

Year	Period	Course Overview
S3	May - December	Heart, Circulatory and Respiratory System Mitosis and Stem Cells Ecosystems, Energy and Evolution Woodlice Investigation
	January - May	Enzymes Respiration Respiration Investigation Distribution of Organisms (not examined)

S3 Biology Assessment Calendar

Ongoing – includes jotter work/homework/observations/questioning/discussions/learning conversations.

Example of Assessment Material

Everyone can	Most People can also	Some people can also		
Identify the four chambers of the heart and whether they deal with oxygenated or deoxygenated blood.	Identify the four major blood vessels associated with each chamber of the heart.	Describe the direction of blood flow through the heart, lungs and body.		
Expected response:	Expected Response:	Expected Response:		
The right atrium and right ventricle (1 and 2) deal with deoxygenated blood. The left atrium and ventricle (3 and 4) deal with oxygenated blood.	The vena cava = right atrium. The pulmonary artery = right ventricle. The pulmonary vein = left atrium. The aorta = left ventricle.	Deoxygenated blood enters the right atrium of the heart via the vena cava, the blood is pumped to the right ventricle, and from here it travels in the pulmonary artery to the lungs. The blood collects oxygen at the lungs. The oxygenated blood returns to the right atrium via the pulmonary vein. It is pumped to the right ventricle where it is sent around the body via the aorta.		
Carry out a division calculation (ratio)	Carry out a simple percentage	Carry out a percentage change		
Part of Body Rate of blood circulating (cm3/minute) before exercise after exercise Heart Muscle 330 990 For heart muscle, how many times greater is the rate of blood circulating during exercise compared with before exercise?	Blood Group Number of People A 605 B 149 AB 76 O 680 What percentage of the population has blood group O?	Part of Body Rate of blood circulating (cm3/minute) before exercise after exercise Heart Muscle 275 860 For heat muscle, what is the percentage increase in blood flow through the heart during exercise?		
Expected response:	Expected response:	Expected response:		
990/330 = 3 times	680/1510 x 100 = 45%	change/start value x 100 585/275 x 100 = + 213%		

Everyone can	Most People can also	Some people can also
 Rearrange diagrams of the stages of mitosis (cell division) into the correct order State that the purpose of mitosis in multicellular organisms is for growth and repair State that unicellular (single-celled) organisms use mitosis for reproduction State that each parent cell produces two genetically identical daughter cells 	 Describe what is happening at each stage in mitosis using a given diagram as a reference Give a description of what will happen in the next stage of mitosis when given a diagram of a previous stage 	 Explain how mitosis is important in maintaining the chromosome complement of an organism Calculate the number of cells produced by mitosis (using their knowledge of how many cells are produced by each parent cell during the process)
 State that stem cells are <u>unspecialised</u> cells or are <u>undifferentiated</u> cells State that stem cells can either self-renew or differentiate Identify from a diagram which stem cell can produce the most types of cell 	 Give examples of the types of stem cells and their level of specialisation e.g. embryonic stem cells are capable of becoming ANY cell type in the body as they are not specialised at all vs. adult/tissue stem cells which can only become cell types associated with the tissue they are found in (for example – bone marrow stem cells can only become types of blood cell) 	 Explain why the use of embryonic stem cells is considered controversial

Clydeview Academy Science Dept Investigation Success Criteria

Use this checklist as you write your report - check off each point as you go along.

		Criteria	~	Peer Assessed	Teacher Assessed
	Aim	 You have given your investigation an informative title. You have clearly stated the aim of your experiment (this is what you are trying to find out. Your aim correctly identifies the independent variable (the variable being changed). Your aim correctly identified the dependent variable (the variable that is measured/observed). 			
Planning	Hypothesis	 You have stated your hypothesis, predicting the result. 			
	Method	 You have included either a labelled diagram or a list of apparatus. Your method describes the basic steps of the experiment and provides enough information to allow another student to carry out the same experiment. You have stated what has been kept the same during the experiment (the controlled variables). You have included a risk assessment which notes the safety precautions taken before the experiment. 			
Collect	Collection of Data	 You have taken appropriate measurements (sufficient number of readings across an appropriate range). 			
and Record Results	Table	 A table with the first column having a heading that identifies the independent variable with its units in brackets. A second column having a heading that identifies the dependent variable with its units in brackets. 			
Process and	Graph	Select an appropriate format of graph (line graph or bar graph)			

Present Results in a Graph	S L U	Independent variable should be plotted on the x-axis (horizontal) and dependent variable should be plotted on the y-axis (vertical). Scales – should run from 0 and increase in equal increments. Scales that increase in multiples of 1, 2, 5, and 10 are easier to plot. Graph should use at least half the graph paper in both directions. Labels – independent variable heading from table should be on the x-axis and the dependent variable heading from the table should be on the y-axis. Units – make sure that each axis also includes the units for each of the variables. Ruler – use a ruler to draw straight		
	P	lines Precise Points – points on a line graph, straight lines on a bar graph.		
Conclusion	Your conclusion	on answers your aim.		
Evaluation	You have evail suggest two in These might n Effecti Contro Limitat Possibi Reliabi		2 marks	

All - All would be expected to score between 0 and 11 marks

Most Would be able to score between 12 and 16

Some Would be able to score between 17 and 21

Example of Assessment

• 1 •		
Everyone can	Most People can also	Some people can also
Construct a basic food chain from its constituent	Apply knowledge of food chains to identify	Analyse the relationships between organisms in
parts and explain the importance of the arrows	producers, primary and secondary consumers,	a food web and evaluate the impact of the
in a food chain.	herbivores, omnivores, carnivores, predators and prey.	removal of one species on others in the web.
Expected Response:	Expected Response:	Expected Response:
image: constraint of the second constraint of th	The gooseberry bush is a producer as it is a green plant that makes its own food through the process of photosynthesis. The caterpillar is the primary consumer, it is also a herbivore and prey to the blue tit. The blue tit is a secondary consumer, it is also a carnivore, predator to the caterpillar and prey of the hawk. The hawk is a top carnivore and predator of the blue tit.	Brown trout Dragonfly Dragonfly Pondweed If the freshwater shrimp numbers decreased dramatically predict the effect this will have on the number of mayfly nymphs. The numbers may increase as there will be more food in the form of microscopic algae (shrimp not eating algae). The numbers may decrease due to increased predation from dragonfly nymphs and brown trout due to them losing a food source (the shrimp). The numbers may stay the same due to the combination of both answers above.

