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1 Introduction to Sequences and Series
• A Sequence is an ordered list of terms. The nth term of the

sequence if often denoted un.

• A sequence can be given as a recurrence relation e.g un+1 =
aun + b.

• A Series is the sum of the terms in an infinite sequence.

2 Arithmetic Sequence
An arithmetic sequence is a sequence in which the terms differ by a con-
stant amount. For example: 2, 5, 8, 11, . . . is an arithmetic sequence.
The common difference in this sequence is 3.

]

More generally, for a difference of d and initial value u1 = a, an
arithmetic sequence has an nth term given by

un = a+ (n− 1)d (1)

Example 1. Find a and d for the arithmetic sequence −3, 2, 7, . . . and
hence find the nth term.

Process

The difference between each term is 5 and so d = 5. The initial value
is −3 and so a = −3. Therefore,

un = a+ (n− 1)d

= −3 + 5(n− 1)

= = −3 + 5n− 5

⇒ un = 5n− 8
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Example 2. For a given arithmetic sequence, u12 = 41 amd a = 8.
Find the value of d and write down an expression for the nth term.

Process

In this case, n = 12, a = 8, and u12 = 41.

un = a+ (n− 1)d

u12 = 8 + (12− 1)d

41 = 8 + 11d

11d = 41− 8

11d = 33

d = 3.

Therefore,

un = 8 + 3(n− 1)

= 8 + 3n− 3

⇒ un = 5 + 3n.

Example 3. An arithmetic sequence has u5 = 24 and u10 = 49. Find
the first four terms of this arithmetic sequence and identify the se-
quence by finding un.

Process

un = a+ (n− 1)d

u5 = a+ 4d

24 = a+ 4d

a+ 4d = 24

a = 24− 4d (2)
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Similarly:

un = a+ (n− 1)d

u10 = a+ 9d

49 = a+ 9d

a+ 9d = 49

a = 49− 9d (3)

Therefore, by equating equation(2) and equation(refeq2), we obtain:

24− 4d = 49− 9d

5d = 25

d = 5.

and hence, substituting back into equation(2) gives

a = 24− 4d

= 24− 20

= 4

and the nth term is therefore un = 4 + 5(n − 1) = 5n − 1. The first
four terms are:

u1 = 4

u2 = 5× 2− 1 = 10− 1 = 9

u3 = 5× 3− 1 = 15− 1 = 14

u4 = 5× 4− 1 = 20− 1 = 19

4



3 Arithmetic Series
An arithmetic series is the sum of the terms of an arithmetic sequence.

To find the sum of any arithmetic sequence, consider the nth term,
un = a + (n− 1)d for first term a and difference d. The first terms of
the sequence are: a, a+ d, a+ 2d, . . ..

Then the sum of the terms, Sn is given by:

Sn = a+ (a+ d) + (a+ 2d)

+ . . .+ (a+ (n− 2)d) + (a+ (n− 1)d) (4)

But, this same sum can be written backwards as:

Sn = (a+ (n− 1)d) + (a+ (n− 2)d)

+ . . .+ (a+ 2d) + (a+ d) + a (5)

Adding equations (4) and (5) gives:

2Sn = (2a+ (n− 1)d) + (2a+ (n− 1)d) + . . .+ (2a+ (n− 1)d)

2S = n (2a+ (n− 1)d)

⇒ Sn =
n

2
[2a+ (n− 1)d] (6)

The sum of the first n terms of an arithmetic series is given by:

Sn =
n

2
[2a+ (n− 1)d]

where a is the initial term and d is the difference.

5



Example 4. Find the sum of the first 12 terms of the arithmetic se-
quence that starts4, 7, 10, . . ..

Process

In this example, a = 4, d = 3 and n = 12. Therefore,

Sn =
n

2
[2a+ (n− 1)d]

=
12

2
[2× 4 + (12− 1)× 3]

= 6 [8 + 33]

= 6× 41

= 246

Example 5. After how many terms does the sum of the arithmetic
sequence 2, 8, 14, . . . first exceed 200?

Process

In this case, a = 2 and d = 6.Then,

Sn =
n

2
[2a+ (n− 1)d]

=
n

2
[2× 2 + (n− 1)× 6]

=
n

2
[4 + 6n− 6]

=
n

2
[6n− 2]

= 3n2 − n

Hence, it is now necessary to find the value of n such that sn > 200.

3n2 − n > 200

3n2 − n− 200 > 0
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To solve the inequality, sketch the graph of the function y = 3n2−n−
200. Solving y = 3n2 − n − 200 = 0 (using the quadratic formula or
competing the square) gives n = −8 or n = 8.333.

From the graph, it is clear that it is > 0 for n > 8.33 or n < −8. As
it is not possible to have decimal or negative term numbers, it is clear
that the first value of n for which the arithmetic series is greater than
200 is 9.

