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1 Introduction
In this topic, we delve into a new area of maths: complex and imag-
inary numbers. All maths and numbers are based on a system that
helps us model real life applications. However, sometimes the familiar
whole numbers and integers are not sufficient to model intricate and
complicated real life scenarios. Hence, imaginary and complex num-
bers were devised as a means to solve problems which could not be
solved in a traditional way

Imaginary numbers are of enormous use in applied maths and physics.
Complex numbers consist of the sum of real and imaginary numbers
and complex analysis is the study of functions made up of complex vari-
ables. Complex numbers occur quite naturally in the study of quantum
physics. They are also useful for modelling periodic motions (such as
water or light waves) as well as alternating currents. Understanding
complex analysis has enabled mathematicians to solve fluid dynamic
problems, understand how to pump oil in oilrigs, model how earth-
quakes shake buildings and determine how electronic devices work.

Consider the equation x2 + 1 = 0.

x2 + 1 = 0

x2 = −1

x = ±
√
−1

Until now, we would have said that there are no solutions as we can’t
take the square root of a negative number (try it on your calculator,
it will say error). Mathematicians devised a way to obtain solutions
to problems like this by defining a new imaginary number i =

√
−1.

With this new definition, the equation above has solutions x = ±i.

The imaginary number, i is defined as i =
√
−1. Hence i2 = −1.
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2 Complex Numbers
Complex numbers do not mean complicated numbers. It simply means
that a number is made up of a real and an imaginary part. The letter
z is usually used to denote an imaginary number. Generally;

For a,b ∈ R, the complex number z is given by

z = a+ ib

where i is defined as
√
−1.

a is the real part of z and b is the imaginary part of z.

2.1 Arithmetic for Complex Numbers
Complex numbers may be added or subtracted by adding or subtract-
ing the real and imaginary parts separately. For example: If z1 = 2+4i
and z2 = 14− 3i

z1 + z2 = 2 + 4i+ 14− 3i = 2 + 14 + 4i− 3i = 16 + i

z2 − z1 = (14− 3i)− (2 + 4i) = 14− 2− 3i− 4i = 12− 7i

Similarly, to multiply complex numbers, apply the normal rules for
multiplying algebraic expressions.

3z1 = 3(2 + 4i) = 6 + 12i

z2 × z1 = (14− 3i)(2 + 4i)

= 28 + 56i− 6i− 12i2

= 28 + 50i− 12(−1) as i2 = −1

= 28− 50i+ 12

= 40− 50i.
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2.2 Solving Equations with Complex numbers
Note that two complex numbers are only equal if their real and imag-
inary parts are equal. This fact will allow complex equations to be
solved by equating real and imaginary parts.
Example 1. Solve 5 + 6i = 3− i+ z for z where z = a+ ib

Process
5 + 6i = 3− i+ z

3− i+ z = 5 + 6i

z = 5 + 6i− 3 + i

z = 2 + 7i

Example 2. Solve 4 + 2i = (2− i)z for z where z = a+ ib

Process
4 + 2i = (2− i)z

4 + 2i = (2− i)(a+ ib)

4 + 2i = 2a+ 2ib− ai− i2b

4 + 2i = 2a+ (2b− a)i− (−1)b

4 + 2i = 2a+ (2b− a)i+ b

4 + 2i = 2a+ b+ (2b− a)i

Equating real and imaginary parts gives:

2a+ b = 4

−a+ 2b = 2
⇒

2a+ b = 4

−2a+ 4b = 4

Solving simultaneously gives: 5b = 8 ⇒ b = 8
5 . Substituting gives:

−a+ 2(
8

5
) = 2

a =
16

5
− 2 =

6

5

Hence z = 6
5 +

8
5i =

1
5(6 + 8i).
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2.3 Division of Complex Numbers
To divide by a complex number, we use a process which makes use of
what is known as the complex conjugate.

The complex conjugate, z̄ (pronounced z-bar), of a complex num-
ber z = a+ ib is defined as

z̄ = a− ib

When a complex number is multiplied by its conjugate, then the resul-
tant is a whole number i.e. the imaginary part will have been removed
as shown below:

zz̄ = (a+ ib)(a− ib)

= a2 − abi+ abi− i2b2

= a2 − (−1)b2

= a2 + b2

To divide by a complex number, multiply numerator and denom-
inator by the complex conjugate, replace i2 by −1 and simplify.