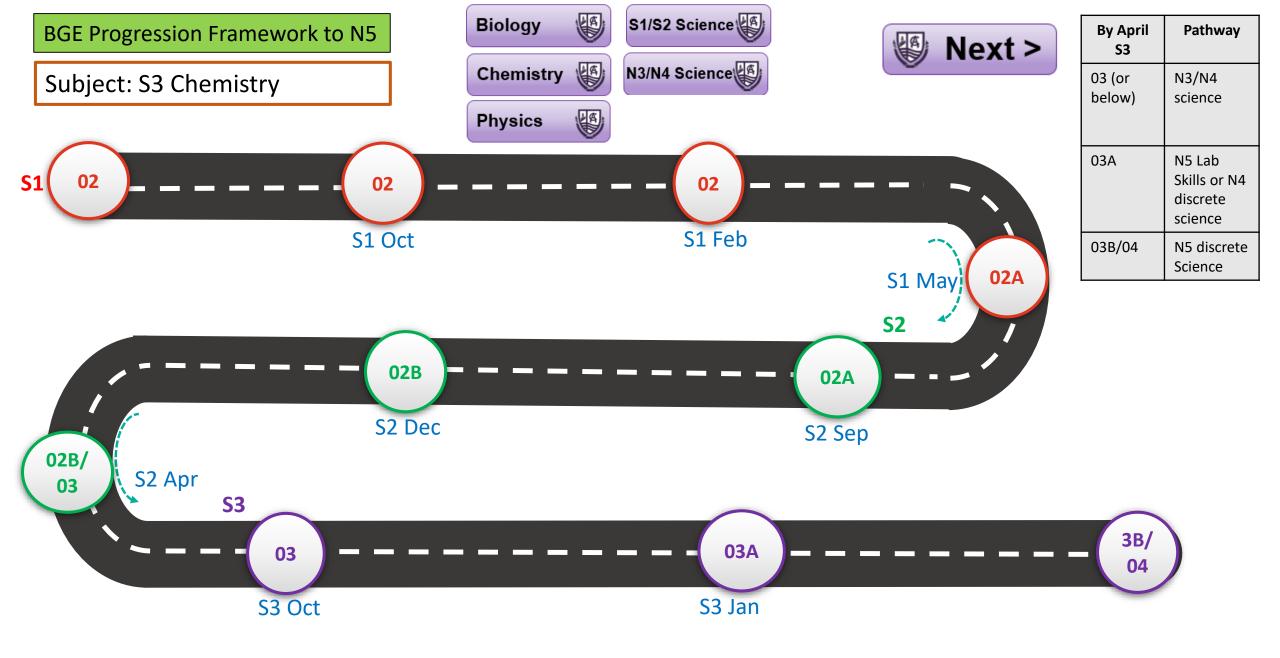
Everyone can	Most People can also	Some people can also
Give the definition of a mutations and name a mutagenic agent.	Explain the importance of mutations in evolution.	Describe the process of speciation.
Expected Response: A random change to the genetic material (DNA) of an organism.	Expected Response: Allow organisms to adapt to and survive in a changing environment.	Expected Response: Initial population is split by an isolating barrier e.g. mountain range. Different mutations take place in each sub- population. Some mutations are advantageous. Advantageous mutations are selected for and increase in frequency in each population. If brought back together the sub- populations are no longer able to interbreed to produce fertile offspring.

Example of Assessment Material

	Everyone can	Most People can also	Some people can also
	State the role of an enzyme.	Define Degradation and Synthesis reactions.	Provide examples of Degradation and Synthesis reactions.
Knowledge & Understanding	Expected Response:	Expected Response:	Expected Response:
	An enzyme is a Biological Catalyst as it speeds up reactions in all living cells.	Degradation reactions are where enzymes break down large	<u>Degradation reaction</u> =
		substrates, into smaller products.	Amylase Starch ——► Maltose
		Synthesis reactions are where	
		enzymes build up larger products	Synthesis reaction =
		from small substrate molecules.	Phosphorylase Glucose-1-Phosphate ──►Starch
	Drawing a bar graph:	Assign a scale to the y-axis.	Accurately plot the correct bars of the graph.
Scientific Skills	Assign a given label, including units, to the y axis of a graph.		

Clydeview Academy Science Dept Investigation Success Criteria

Use this checklist as you write your report - check off each point as you go along.


		Criteria	1	Peer	Teacher	Present			Independent variable should be		
				Assessed	Assessed	Results in			plotted on the x-axis (horizontal)		
		 You have given your investigation an 				a Graph			and dependent variable should be		
		informative title.							plotted on the y-axis (vertical).		
		 You have clearly stated the aim of your 						s	Scales – should run from D and		
		experiment (this is what you are trying to						-	increase in equal increments.		
		find out.							Scales that increase in multiples of		
	Aim	 Your aim correctly identifies the 				1			1, 2, 5, and 10 are easier to plot.		
		independent variable (the variable being	1						Graph should use at least half the		
		changed).							graph paper in both directions.		
		 Your aim correctly identified the 	<u> </u>	<u> </u>		1			Labels – independent variable		
		dependent variable (the variable that is							heading from table should be on		
		measured/observed).						L	the x-axis and the dependent		
	L			<u> </u>	<u> </u>				variable heading from the table		
	Hypothesis	 You have stated your hypothesis, 							should be on the y-axis.		
Planning	inpotintaia	predicting the result.							Units - make sure that each axis		
		 You have included either a labelled 	<u> </u>			1	1 1	U	also includes the units for each of		
		diagram or a list of apparatus.							the variables.		
		diagram or a lise or apparatels.						R	Ruler – use a ruler to draw straight		
		 Your method describes the basic steps of 							lines		
		the experiment and provides enough							Precise Points - points on a line		
		information to allow another student to	1					Р	graph, straight lines on a bar		
	Method	carry out the same experiment.							graph.		
		 You have stated what has been kept the 				Conclusion		Your conclusion	on answers your aim.		
		same during the experiment (the						N	and an an an and and and	 	2 marka
		controlled variables).						1	uated you experiment and can		2 marks
		 You have included a risk assessment 				1		These might r	nprovements.		
		which notes the safety precautions taken							veness/relevance of the method		
		before the experiment.									
		You have taken appropriate	<u> </u>			Evaluation			l of the variables		
	Collection	measurements (sufficient number of							tions of the equipment		
	of Data	readings across an appropriate range).	1						le sources of error		
Collect								 Reliabi 	lity of data		
and		 A table with the first column having a baseline that identifies the independent 									
Record		heading that identifies the independent									
Results	Table	variable with its units in brackets.	L				_				
		 A second column having a heading that 				All	- All v	would be expect	ed to score between 0 and 11 marks		
		identifies the dependent variable with its					-				
		units in brackets.				Most	Woul	d be able to sco	re between 12 and 16		
Process	Graph	Select an appropriate format of graph (line graph				-					
and	Graph	or bar graph)				Some	Woul	d be able to sco	re between 17 and 21		
						-					

Exemplification of Standards – Respiration Assessment S3 Biology

Example of Assessment Material

	Everyone can	Most People can also	Some people can also
	Name a cellular process that	Explain why some cells have more	Explain why increasing the
	produces energy.	mitochondria than others.	temperature can decrease the rate
Knowledge & Understanding			of respiration.
	Expected Response:	Expected Response:	Expected Response:
	(Aerobic) Respiration	Cells with more mitochondria have	Respiration is controlled by enzymes
		a higher energy requirement.	and enzymes become denatured at
			high temperatures.
	Experimental Design:		
Scientific Skills	Describe how the reliability of the results is increased.	State 2 factors, not mentioned, that should be controlled for a valid comparison of results.	Describe how to set up a control.
	Expected response:	Expected response:	Expected response:
	Repeat the experiment	Experiment dependent e.g.	Set up the experiment exactly the
		volume/concentration of solutions,	same except remove (or replace
		starting mass, length of time	with something inert) the factor you
		before measuring, etc.	are investigating.

Year	Period	Course Overview
S3	May - December	Formula and Equations Chemical Reactions Rates of Reaction Rates of Reaction Practical Atomic Structure House Poster
	January - May	How Atoms Combine Bonding and Properties Conservation of Mass Practical Acids and Alkalis

S3 Chemistry Assessment Calendar

Type of Assessment Ongoing

Ongoing – includes jotter work/homework/observations/questioning/discussions/learning conversations.