Example 6. The sum of the first 10 terms of an arithmetic series is 25
and the common difference is 0.3. What is the first term?

Process

Sn =
n

2
[2a+ (n− 1)d] = 25

⇒ 10

2
[2a+ (10− 1)0.3] = 25

⇒ 5[2a+ 2.7] = 25

10a+ 13.5 = 25

10a = 11.5

a = 1.15
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4 Geometric Sequences
If a sequence consists of terms that are obtained by multiplying the
previous term by a constant, then it is called a geometric sequence.
Some exampled of geometric sequences are:

• 4, 12, 36, 108, ... The terms in this sequence are obtained by
multiplying the previous term by 3.

• 200, 40, 8, 1.6, .... The The terms in this sequence are obtained
by multiplying the previous term by 1

5 .

• 3, -12, 48, ... The terms in this sequence are obtained by multi-
plying the previous term by -4.

In a geometric series, the common ratio is denoted by the letter r. The
first term is given by a.
To find the nth term, look for a pattern:

u1 = a

u2 = ar

u3 = ar2

u4 = ar3

∴ un = arn−1

The nth term of a geometric sequence is given by

un = arn−1
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Example 7. For the geometric sequence 4, 8, 16, 32, . . ., identify a and
r and find an expression for the nth term.

Process

For 4, 8, 16, 32, . . ., the common ratio, r is 8÷ 4 = 2. The first term a
is 4. Hence, the nth term is:

un = 4× 2n−1

In this special case, as 4 = 22, this can be rewritten as:

un = 22 × 2n−1 = 2n−1+2 = 2n+1

Example 8. Find the first four terms of the geometric sequence whose
third term is 18 and whose sixth term is 486.

Process

u3 = ar3−1

⇒ 18 = ar2

⇒ a =
18

r2

u6 = ar5−1

⇒ 486 = ar5

⇒ a =
486

r5

Equating the two expressions for a gives:
18

r2
=

486

r5

18r3 = 486 (multiplying through by r5)

r3 = 27

r = 3
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Substituting back gives
a =

18

32
= 2

Hence, the first four terms in the sequence are 2, 6, 18, 54 and

un = 2× 3n−1

Example 9. Find the first term in the geometric sequence 5, 15, 45, . . .
to exceed 5000.

Process

For this sequence, a = 5 and r = 3. Hence, the sequence has nth term
un = 5× 3n−1.
Therefore, we need to find the value of n so that 5× 3n−1 > 5000.

5× 3n−1 > 5000

3n−1 > 1000

ln 3n−1 > ln 1000

(n− 1) ln 3 > ln 1000

n− 1 >
ln 1000

ln 3
n− 1 > 6.2877

n > 7.2877

As n must be an integer, the first value of n for which the geometric
sequence is greater than 5000 is n = 8. For n = 8, the term is:

u8 = ar8−1 = 5× 37 = 10935

10



5 Sum of a geometric series
The sum of a geometric series can be found via the formula:

Sum of a geometric series is

Sn =
a(1− rn)

1− r
(7)

Example 10. Find the sum of the first 5 terms of the geometric series
that starts 4, 12, 36, ....

Process

In this example, n = 5, a = 4, and r = 3. Hence,

s5 =
a(1− rn)

1− r

=
4(1− 35)

1− 3
= 484

Example 11. Find the sum of the geometric series
78125− 15625 + 3125 + · · ·+ 5.

Process

In this case, a = 78125 and r = −1
5 . Hence, it is necessary to find the

value of n which gives the term with value 5 and then use this to find
the sum of the series.

un = arn−1

un = 78125×
(
−1

5

)n−1
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This can now be equated to 5 and solved to find n.

78125×
(
−1

5

)n−1

= 5(
−1

5

)n−1

=
5

78125

(−1)n−1

(
1

5

)n−1

=
5

78125(
1

5

)n−1

=
5

78125
as(−1)n−1 must be positive

ln
(
1

5

)n−1

= ln 5

78125

(n− 1) ln
(
1

5

)
= ln 5

78125

n− 1 =
ln 5

78125

ln
(
1
5

)
n− 1 = 6

n = 7

The sum of the first 7 terms can now be evaluated as follows:

S7 =
a(1− r)7

1− r

=
78125

(
1−

(
−1

5

)7)
1−

(
−1

5

)
= 65105
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6 Sum to Infinity of a Geometric Series
For geometric series with a common ratio greater than 1, the sum of
the series grows larger at each successive term. However, if geometric
series has a common ratio with absolute value < 1 (i.e. −1 < r < 1
then the sum of the geometric series will never exceed a certain number.
This number is known as the limit or the sum to infinity of the series.
The sum to infinity of a geometric series can be found as follows:

Sn =
a(1− rn)

1− r
However, as n → ∞, rn → 0 for |r| < 1

⇒ S∞ =
a(1− 0)

1− r

=
a

1− r

For any geometric series with initial value a and common ratio r
(where −1 < r < 1), the sum to infinity is given by:

S∞ =
a

1− r

Example 12. Find the sum to infinity of the geometric series 12, 6, 3, . . ..

