ }^{\mathbf{2}}$.

$$
\text { Total area }=\text { area of square }+ \text { area of triangle }
$$

Example. Find the area of the compound shape.

$$
\text { Area of a square }=l \times l=8 \times 8=64 \mathrm{~m}^{2}
$$

$$
\text { Area of a triangle }=\frac{1}{2} \times b \times h=\frac{1}{2} \times 5 \times 8
$$

$$
\text { Total area }=64 \mathrm{~m}^{2}+20 \mathrm{~m}^{2}=\underline{84 \mathrm{~m}^{2}}
$$

Find the area of these compound shapes.
1).

2).

3).

4).

5).

6).

7).

9).

[^0]
[^0]: MY6.98. Licensed to St Columba's High School valid until 08-09-2021