Exemplification of Standards – S3 Chemistry – Formula, Equations & Formula Mass

Everyone can	Most people can also	Some people can also
Write the formula for an element	Write the formula for a simple 2 element	Write the formula for 2 element
including the diatomic elements	compound using prefix rules (Name contains 1 prefix - mono ,di, tri) and valency rules	compounds which include a transition metal whose valency is given in the name in roman numerals AND for compounds containing prefixes which include tetra, penta and hexa)
EXPECTED RESPONSE	EXPECTED RESPONSE	EXPECTED RESPONSE
Lithium = <i>Li</i>	Carbon di oxide = <u>CO</u> 2	Nickel (II) chloride = NiCl2
Carbon = C	Sodium chloride = NaCl	Dinitrogen pentoxide = N_2O_5
Hydrogen = H ₂		
Write a word equation for a chemical	Translate a given word equation into a	Translate a statement including the terms
reaction given a simple description	formula equation for a simple reaction	burning or combustion to form a word equations and formula equation which include appropriate state symbols
EXPECTED RESPONSE	EXPECTED RESPONSE	include appropriate state symbols
Magnesium metal reacts with oxygen to		EXPECTED RESPONSE
form magnesium oxide.	Magnesium + Oxygen →Magnesium oxide	Magnesium metal burns to produce solid magnesium oxide.
Magnesium + Oxygen →Magnesium oxide	Mg + O ₂ → MgO	Magnesium + Oxygen →Magnesium oxide Mg(s) + O2 (g) → MgO(s)

S3 Rates of Reaction Exemplification

Example Question:

Scott and Susan, reacted magnesium metal with dilute hydrochloric acid solution and noticed magnesium chloride solution and a gas that burned with a pop were produced.

Write this as a word equation and convert to formula.

Everyone can <u></u>	Most people can also	Some people can also <u></u>		
Identify the reactants as	Identify the gas that burns with a pop as hydrogen and can	Form the formula equation and apply state symbols.		
magnesium metal and	therefore form the word equation:			
hydrochloric acid solution and				
the products in the reaction as	Hydrochloric + Magnsium → Magnesium + Hydrogen	$Mg_{(s)} + 2HCl_{(aq)} \longrightarrow MgCl_{2(aq)} + H_{2(g)}$		
magnesium chloride solution	Acid Chloride	Magnesium Hydrochloric Magnesium Hydrogen acid chloride gas		
and a gas that burns with a		acto chioriae gas		
pop.				

÷‡•

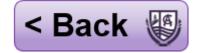
Example Question:

 A student carried out some experiments between zinc and excess 1 mol/l hydrochloric acid. < Back 👹

The graph shows the results of each experiment.

Volume of hydrogen/cm³ (a) In which experiment did the reaction take longest to finish, **1**, **2** or **3**? (b) In **all** three experiments she kept the temperature the same and used the same volume of 1 mol/l hydrochloric acid.

> Suggest one factor that could have been changed from experiment 1 to produce the results in experiment 2.


(ii) 1 g of zinc was used in experiment 1.

What mass of zinc was used in experiment 3?

Everyone can	Most people can also	Some people can also <u></u>
Identify that the steeper the	Identify that when the same quantity of reactants are used	Predict how each line would vary if another variable is
slope the faster the reaction.	no matter what independent variable has been changed	applied.
Line 1 is the fastest and line 2	the final volume of gas released will be the same.	As in Question (b) (ii) where it can be assumed that if half
is the slowest.	Therefore lines 1 & 3 used the same mass and volume of	the volume of gas is produced, half the mass of Zinc must
	reactants.	have been used (0.5g)

1

1

Clydeview Academy Science Dept Investigation Success Criteria

Use this checklist as you write your report - check off each point as you go along.

		Criteria	~	Peer Assessed	Teacher Assessed
	Aim	 You have given your investigation an informative title. You have clearly stated the aim of your experiment (this is what you are trying to find out. Your aim correctly identifies the independent variable (the variable being changed). Your aim correctly identified the 		Assessed	Assessed
	Hypothesis	 dependent variable (the variable that is measured/observed). You have stated your hypothesis, 			
Planning. Method		 You have included either a labelled diagram or a list of apparatus. 			
	Method	 Your method describes the basic steps of the experiment and provides enough information to allow another student to carry out the same experiment. 			
		 You have stated what has been kept the same during the experiment (the controlled variables). You have included a risk assessment 			
		which notes the safety precautions taken before the experiment.			
Collect	Collection of Data	 You have taken appropriate measurements (sufficient number of readings across an appropriate range). 			
and Record Results	Table	 A table with the first column having a heading that identifies the independent variable with its units in brackets. 			
		 A second column having a heading that identifies the dependent variable with its units in brackets. 			
Process and	Graph	Select an appropriate format of graph (line graph or bar graph)			

Present Results in a Graph		s	Independent variable should be plotted on the x-axis (horizontal) and dependent variable should be plotted on the y-axis (vertical). Scales – should run from 0 and increase in equal increments. Scales that increase in multiples of 1, 2, 5, and 10 are easier to plot. Graph should use at least half the graph paper in both directions. Labels – independent variable		
		L	heading from table should be on the x-axis and the dependent variable heading from the table should be on the y-axis.		
		U	Units – make sure that each axis also includes the units for each of the variables.		
		R	Ruler – use a ruler to draw straight lines		
		р	Precise Points – points on a line graph, straight lines on a bar graph.		
Conclusion		Your conclusion			
Evaluation		You have evaluated you experiment and can suggest two improvements. These might refer to: • Effectiveness/relevance of the method • Control of the variables • Limitations of the equipment • Possible sources of error • Reliability of data			2 marks

All - All would be expected to score between 0 and 11 marks

Most Would be able to score between 12 and 16

Some Would be able to score between 17 and 21

S3 Atomic Structure Exemplification

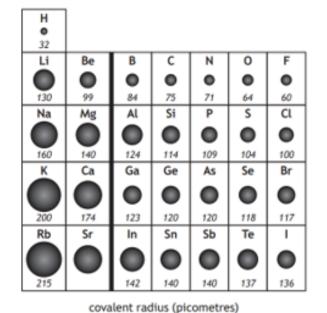
Example Question:

Magnesium chloride is an ionic compound containing magnesium ions and chloride ions. The nuclide notation for these two ions are shown.

Complete the table to show the number of electrons and neutrons in these ions.

	Electrons	Neutrons
24 Mg ²⁺		12
37 17 Cl-	18	

Everyone can	Most people can also	Some people can also
Identify the atomic number is on the bottom left and	Calculate the number of neutrons	Understand that when an atom loses or gains electrons it
the mass number is on the top left.	using the formula:	forms an ion.
		If an electron is lost it becomes a positively charged ion
Atomic Number = protons = electrons in a neutral atom	(Mass Number – Atomic Number)	and a negatively charged ion when it gains electrons.
Mass Number = protons + neutrons	In the Example above:	In the example shown Mg would have 12 electrons when
	Mg) 24-12 = 12 neutrons	neutral but as it is Mg ²⁺ it has 10 electrons.
Identify an Ion is an atom that carries a charge due to	Cl) 37-17 = 20 neutrons	
the loss or gain of electrons.		Cl should have 17 electrons when neutral but as it is Cl ⁻ it
		must have 18 electrons.


÷‡•

Example Question:

The covalent radius is a measurement used to indicate the size of an atom.

The diagram below shows the covalent radius for elements in groups 1 to 7 of the periodic table.

(a) (i) Describe the trend in covalent radius going from sodium to chlorine.

(ii) Describe the general trend in covalent radius going down a group in the periodic table.

(iii) Predict a value, in picometres, for the covalent radius of strontium.

Everyone can	Most people can also	Some people can also
Identify the atoms from Na to Cl and state the atom size	Predict the size of the missing	Explain the increase in size going down a group is due to
is decreasing.	values using the patterns in the	an extra occupied energy level.
	periodic table given	
Identify that going down a group shows an increase in		
atomic size.		

Exemplification – S3 How Atoms Combine

Everyone can	Most People can also	Some people can also
State the name of the bond	Describe how the covalent bond is formed.	Explain how the atoms are held together in a covalent bond by using a diagram and describing the forces of attraction involved.
Expected Response:	Expected Response:	
		Expected Response:
State that a covalent bond is formed between non-metal	A covalent bond is a sharing of electrons in partially filled	
atoms	orbitals between non-metal atoms.	'The covalent bond holds atoms together by the mutual attraction that each positive nucleus has for the shared and overlapping electrons.'
		Consider the bonding diagram for hydrogen:
		positive nucleus area of attraction - both positive nuclei are attracted to the shared pair of negatively charged electrons.