Process

For the geometric series 12, 6, 3, . . ., the initial value is a = 12 and the
common ratio is r = 1

2 .
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Therefore,

S∞ =
a

1− r

=
12

1− 1
2

=
12
1
2

= 24

Example 13. A geometric series has a sum to infinity of 18. If the
common ratio is 1

3 , what is the first term of the series?

Process

S∞ =
a

1− r

∴ 18 =
a

1− 1
3

a
2
3

= 18

a = 18

(
2

3

)
a = 12

Example 14. Given that 24 and 16 are two adjacent terms of an infinite
geometric series with a sum to ininity of 243, find the first term.

Process

The sum to infinity exists as 16÷ 24 = 2
3 which is less than 1.

Substituting r = 2
3 and S∞ = 243 into the formula for the sum to

inifinty gives:

14



S∞ =
a

1− r

⇒ a

1− 2
3

= 243

a
1
3

= 243

a = 243× 1

3
a = 81
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7 Expanding (1− x)−1 and Related Functions
The sum to infinity of a geometric sequence is given by

S∞ =
a

1− r

where a is the initial term and r is the common ratio. Hence, when
|r| < 1, the expression

(1− r)−1 =
1

1− r

can be linked to the sum to infinity of a geometric sequence with initial
term 1 and common ratio r.

Hence, when |r| < 1, the geometric sequence produced from (1− r)n is

1 + r + r2 + r3 + r4 + . . .

Discussion

To explain this, consider the binomial theorem. The binomial theorem
encountered previously states that

(x+ y)n =
n∑

r=0

(
n

r

)
xn−ryr, n ∈ Z

Now, for non integer values of n such as n = −1, is it possible to find
an expansion for (x+ y)n ?

The binomial theorem can be rewritten as:
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(x+ y)n =
n∑

r=0

(
n

r

)
xn−ryr

=

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n

)
yn

= xn +
n!

1!(n− 1)!
xn−1y +

n!

2!(n− 2)!
xn−2y2 + · · ·+ yn

= xn +
n

1!
xn−1y +

n(n− 1)

2!
xn−2y2 + · · ·+ yn

(8)

This way of writing the expression means that n is now no longer
limited to non-negative integers and can also be evaluated for any
rational values of n. However, it is only valid for |x| < y.

Now consider the expression

1

(1− r)
.

If, |r| < 1 , then this can be rewritten as:

1

(1− r)
=

1

(1 + (−r)
= (1 + (−r))−1

and expanded using equation(8) above as follows:

(1 + (−r))−1 = 1−1 +
−1

1!
1−1−1(−r) +

−1(−1− 1)

2!
1−1−2(−r)2 + . . .

= 1 + r + r2 + r3 + . . .

Hence, (1−r)−1 can be considered as the sum to infinity of a geometric
sequence. with first term 1 and common ratio r.
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Expanding (1− x)−1 can be interpreted as the sum to infinity of
a geometric sequence with first term 1 and common ratio x. I.e.

(1− x)−1 = 1 + x+ x2 + x3 + . . .

Example 15. Expand 1
0.8 to four decimal places.

Process

In this case,
1

0.8
= (1− 0.2)−1.

Hence, the expansion (1− x)−1 = 1+ x+ x2 + x3 + . . . can be used as
follows:

(1− 0.2)−1 = 1 + 0.2 + 0.22 + 0.23 + 0.24 + 0.25 + 0.26 . . .

= 1 + 0.2 + 0.04 + 0.008 + 0.0016 + 0.00032 + 0.000064 + . . .

= 1.24998

= 1.2500 to four decimal places

Example 16. Expand (1− 2x)−1, |x| < 1
2 in ascending powers of x.

Process

(1− 2x)−1 = 1 + 2x+ (2x)2 + (2x)3 + (2x)4 + . . .

= 1 + 2x+ 4x2 + 8x3 + 16x4 + . . .
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Example 17. By using an appropriate factorisation, find the first four
terms of the expansion of

1

5 + 3x
.

Process

1

5 + 3x
=

1

5(1 + 3
5x)

=
1

5

(
1

1 + 3
5x

)
=

1

5

[(
1 +

3

5
x

)−1
]

=
1

5

[(
1− (−3

5
x)

)−1
]

=
1

5

[
1 +

−3

5
x+

(
−3

5
x

)2

+

(
−3

5
x

)3

+

(
−3

5
x

)4

+ . . .