Example 3. Find (4+2i)÷ (2−3i) giving an answer in the form a+ ib
for a, b ∈ R.
Process

(4 + 2i)÷ (2− 3i) =
(4 + 2i)

(2− 3i)

=
(4 + 2i)

(2− 3i)
× (2 + 3i)

(2 + 3i)

=
8 + 16i+ 6i2

4− 6i+ 6i− 9i2

=
8 + 16i+ 6(−1)

4− 6i+ 6i− 9(−1)

=
2 + 16i

13
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2.4 Square Roots of a Complex Number
To calculate a square root of a complex number, make an equation
using z = a + ib, square both sides and equate real and imaginary
parts.
Example 4. Calculate

√
3− 4i giving an answer in the form a + ib

where a and b are real numbers.
Process Let

√
3− 4i = a+ ib and square both sides as shown:
√
3− 4i = a+ ib

3− 4i = (a+ ib)2

3− 4i = a2 + 2abi+ i2b2

3− 4i = a2 − b2 + 2abi (as i2 = −1)

Now compare real and imaginary parts:

a2 − b2 = 3

2ab = −4
⇒

a2 − b2 = 3

a = −2/b

Then substitute a = 1
b into a2 − b2 = 4.

a2 − b2 = 3
4

b2
− b2 = 3

4− b4 = 3b2

b4 + 3b2 − 4 = 0

(b2 + 4)(b2 − 1) = 0

b = ±1 (as a, b ∈ R)

Substituting back gives:

a =
−2

1
or a =

−2

−1
⇒ a = −2 or a = 2

Hence, √
4 + 2i = −2 + i or 2− i
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3 Geometrical Representation
In many cases, it is useful to represent real numbers using a number
line. In the case of complex numbers, this idea can be extended and
the complex number z = x + iy can be thought of as the point in a
plane with cartesian co-ordinates P = (x, y) and position vector ~OP .
This is known as an Argand Diagram. The x-axis represents the real
part of the complex number and the y-axis represents the imaginary
part.

Note that adding complex numbers can be considered as geometrically
equivalent to adding together the position vectors of two points.
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In a similar manner to finding the magnitude of a vector, we can find
the modulusof a complex number.

The modulus, |z| of a complex number is the length of the line in
the argand diagram and can be found by Pythagoras as

|z| =
√

a2 + b2

For complex numbers, another aspect that can be calculated is the
argument.

The argument, θ, of a complex number is the size of the anti-
clockwise angle (in radians) between the positive x-axis and the
vector on the argand diagram.

tan θ =
b

a

The argument has values between −pi and pi. This means that the
angle must be obtained by considering the direction from the positive
direction of the real axis and the following diagram:
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Example 5. Let z = 5 + 3i. Represent z on an argand diagram and
find the modulus and argument of z.
Process

|z| =
√

52 + 32

=
√
34

From the diagram, the complex number z is located in the first quad-
rant. The argument is calculated as follows:

θ = tan−1 3

5
= 0.54

Example 6. Let z = −4− 2i. Represent z on an argand diagram and
find the modulus and argument of z.
Process

1.

|z| =
√

(−4)2 + (−2)2

=
√
20

= 2
√
5

From the diagram, the complex number z is located in the third quad-
rant. Therefore, to find the argument, we first find the first quadrant
acute angle,α, and use this to obtain the third quadrant obtuse angle
θ.

α = tan−1 2

4
= tan−1 1

2
= 0.4636 radians

Hence, θ = −(π − 0.4636) = −2.6780 radians. Note that the negative
shows that the movement from the x-axis has been in a clockwise
direction (the negative of the anti-clockwise direction).
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Example 7. Let z = 3 − 4i. Represent z on an argand diagram and
find the modulus and argument of z.