Everyone can	Most People can also	Some people can also
State the name of the bond	Describe how the ionic bond is formed.	Explain how the ions are held together in an ionic bond by using a diagram and describing the forces of attraction
Expected Response:	Expected Response:	involved.
An ionic bond is formed between metal and non-metal elements in a compound.	An ionic bond involves a transfer of electrons. Metals lose electrons to form positive ions and non-metals gain	Expected Response:
	electrons form negative ions.	The oppositely charged ions are attracted towards each other.
		This electrostatic force of attraction between the positive ion and the negative ion is called an IONIC bond.
		The formation of sodium chloride can be summed up as follows:
		Na Cl 2, 8, 1 2, 8, 7
		sodium atom (Na) chlorine atom (Cl)
		sodium ion (Na*) chloride ion (Cl*) 2, 8, 2, 8, 8

< Back 🚳 🐨 Next >

Example KU Question:

When metals and non-metals form compounds together, they form ionic bonds within their structures. Using lithium and fluorine in your example, explain clearly how lithium fluoride forms. (3 marks)

Everyone can	Most people can also	Some people can also
 State that lithium (Li) is a metal and fluorine (F) is a non-metal. Mention that electrons are transferred from lithium to fluorine. State that Li⁺ and F⁻ ions are formed and attracted to each other to make lithium fluoride (LiF) 	 Explain that lithium loses one electron, becoming a Li⁺ ion, and fluorine gains one electron, becoming an F⁻ ion. Describe how this transfer of electrons leads to the formation of oppositely charged ions (Li⁺ and F⁻). State that these oppositely charged ions are held together by electrostatic attraction, forming an ionic bond. Include an illustration showing lithium losing an electron to fluorine, resulting in Li⁺ and F⁻ ions. 	 Provide a full explanation that lithium, a metal, has one electron in its outer shell, which it loses to fluorine, a non-metal with seven electrons in its outer shell. This transfer allows both elements to achieve stable electron arrangements (full outer shells). Describe that the Li⁺ ion (positive) and the F⁻ ion (negative) are formed, and they are held together by the strong electrostatic forces of attraction between the oppositely charged ions. Explain that this results in the formation of the ionic compound lithium fluoride (LiF), which forms a lattice structure due to these strong ionic bonds. Include a detailed illustration, showing both the electron transfer and the final arrangement of ions in a lattice structure, emphasising the electrostatic attraction.

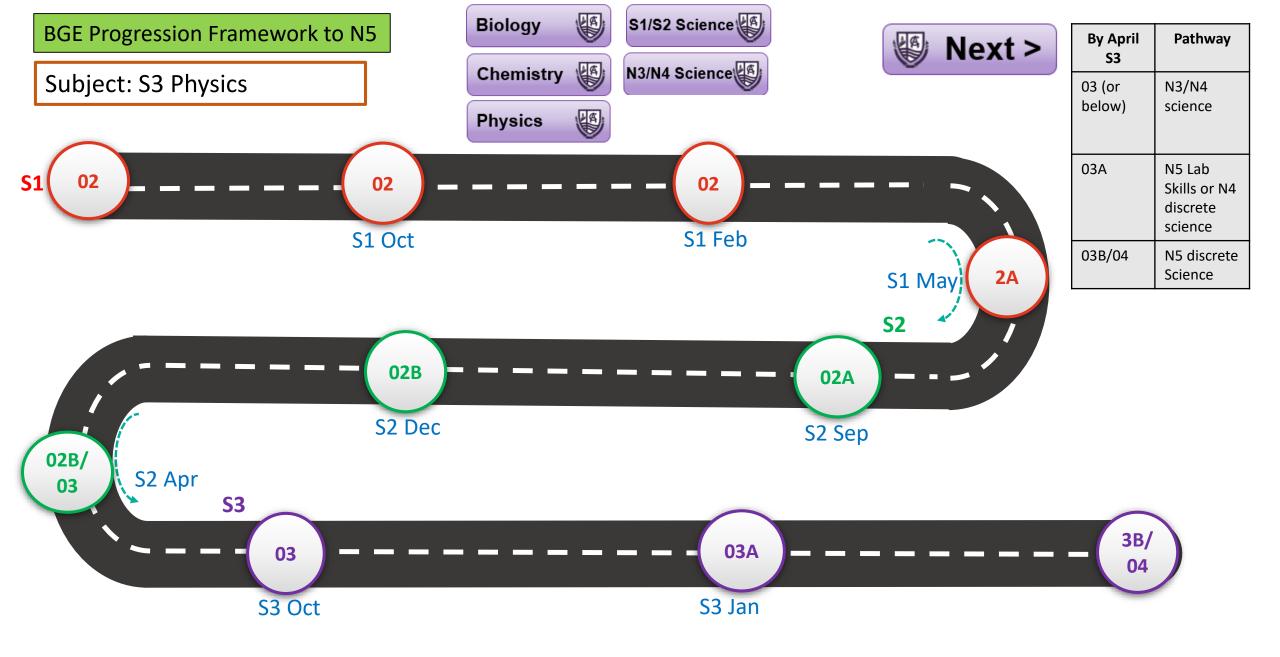
Example PS Question:

Ethyne is the first member of the alkyne family.

It can be produced by the reaction of calcium carbide with water.

The equation for this reaction is

 $CaC_2(s) + 2H_2O(\ell) \longrightarrow C_2H_2(g) + Ca(OH)_2(aq)$

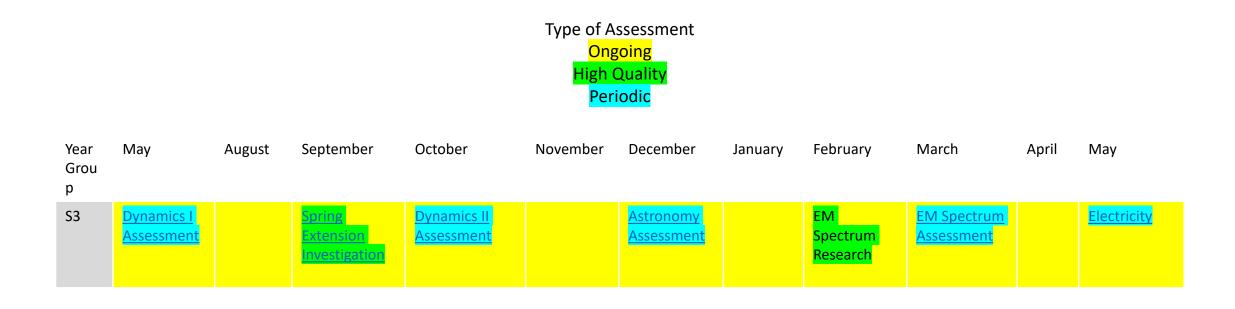

(a) The table shows the results obtained in an experiment carried out to measure the volume of ethyne gas produced.

Time (s)	0	30	60	90	120	150	180	210
Volume of ethyne (cm ³)	0	60	96	120	140	148	152	152

Draw a line graph of the results. (4 marks)

Everyone can	Most people can also	Some people can also
Correctly label the x-axis as Time (s) and the y-axis as Volume of Ethyne (cm ³)	 Correctly label the x-axis as Time (s) and the y-axis as Volume of Ethyne (cm³), with appropriate units. 	 Correctly label the x-axis as Time (s) and the y- axis as Volume of Ethyne (cm³), with appropriate units.
Must include units	 Choose a suitable scale for both axes so the graph uses most of the available space. Accurately plot all data points from the table on the graph 	 Choose a suitable scale for both axes so the graph uses most of the available space. Accurately plot all data points from the table on the graph Draw a smooth curve of best fit (not connecting the dots) that best represents the trend.

