The Kite and Rhombus

The kite and the rhombus share the same property: that the diagonals cross at right angles.
It is this property that leads to the formula for the area of the shapes.

Draw a kite on squared paper. Draw in the diagonals. Move the diagonals to the edge of the kite to form a rectangle around the kite. The rectangle has the same length and width as the diagonals of the kite. Therefore the area of the rectangle is the product of the diagonals. By counting squares you can see the kite is half the area of the rectangle.

The area of the kite is half the product of the diagonals.
Draw a rhombus on squared paper to show thaWhis is true for a rhombus.
A. Find the area of the following kites and rhombuses. (Diagrams not to scale).

5).

Example: Find the missing diagonal length in the kite.

$$
\begin{array}{rlr}
\text { Area of kite } & =\text { half the product of the diagonals } \\
45 & =\frac{1}{2} \times 9 \times x & \text { where } x \text { is the missing diagonal } \\
45 & =4.5 \times x & \text { (Divide both sides by 4.5) } \\
x & =10 \mathrm{~cm} &
\end{array}
$$

$$
\text { Area }=45 \mathrm{~cm}^{2}
$$

B. Find the missing diagonal lengths in the following kites and rhombuses. (Diagrams not to scale).
1). $\mathrm{Area}=42 \mathrm{~cm}^{2}$

2). Area $=432 \mathrm{~m}^{2}$
3). Area $=126 \mathrm{~mm}^{2}$
4). \quad Area $=768 \mathrm{~m}^{2}$
5). Area $=243 \mathrm{~cm}^{2}$

6). Area $=248 \mathrm{~mm}^{2}$
7). Area $=429 \mathrm{~cm}^{2}$
8). Area $=891 \mathrm{~m}^{2}$
9). Area $=1365 \mathrm{~mm}^{2}$

UK373. Licensed to St Columba's High School valid until 08-09-2021