Process

1.

|z| =
√
(3)2 + (−4)2

=
√
25

= 5

From the diagram, the complex number z is located in the fourth
quadrant. Therefore, to find the argument, we the fourth quadrant
angle θ and make it negative to account for the fact that it is a clockwise
direction rather than anti-clockwise.

θ = tan−1 4

3
= 0.9273 radians
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4 Polar Form

Any complex number z = a+ ib can be written in polar form as

z = r(cos θ + i sin θ)

where r = |z| and θ = argz.

Example 8. Write the complex number z = 1 + i in polar form.

Process Calculate the modulus and argument.

r = |z|
=
√

12 + 12

=
√
2

θ = tan−1 1

1
= tan−1 1

=
π

4

Hence
z =

√
2
(

cos π
4
+ i sin π

4

)
Example 9. Write the complex number z = 3− 2i in polar form.

Process Calculate the modulus and argument.

r = |z|
=
√

32 + (−2)2

=
√
13

α = tan−1 2

3
= 0.927

θ = −α = −0.927.

Hence
z =

√
13 (cos−0.927 + i sin−0.927)
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5 Multiplication and Division
When multiplying or dividing complex numbers z1 and z2 given in
polar form, the following rules apply:

Rule 1 Ensure that both z1 and z2 are written in polar form z =
a+ ib.

Rule 2 |z1z2| = |z1| × |z2| and arg(z1z2) = arg(z1) + arg(z2)

Rule 3 |z1| ÷ |z2| = |z1| ÷ |z2| and arg(z1 ÷ z2) = arg(z1)− arg(z2)

Rule 4 Multiply moduli and add arguments when multiplying. Di-
vide moduli and subtract arguments when dividing

Rule 5 Ensure that the principle argument (between −π and π) is
in the final answer. This may mean that you have to add
or subtract 2π from the argument to ensure that the final
answer has argument between −π and π.

Example 10. Simplify the expression

3(cos π
2
+ i sin π

2
)× 4(cos π

6
+ i sin π

6
)

and give an answer in polar form.

Process

3(cos π
2
+ i sin π

2
)× 4(cos π

6
+ i sin π

6
)

= 6
[
cos (π

2
+

π

6
) + i sin((π

2
+

π

6
)
]

= 6

[
cos 2π

3
+ i sin 2π

3

]
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Example 11. Simplify the expression

5(cos π
4
+ i sin π

4
)÷ 4(cos π

3
+ i sin π

3
)

and give an answer in polar form.

5(cos π
4
+ i sin π

4
)÷ 4(cos π

3
+ i sin π

3
)

=
5

4

[
cos (π

4
− π

3
) + i sin (

π

4
− π

3
)
]

=
5

4

[
cos(−π

12
) + i sin (

−π

12
)

]

Example 12. Simplify the expression

3(cos 3π
5

+ i sin 3π

5
)×

√
2(cos π

6
− i sin π

6
)

and give an answer in polar form.

Process First rewrite the second complex number in the form z =
a + ib using the fact that cos is an even function and sin is an odd
function. Hence, sin π

6 = − sin (−π
6 ) and cos π

6 = cos (−π
6 ).

3(cos 3π
5

+ i sin 3π

5
)×

√
2(cos π

6
− i sin π

6
)

= 3

(
cos 3π

5
+ i sin 3π

5

)
×

√
2

(
cos (−π

6
) + i sin (

−π

6
)

)
= 3

√
2

(
cos (3π

5
− π

6
) + i sin (

3π

5
− π

6
)

)
= 3

√
2

(
cos (13π

30
) + i sin (

13π

30
)

)
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6 De Moivre’s Theorem
De Moivre’s Theorem is used to calculate powers of a complex number
written in polar form. It states that:

zn = rn(cosnθ + i sinnθ)

Example 13. Use De Moivre’s Theorem to find z5 where z = 1 +
√
3i

giving an answer in both polar form and cartesian form.