< Back



Year	Period	Course Overview
\$3	May - December	Dynamics: Speed, Distance, Time, Acceleration, Speed-time graphs. Forces, Newton's Laws and Gravitational Forces. Astronomy and Waves: Cosmology, Frequency and Period, Wave Speed and Wave Equation, Diffraction.
	January - May	EM Spectrum, Light (reflection, refraction, spectra). Electricity: Electric Charge, Circuits, Current and Voltage (series and parallel circuits), Resistance, Ohm's Law, Power, Fuses.

S3 Physics Assessment Calendar

Ongoing – includes jotter work/homework/observations/questioning/discussions/learning conversations.

S3 Physics: Unit I Dynamics

Assessment I – Motion Ms Bell

Exemplification of Standards

Outcome	Use the relationship between distance, speed and time to perform calculations						
	Everyone can	Most people can also	Some people can also				
Example	d = vt d = 20 x 10 d = 200m	d = vt 250 = 20 x t 20 x t = 250 t = 12.5 s	$distance travelled = Area under v - t graph$ $distance travelled = (4 x 10) + (\frac{1}{2}x 4 x 10)$ $distance travelled = 60 m$				
Criteria	Everyone should be able to: Select the correct equation from the relationship sheet. Enter the data correctly. Calculate the final answer and include the correct unit in the answer.	Most people can also Select the correct equation from the relationship sheet. Enter the data correctly. Re-arrange the equation to make the unknown the subject of the equation. Calculate the final answer and include the correct unit in the answer.	Recognise that there is not a single value of speed for the journey. Understand that in this situation, it is not appropriate to use d = vt. Be able to calculate the distance travelled by calculating the area under the speed-time graph.				

Clydeview Academy Science Dept Investigation Success Criteria

Use this checklist as you write your report - check off each point as you go along.

		Criteria	~	Peer	Teacher
	Aim	 You have given your investigation an informative title. You have clearly stated the aim of your experiment (this is what you are trying to find out. Your aim correctly identifies the independent variable (the variable being changed). Your aim correctly identified the dependent variable (the variable that is measured/observed). 		Assessed	Assessed
Planning	Hypothesis	 You have stated your hypothesis, predicting the result. 			
	Method	 You have included either a labelled diagram or a list of apparatus. Your method describes the basic steps of the experiment and provides enough information to allow another student to carry out the same experiment. You have stated what has been kept the same during the experiment (the controlled variables). You have included a risk assessment which notes the safety precautions taken before the experiment. 			
Collect	Collection of Data	 You have taken appropriate measurements (sufficient number of readings across an appropriate range). A table with the first column having a 			
and Record Results	Table	 A clobe with the liner countrinating a heading that identifies the independent variable with its units in brackets. A second column having a heading that identifies the dependent variable with its units in brackets. 			
Process and	Graph	Select an appropriate format of graph (line graph or bar graph)			

Present Results in a Graph	s	Independent variable should be plotted on the x-axis (horizontal) and dependent variable should be plotted on the y-axis (vertical). Scales – should run from 0 and increase in equal increments. Scales that increase in multiples of 1, 2, 5, and 10 are easier to plot. Graph should use at least half the graph paper in both directions.		
	L	Labels – independent variable heading from table should be on the x-axis and the dependent variable heading from the table should be on the y-axis.		
	U	Units – make sure that each axis also includes the units for each of the variables.		
	R	Ruler – use a ruler to draw straight lines		
	р	Precise Points – points on a line graph, straight lines on a bar graph.		
Conclusion	Your conclusion	on answers your aim.		
Evaluation	You have evail suggest two in These might n Effecti Contro Limitat Possibi Reliabi		2 marks	

All - All would be expected to score between 0 and 11 marks

Most Would be able to score between 12 and 16

Some Would be able to score between 17 and 21

Exemplification of Standards – Dynamics Assessment (S3 assessment II)

Solving problems on Newton's 2nd Law. Mrs Church

Everyone can	Most People can also	Some people can also
Use the equation F = ma to calculate an unbalanced force.	Use the equation F = ma to calculate mass or acceleration.	Use F = ma to calculate the acceleration of a vehicle in the presence of a frictional force.
Example: What unbalanced force	Example: An unbalanced force of 100N is	Example: A car of mass 1000kg has an
<u>accelerates</u> a 2kg mass at 1.5ms ⁻² along a	applied to a trolley of mass 15kg. Calculate	engine force of 550N. Calculate its
surface?	the acceleration of the trolley.	acceleration if there is a friction force of
F= ma	F = ma	80N between the tyres and the road.
= 2 x 1.5	100 = 15a	Unbalanced force F = engine force –
= 3N	15a = 100	friction force.
	a= 100/15 = 6.7ms ⁻²	F = 550 - 80 = 470N
		F = ma
		470 = 1000a
		1000a = 470
		a = 470/1000 = 0.47ms ⁻²

Exemplification of Standards – Astronomy (S3 assessment)

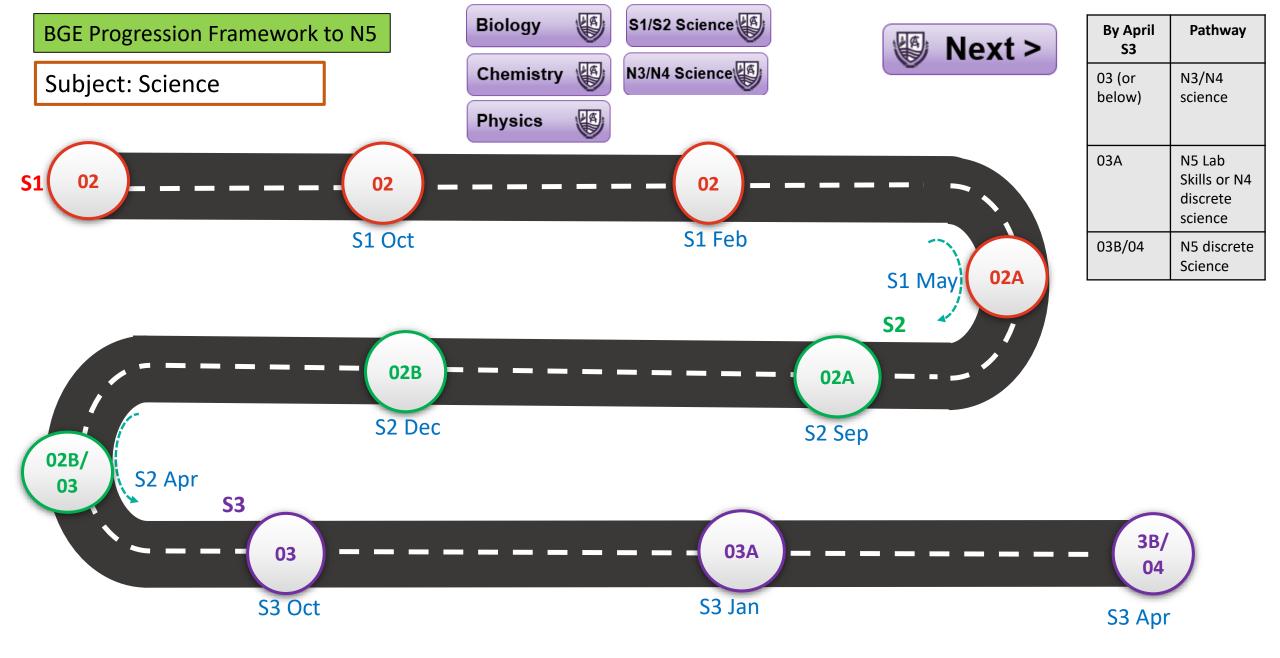
Cosmology Mrs Nicholls

Using astronomical terms.