]

=
1

5

[
1− 3

5
x+

9

25
x2 − 27

125
x3 + . . .

]
=

1

5
− 3

25
x+

9

125
x2 − 27

625
x3 + . . .

19



8 MacLaurin Series
Colin MacLaurin was a Scottish mathematician who lived in the 18th
Century and made important contributions to the development of
maths in algebra and geometry. In this section, we will consider his
series which is a particular form of a ”power”series developed by the
mathematician Brook Taylor.

Power Series
A power series is a series of the form

a0 + a1x+ a2x
2 + a3x

3 + · · ·+ arx
r + . . .

where a0, a1, . . . ar are real constants and x is a real variable.

Generally, any function f(x) can be expressed approximately in a in-
finite series expansion of the form shown above as follows:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+

Note that the power series may only converge for certain values of x.
This power series can be used by computers, calculators etc to calculate
values of functions such as logs, trig functions etc.
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A MacLaurin Series is used to approximate any function close to the
origin. Hence, to find the values of a0, a1, . . . etc, evaluate the function
and its derivates (provided that they exist) at the point x = 0.

f(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .

f ′(x) = a1 + 2a2x+ 3a3x
2 + . . .

f ′′(x) = 2a2 + 3× 2× a3x+ . . .

f ′′′(x) = 3× 2× a3 + . . .

Hence, evaluating each of the above expressions at x = 0 gives:

f(0) = a0
f ′(0) = a1
f ′′(0) = 2× a2 = 2!a2
f ′′′(0) = 3× 2× a3 = 3!a3

Therefore, the function, f , can be expressed as the MacLaurin series:

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f r(0)

r!
+ . . .

The MacLaurin series for a given function can be found via the
expansion

f(x) = f(0)+f ′(0)x+
f ′′(0)

2!
x2+

f ′′′(0)

3!
x3+ · · ·+ f r(0)

r!
+ . . . (9)
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Example 18. Find the MacLaurin series expansion for e2x to the term
in x3.

Process

In this case, f(x) = e2x. Hence:

f(x) = e2x ⇒ f(0) = e0 = 1

f ′(x) = 2e2x ⇒ f ′(0) = 2e0 = 2

f ′′(x) = 4e2x ⇒ f ′′(0) = 4e0 = 4

f ′′′(x) = 8e2x ⇒ f ′′′(0) = 8e0 = 8.

Therefore, the MacLaurin expansion is:

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + . . .

= 1 + 2x+
4

2!
x2 +

8

3!
x3 + . . .

= 1 + 2x+ 2x2 +
4

3
x3 + . . .
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Example 19. Find the first four terms of the MacLaurin series expan-
sion of cosx .

Process

In this case, f(x) = cosx. Hence:

f(x) = cosx ⇒ f(0) = cos 0 = 1

f ′(x) = − sinx ⇒ f ′(0) = − sin 0 = 0

f ′′(x) = − cosx ⇒ f ′′(0) = cos 0 = −1

f ′′′(x) = sinx ⇒ f ′′′(0) = sin 0 = 0

f ′′′′(x) = cosx ⇒ f ′′′′(0) = cos 0 = 1

f v(x) = − sinx ⇒ f v(0) = − sin 0 = 0

f vi(x) = − cosx ⇒ f vi(0) = − cos 0 = −1

Therefore, the MacLaurin expansion is:

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + . . .

= 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + . . .

= 1− 1

2
x2 +

1

24
x4 − 1

720
x6 + . . .
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Example 20. Find the MacLaurin series expansion of e2x cosx up to
the term in x4.

Process

As the Maclaurin series expansion for cos x is known, this can be used
to find the expansion of cos 3x as follows:

cosx = 1− 1

2
x2 +

1

24
x4 − 1

720
x6 + . . .

⇒ cos 3x = 1− 1

2
(3x)2 +

1

24
(3x)4 − 1

720
(3x)6 + . . .

= 1− 9

2
x2 +

27

8
x4 + . . .

Similarly, from the earlier example:

e2x = 1 + 2x+ 2x2 +
4

3
x3 + . . .

Therefore, to find the expansion of the product of cos 3x and e2x, mul-
tiply the two separate expansions together, multiply out and collect
like terms.

e2x cos 3x =

(
1 + 2x+ 2x2 +

4

3
x3 + . . .

)(
1− 9

2
x2 +

27

8
x4 −+ . . .

)
= (1− 9

2
x2 +

27

8
x4) + (2x− 9x3 +

27

4
x5) + (2x2 − 9x4) + (

4

3
x3) + . . .

= 1 + 2x− 5

2
x2 − 23

3
x3 − 45

8
x4 + . . . ...
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