Process First write in polar form.

r = |z|

=

√
(
√
3)2 + 12

=
√
4

= 2

θ = tan−1

√
3

1

=
π

3

Hence z = 2(cos π
3 + i sin π

3 )

z5 =
(
2(cos π

3
+ i sin π

3
)
)5

= 25
(

cos 5π
3
+ i sin 5

π

3

)
= 32

(
1

2
+ i(

−
√
3

2

)
= 16− 16

√
3i

Note Remember to check your final answer in polar form to ensure
that the argument is the principal argument (lying between −π and π.
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Example 14. Simplify the expression(
cos π

2
+ i sin π

2

)2 (
cos π

4
+ i sin π

4

)3
leaving answer in polar form.

Process Using De Moivre’s Theorem.(
cos π

2
+ i sin π

2

)2
= cos 2π

2
+ i sin 2π

2
= cos π + i sin π

(
cos π

4
+ i sin π

4

)3
= cos 3π

4
+ i sin 3π

4

Now, multiplying gives:

(cosπ + i sin π)×
(

cos 3π
4

+ i sin 3π

4

)
= cos (π +

3π

4
) + i sin (π +

3π

4
)

= cos 7π
4

+ i sin 7π

4

= cos (7π
4

− 2π) + i sin (
7π

4
− 2π)

= cos (−π

4
) + i sin (

−π

4
)

15



7 Roots of a Complex Number
Equations of the form zn = a cos θ + i sin θ can be solved by using
De Moivre’s theorem and noticing that adding multiples of 2π to θ
will maintain the same position on an argand diagram. In general, if
z = r(cos θ + i sin θ), then:

z
1
n = r

1
n

(
cos
(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

))
, k = 0, 1, . . . n−1

Example 15. Solve the equation z3 = 8(cos 3π
4 + i sin 3π

4 ) leaving the
answers in polar form.

Process

zk = z
1
3 k = 0, 1, 2

= 8
1
3

(
cos 1

3

(
3π

4
+ 2kπ

)
+ i sin 1

3

(
3π

4
+ 2kπ

))
,

When k = 0,

z0 = 8
1
3

(
cos 1

3

(
3π

4

)
+ i sin 1

3

(
3π

4

))
= 2

(
cos 3π

12
+ i sin 3π

12

)
= 2

(
cos π

4
+ i sin π

4

)
When k = 1,

z1 = 2

(
cos
(
3π

4
+ 2π

)
+ i sin

(
3π

4
+ 2π

))
= 2

(
cos 11π

12
+ i sin 11π

12

)
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When k = 2,

z2 = 2

(
cos
(
3π

4
+ 4π

)
+ i sin

(
3π

4
+ 4π

))
= 2

(
cos 19π

12
+ i sin 19π

12

)
= 2

(
cos −5π

12
+ i sin −5π

12

)
= 2

(
cos 5π

12
− i sin 5π

12

)

The solutions are:

z0 = 2
(

cos π
4
+ i sin π

4

)
z1 = 2

(
cos 11π

12
+ i sin 11π

12

)
z2 = 2

(
cos 5π

12
− i sin 5π

12

)

Note that the solutions will divide a circle with radius 2 into three
equal sectors.
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Example 16. Find the third roots of unity. (Note that this is equivalent
to solving the equation z3 = 1.

Process: First find the modulus and argument of z = 1 and rewrite
in polar form. As |z| = 1, arg z = 0, then z = 1(cos 0 + i sin 0). Hence,

zk = z
1
3

= [1(cos 0 + i sin 0)]
1
3

= 1
1
3

(
cos 1

3
(0 + 2kπ) + i sin 1

3
(0 + 2kπ)

)
=

(
cos 1

3
(0 + 2kπ) + i sin 1

3
(0 + 2kπ)

)
When k = 0, z0 = (cos 0 + i sin 0)

= 1

When k = 1, z1 =

(
cos 1

3
(0 + 2π) + i sin 1

3
(0 + 2π)

)
=

(
cos 2π

3
+ i sin 2π

3

)
= −1

2
+

√
3

2
i

When k = 2, z2 =

(
cos 1

3
(0 + 4π) + i sin 1

3
(0 + 4π)

)
=

(
cos 4π

3
+ i sin 4π

3

)
=

(
cos −2π

3
+ i sin −2π

3

)
= −1

2
−

√
3

2
i
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The solutions are:

z0 = 1

z1 = −1

2
+

√
3

2
i

z2 = −1

2
−

√
3

2
i

These solutions divide a circle of radius 1 into three equal sectors.
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8 Roots of a Polynomial
A polynomial has the same number of complex roots as its degree. Eg
a cubic has three complex roots, a quartic has 4 etc. This is based
on the Fundamental Theorem of Algebra. Note that if z = a+ ib is a
root(solution), then the complex conjugate z = a−ib is also a solution.