Everyone can	Most People can also	Some people can also		
State the meaning of basic astronomical terms, such as: planet, moon, Sun, star, solar system, exo-planet, galaxy and universe.	State the definition of a light year.	State the meaning of more complex astronomical terms, such as: dwarf planet and asteroid and relate the two terms.		
Example: State what is meant by the term exo-planet.	Example: State what is meant by the term light year.	Example: Distinguish between the definitions of <i>dwarf planet</i> and <i>asteroid</i> .		
An exo-planet is a planet which orbits a star other than our sun.	A light year is the distance travelled by light in one year. Pupils should recognise that a light year is a unit of distance rather than time.	Pupils should be able to distinguish between a dwarf planet and an asteroid, recognising that a dwarf planet has a clear orbital path, whereas an asteroid does not.		

Waves

Electromagnetic Spectrum


•		
Everyone can	Most People can also	Some people can also
State the 7 members of the	Identify a suitable source, application and	Carry out calculations involving speed,
electromagnetic spectrum and the speed	detector for each type of radiation.	frequency and wavelength of EM waves.
at which they travel.		
Example: State the 7 members of the EM	Example: State a source, application and	Example: A pager receives radio waves of
spectrum and at what speed they travel.	detector for ultraviolet radiation.	frequency 153 MHz. Calculate the
		wavelength of the radio waves.
Radio waves, microwaves, infrared	Source: the Sun.	-
radiation, visible light, ultraviolet radiation,	Application: detecting forged bank notes.	$v = f\lambda$
x-rays, gamma rays.	Detector: fluorescent chemicals.	3x10 ⁸ = (153x10 ⁶) x λ
		$\lambda = (3 \times 10^{6}) / (153 \times 10^{6})$
All travel at the speed of light		λ = 1.96m
(3x10 ⁸ ms ⁻¹)		

S3 Electricity exemplification of Standards (Mr Wyllie)

Calculation of total Resistance

	Everyone can	Most people can also	Some people can also
Criteria	Calculate total resistance in a series circuit	Calculate total resistance in a parallel circuit	Calculate the total resistance in a mixed circuit
Example	$R_{t} = R_{1} + R_{2} + R_{3}$	$ = \frac{R_{1}}{R_{2}}$ R_{3} $I/R_{T} = 1/R_{1} + 1/R_{2} + 1/R_{3}$	$x = \begin{bmatrix} 60 \ \Omega \\ 40 \ \Omega \end{bmatrix}$ Total resistance is found by adding the parallel section: $(1/R_T = 1/R_1 + 1/R_2)$ to the series section: R_3 Total = $(1/R_T = 1/R_1 + 1/R_2) + R_3$

Year	Period	S1/S2 Science Assessment Overview
		Science
S1	August - December	Becoming a Scientist Properties of Matter (Chemistry) Scottish Scientist Research Project
	January - June	Cells Alive (Biology) Scientific Investigation Our Place in the Universe (Physics) Climate Change Week Atoms, Elements and Compounds (Chemistry)
S2	August - December	Photosynthesis (Biology) Scientific Investigation Light (Physics) Celebration of Scotland Event
	January - May	Acids and Alkalis (Chemistry) Biodiversity (Biology) Electricity (Physics) Covid Research Project

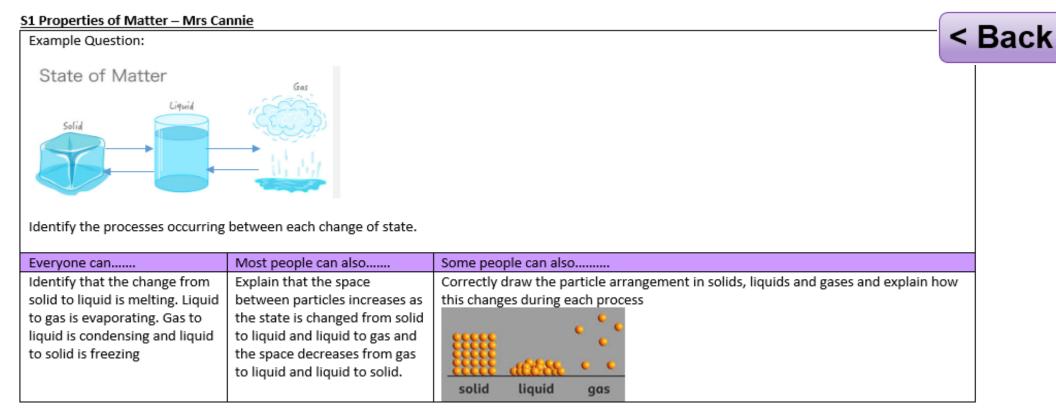
Type of Assessment Ongoing High Quality Periodic

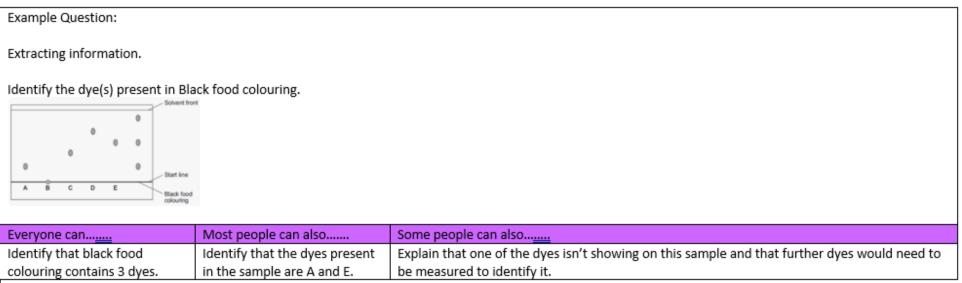
Year Group	August	September	October	November	Decemb er	January	February	March	April	May	June
S1		Becoming a Scientist		Properties of Matter Scientist Research		<u>Cells Alive</u>	investigation	<mark>OPU</mark> Climate Change Week		Atoms, Elements and Compounds	
S2		Photosynthesis		Light Investigation		Acids and Alkalis	Covid Research	Biodiversity		Electricity	

Ongoing – includes jotter work/homework/observations/questioning/discussions/learning conversations.

Rotation 2 includes Photosynthesis and Light.

Rotation 3 includes Biodiversity, Electricity and Acids and Alkalis.


Example of Assessment – Drawing a line graph


Everyone can	Most people can also	Some people can also	
Label the axes of a graph using the dependent and independent variables (including the appropriate unit).	Add a scale to each axis, starting at zero and increasing by the same amount.	Plot the points accurately and use an appropriate line to show the trend.	
Dependent variable (nuts)	\$ 1 2 3 4 5 6 7 8 9 10 10 0 1 2 3 4 5 6 7 8 9 10 10 Time/min	(u) (ling) (u) (ling) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u	

Example of Assessment – Reading a scale

Everyone can	Most people can also	Some people can also	
Read a simple scale on a measuring device	Read a scale involving a simple decimal value	Read a scale requiring a more complex decimal	
Sub-divisions of scale correspond one unit	Sub-divisions of scale correspond to 0.1 of a unit	Sub-divisions of scale corrrespond to 0.2 of a unit	

S1 Science Scottish Scientists Report

I have collaborated with others to find and present information on how scientists from Scotland and beyond have contributed to innovative research and development. SCN 3-20a

I can independently select ideas and relevant information for different purposes, organise essential information or ideas and any supporting detail in a logical order, and use suitable vocabulary to communicate effectively with my audience. LIT 3-06a

I can consider the impact that layout and presentation will have on my reader, selecting and using a variety of features appropriate to purpose and audience. LIT 3-24a

Everyone can... = Bronze award, Most people can... = Silver award, Some people can also... = Gold

Task

Many scientists from Scotland and beyond have contributed to innovative research and development.

Your task is to research the work of a Scottish scientist and produce a detailed report of your findings.

- The research stage can be done with a partner, but you must produce your report on your own.
- You will have a choice of scientist. Your teacher will let you choose your scientist from a set of worksheets.
- Your report can be typed or handwritten and must include each of the facts as shown on your worksheet.
- On your worksheet you should tick off each fact as you find it.
- Remember to write your report in your own words do not just copy and paste information that you do not understand.
- Remember to keep a note of the addresses of any websites you use. These are called your references.

How will your report be assessed?

3 marks are awarded for each "Gold", 2 marks for each "Silver" and 1 mark for each "Bronze".

- Gold You have made very good progress in meeting the success criteria of the task and achieved 20 marks or more.
- Silver- You have made good progress in meeting the success criteria of the task and achieved 15 to 19 marks.
- Bronze- You have made some progress in meeting the success criteria of the task and achieved up to 14 marks.

Success Criteria	Gold	START	Bronze
Name, place of birth, year of birth, picture	You have included all 4.	You have included 3.	You have included 2 or less.
Invention, year of invention, branch of <u>Science</u> .	You have included all 3.	You have included 2.	You have included 1 or none.
Any prizes for their work? Did they invent anything else? Age when they made their invention.	You have included all 3.	You have included 2.	You have included 1 or none.
How has their invention been developed since?	You have given clear examples/explanations of further developments which are relevant to the invention.	You have given some details of recent developments.	You have included no information about further developments.
What was <u>life like</u> for people before this invention? How did it change life for the better?	You have given information on both.	You have given information on one of these.	You haven't given information on either.

Presentation of report	Your report has an appropriate structure, the findings are given clearly and concisely. You have made an effort with your visual presentation.	Your report has an appropriate <u>structure</u> but findings are not always clearly presented.	Your report does not have a clear structure. The findings are not clear.
Sources of information	You have included a full reference for at least one source which would allow someone to retrieve the information.	You have included a note of where you found your information.	You have not included where you found your information.
Written in your own words	You have used your own words throughout your report. Where new words or terms have been introduced you have explained what they mean.	You have made a good attempt to use your own words but not always explained the meaning of new words or terms.	You appear to have copied and pasted information from websites without using your own words.

Overall Award

Exemplification of Standards - Cells Alive Assessment S1

Example of Assessment Material Mrs McAdam

Everyone can	Most People can also	Some people can also
Give examples of different cell types found	Describe the function of some of the	Apply knowledge to relate the structure of
in animals and plants.	different cell types found in plants and animals.	a cell to its specific function.
Expected Response e.g. Red blood cell, Sperm Cell, Root hair Cell, Nerve Cell.	Expected Response e.g. Red blood cells carry oxygen, root hair cells absorb water.	Expected Response e.g. Root hair cells/Red blood cells have a large surface area over which to absorb water/oxygen.
		Sperm cells have a tail to swim to and fertilise the egg cell.
Drawing a line graph:		
Assign a given label, including units, to the	Assign a scale to the x-axis (y-axis is	Accurately plot and join the points on a line
x and y axis of a graph.	already complete).	graph. Describe the relationship between the independent and dependant variable.

Clydeview Academy Science Dept Investigation Success Criteria

Use this checklist as you write your report - check off each point as you go along.

		Criteria	~	Peer	Teacher
	Aim	 You have given your investigation an informative title. You have clearly stated the aim of your experiment (this is what you are trying to find out. Your aim correctly identifies the independent variable (the variable being changed). Your aim correctly identified the dependent variable (the variable that is measured/observed). 		Assessed	Assessed
Planning	Hypothesis	 You have stated your hypothesis, predicting the result. 			
	Method	 You have included either a labelled diagram or a list of apparatus. Your method describes the basic steps of the experiment and provides enough information to allow another student to carry out the same experiment. You have stated what has been kept the same during the experiment (the controlled variables). You have included a risk assessment which notes the safety precautions taken before the experiment. 			
Collect	Collection of Data	 You have taken appropriate measurements (sufficient number of readings across an appropriate range). A table with the first column having a 			
and Record Results	Table	 heading that identifies the independent variable with its units in brackets. A second column having a heading that identifies the dependent variable with its units in brackets. 			
Process and	Graph	Select an appropriate format of graph (line graph or bar graph)			

Present Results in a Graph	S L U R	Independent variable should be plotted on the x-axis (horizontal) and dependent variable should be plotted on the y-axis (vertical). Scales – should run from 0 and increase in equal increments. Scales that increase in multiples of 1, 2, 5, and 10 are easier to plot. Graph should use at least half the graph paper in both directions. Labels – independent variable heading from table should be on the x-axis and the dependent variable heading from the table should be on the y-axis. Units – make sure that each axis also includes the units for each of the variables. Ruler – use a ruler to draw straight lines Precise Points – points on a line graph, straight lines on a bar		
Conclusion	Your condusis	graph. on answers your aim.		
concruation		•		
Evaluation	suggest two in These might n Effecti Contro Uimitat Possib	uated you experiment and can nprovements. efer to: veness/relevance of the method of the variables tions of the equipment le sources of error lity of data		2 marka

All - All would be expected to score between 0 and 11 marks

Most Would be able to score between 12 and 16

Some Would be able to score between 17 and 21

Exemplification of Standards – Our Place in the Universe S1 – Mrs Church

Everyone can	Most People can also	Some people can also		
Drawing and interpreting a line graph.	Drawing and interpreting a line graph.	Drawing and interpreting a line graph.		
On a set of axes, accurately plot points and complete a line of best fit.	On a line graph, identify a point which is inaccurate, (an outlier which does not appear in line with other points.)	By looking at the line of best fit, estimate what the correct value should be of the point should be.		
Identify the difference between mass and weight.	Calculate the weight of an object on earth using W = mg.	Calculate the weight of an object in a location other than earth using the correct gravitational field strength.		
Mass is a measure of the amount of	Ex. If a boy has a mass of 45kg, what is his			
material in a substance measured in	weight on Earth?	Ex. What would be the weight of an 80kg		
kilograms while weight is the number of	W = mg	astronaut on the moon?		
Newtons applied to each kilogram by the	W = 45 x 10	On the Moon, g = 1.6		
force of gravity.	= 450N	W = mg		
		W = 80 x 1.6		
		= 128N		

Exemplification – Atoms, Elements and Compounds – Mrs Higgins

Everyone can	Most people can also	Some people can also
State the definition of Atomic Number of	Given information about the structure of	Given information about the structure of
an element	an atom and the sub-atomic particles	an atom and the sub-atomic particles
 EXPECTED RESPONSE Atomic number is the number of protons in the nucleus of an atom. 	identify the NUCLEUS of an atom as being	Electron Neutron Proton
	the part where the positively charged	
	protons are held.	name the structures where the electrons
		are found in an atom as ENERGY LEVELS or ELECTRON SHELLS.
Using their Periodic table state the atomic	Using their Periodic table state the name,	Using their Periodic table state the name,
number, symbol, group number and the	symbol, group number and the number of	symbol, group number, the number of
number of protons in the nucleus when	protons in the nucleus when given the	protons in the nucleus and the Group
given the name of an element	atomic number of an element	Name when given the Number of protons in the nucleus of an element
EXPECTED RESPONSE	EXPECTED RESPONSE	EXPECTED RESPONSE
For Lithium:	For Atomic Number 17	For Number of protons = 17
Atomic Number= 3	Name= Chlorine	Name= Chlorine
Symbol is Li	Symbol is Cl	Symbol is Cl
Group Number = 1	Group Number = 7	Group Number = 7
Number of Protons = 3	Number of Protons = 17	Atomic Number = 17
		Group Name = Halogens