The process for finding all of the roots is the same as for finding roots of
a polynomial covered in higher. Identify a root and use synthetic/poly-
nomial division to find the other factor. Then use the quadratic for-
mula, factorising or long division to find the remaining roots.
Example 17. Find all of the roots of the equation z3 − z2 − z − 2 = 0.
Process: By inspection, (z − 2) is a root. Using polynomial division
gives:

Hence
(z − 2)(z2 + z + 1) = 0

and using the quadratic formula gives:

z =
−1±

√
12 − 4× 1× 1

2× 1

=
−1±

√
−3

2

=
−1±

√
3i

2

=
−1

2
+

√
3

2
i or −1

2
−

√
3

2
i
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Example 18. Find the roots of z4 − 2z3 + 8z2 − 2z + 7 = 0 given that
one of the roots is 1 + i

√
6

Process: As one root is 1+ i
√
6, then, by the fundamental theorem of

algebra, the conjugate 1 − i
√
6 is also a root. Hence, (z − (1 +

√
6i))

and (z− (1−
√
6i)) are factors. Multiplying these two factors together

gives:

(z −(1 +
√
6i))(z − (1−

√
6i))

= z2 − (1−
√
6i)z + (1 +

√
6i)z − (1−

√
6i)(1 +

√
6i)

= z2 − z −
√
6iz − z +

√
6iz − (1−

√
6i+

√
6i− 6i2)

= z2 − 2z + 7

Dividing z4 − 2z3 + 8z2 − 2z + 7 = 0 by z2 − 2z + 7 using polynomial
division gives:

So,
z4 − 2z3 + 8z2 − 2z + 7 = (z2 − 2z + 7)(z2 + 1)

and

z4 − 2z3 + 8z2 − 2z + 7 = 0 ⇒ (z2 − 2z + 7)(z2 + 1) = 0

The solutions to z2 + 1 = 0 are z = ±i. Therefore the solutions to the
equation are:

1 +
√
6i, 1−

√
6i, −i, i
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Example 19. Show that i is a root of z4 + z3 + 2z2 + z + 1 = 0

Process: Substitite z = i into z4 + z3 +2z2 + z +1. If the answer is 0,
the i is a root.

z4 + z3 + 2z2 + z + 1

= i4 + i3 + 2i2 + i+ 1

= (−1)(−1) + i(−1) + 2(−1) + i+ 1

= 1− i− 2 + i+ 1

= 0
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9 Representing Loci Geometrically
Restrictions can be set on complex numbers, eg |z| < 2. A set of points
that follow such a rule is called a locus. The locus of |z| = 2 is the set
of points that have a magnitude 2. These can be shown on a diagram.

Example 20. If z = x+ iy, draw the locus of the point on the complex
plane representing |z| = 4.

Process:

|z| = 4

|x+ iy| = 4√
x2 + y2 = 4

x2 + y2 = 42

The points lie on the circumference of a circle with centre (0, 0) and
radius 4 as shown.

Example 21. If z = x+ iy, draw the locus of the point on the complex
plane representing |z| < 3.

Process:

|z| < 3

|x+ iy| < 3√
x2 + y2 < 3

x2 + y2 < 9

The points lie inside circle with centre (0, 0) and radius 3.
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Example 22. If z = x+iy , find the equation of the locus |z−2| > 3and
draw this locus on an Argand diagram.

Process

|z − 2| > 3

|x+ iy − 2| > 3

|(x− 2) + iy| > 3√
(x− 2)2 + y2 > 3

(x− 2)2 + y2 > 9

The equation (x − 2)2 + y2 = 9 represents a circle with centre (2, 0)
and radius 3. Hence, as (x− 2)2+ y2 > 9, the points lie outside of this
circle. On the argand diagram, this can be shown as:
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