Example of Assessment Material Photosynthesis F. Murray

	Everyone can	Most People can also	Some people can also
Knowledge & Understanding	State the essential requirements needed for photosynthesis. <i>Expected response:</i> Chlorophyll and light	In an experiment, different plants are set up in varying conditions. Identify 2 plants that will allow you to compare if carbon dioxide is a requirement. <i>Expected response:</i> Choose the plant in the light and the plant with no carbon dioxide (with no other variables changed).	Measuring the rate of photosynthesis: Light intensity (lux) Rate of photosynthesis (number of O2 bubbles per minute) 0 0 10 4 15 8 20 8 25 8 The rate of photosynthesis has been limited (reached its maximum rate). As an investigator, is there anything we could change in the experiment to increase the rate? Expected response: Increase carbon dioxide concentration
Scientific Skills	Drawing a line graph: Add numbers for the scale on both x- and y- axis	Plot the points and join together with a ruler.	Correctly identify which data should be on the x-axis and y-axis. Label both axes, using headings from the table, including units. Describe what happens to the dependent variable as the independent variable is increased.

Light – Expemplification of Standards – Ms Bell

Example Question	A girl visits the opticians, and the optometrist prescribes lenses of focal length 10 cm for her spectacles. Calculate the power of the lenses.				
	Everyone can	Most people can also	Some people can also		
Expected Response	$P = \frac{1}{f}$	$P = \frac{1}{f}$ $P = \frac{1}{10}$	$P = \frac{1}{f}$ $f = \frac{10}{100} = -0.1 m$		
		P = 0.1 D	$P = \frac{1}{0.1}$ $P = 10 D$		
Criteria	All pupils expected to identify the equation that describes the relationship between power and focal length.	Most pupils expected to be able to substitute the appropriate numbers into the equation and state the calculate the correct answer (with unit).	Some pupils would correctly identify that to calculate the lens power the focal length must be in metres and perform the appropriate conversion from cm to m.		
Example Question	An optometrist is carrying a	ut a vearly eve test on a patien	t The discomm		
	below shows two rays of light	the from a nearby object passing can see nearby objects clearly	into the left eye		
	below shows two rays of lig of the patient. The patient	ht from a nearby object passing	into the left eye		
	(a) State the term that describes	(b) Name the type of lens that is needed to enable the patient to	into the left eye but distant (c) Explain why the patient does		
Expected Response	(a) State the term that describes the sight condition of the patient	(b) Name the type of lens that is needed to enable the patient to see the distant object clearly	(c) Explain why the patient does not see distant objects clearly.		

Clydeview Academy Science Dept Investigation Success Criteria

Use this checklist as you write your report - check off each point as you go along.

		Criteria	~	Peer Assessed	Teacher Assessed
	Aim	 You have given your investigation an informative title. You have clearly stated the aim of your experiment (this is what you are trying to find out. Your aim correctly identifies the independent variable (the variable being changed). Your aim correctly identified the dependent variable (the variable that is measured/observed). You have stated your hypothesis, 		Maastandu	Piasease0
Planning	Hypothesis	predicting the result. You have included either a labelled			
	Method	 diagram or a list of apparatus. Your method describes the basic steps of the experiment and provides enough information to allow another student to carry out the same experiment. You have stated what has been kept the same during the experiment (the controlled variables). You have included a risk assessment 			
	Collection of Data	 which notes the safety precautions taken before the experiment. You have taken appropriate measurements (sufficient number of readings across an appropriate range). 			
Collect and Record Results	Table	 A table with the first column having a heading that identifies the independent variable with its units in brackets. A second column having a heading that identifies the dependent variable with its units in brackets. 			
Process and	Graph	Select an appropriate format of graph (line graph or bar graph)			

Present Results in a Graph	S L U R	Independent variable should be plotted on the x-axis (horizontal) and dependent variable should be plotted on the y-axis (vertical). Scales – should run from 0 and increase in equal increments. Scales that increase in multiples of 1, 2, 5, and 10 are easier to plot. Graph should use at least half the graph paper in both directions. Labels – independent variable heading from table should be on the x-axis and the dependent variable heading from the table should be on the y-axis. Units – make sure that each axis also includes the units for each of the variables. Ruler – use a ruler to draw straight lines Precise Points – points on a line graph, straight lines on a bar		
Conclusion	Your conduck	graph.		
conclusion	Your conclusion answers your aim.			
Evaluation	You have evaluated you experiment and can suggest two improvements. These might refer to: • Effectiveness/relevance of the method • Control of the variables • Limitations of the equipment • Possible sources of error • Reliability of data			2 marks

All - All would be expected to score between 0 and 11 marks

Most Would be able to score between 12 and 16

1

Some Would be able to score between 17 and 21

Exemplification – S1-2 Acids and Alkalis Example of assessment (L. Kelly)

Everyone can	Most People can also	Some people can also
State an indicator used to identify the pH of a solution.	Give examples of household acids, alkalis and neutral solutions.	Describe an experiment used to collect the product of a neutralisation reaction.
Expected Response:		
Universal indicator	Expected Response: An acid found at home would be: vinegar An alkali found at home would be: toothpaste A neutral solution found at home would be: water	Expected Response: "During the neutralisation of an acid with an alkali a salt is formed. Draw a labelled diagram of the apparatus you would use to collect a dry sample of the salt"
State whether the solutions are acid, alkali or neutral using their pH number	State the name of a salt from the acid and alkali used to make it.	
Expected Response:		The salt
	Expected Response:	
pH = 4 is an acidic solution	The name of the salt made from hydrochloric acid and sodium hydroxide is sodium chloride.	
		Must include Bunsen burner, heat mat, tripod stand and evaporating basin with sample
		2 marks – fully labelled diagram and all apparatus 1 mark – correct diagram drawn with 1 missing label 0 marks – diagram without labels
		Describe a use for neutralisation reactions.
		Expected Response:
		Farmers can add an alkalis to their fields if the soil is too acidic.

Third Level: COVID-19 Assessment

How will your COVID-19 assessment be assessed?

Your assessment will be given a rating using a **Gold Silver and Bronze** system. What does this mean?

- Gold (Some people can also....) You have made very good progress in meeting the success criteria of the investigation
- Silver (Most people can....) You have made good progress in meeting the success criteria of the investigation
- Bronze (Everyone can...) You have made some progress in meeting the success criteria of the investigation

You should aim to produce a 'Gold' assessment. Tick (J) off each success criteria as you achieve it.

< Back

A GOLD assessment:	An SILVER assessment: A BRONZE assessment:	
Have a developed structure	Have a basic structure	Have a limited structure
A detailed introduction outlining what a virus is	A basic introduction outlining what a virus is	A limited introduction outlining what a virus is
Section 1 - A detailed description of	Section 1 - A basic description of the	Section 1 - A limited description of the
the COVID-19 including the cause	COVID-19 including the cause	COVID-19 including the cause
Section 2 - A detailed description of at	Section 2 - A description of 2 ways the	Section 2 - A description of 1 way
least 3 ways COVID-19 affected	COVID-19 affected people's health and	COVID-19 affected people's health and
people's health and wellbeing	wellbeing	wellbeing
Section 3 - A detailed description of at	Section 3 - A description of 2 ways	Section 3 - A description of 1 way
least 3 ways COVID-19 affected	COVID-19 affected wildlife and/or	COVID-19 affected wildlife and/or
wildlife and/or environment	environment	environment
Section 4 - A detailed description of at	Section 4 - A description of 2 types of	Section 4 - A description of 1 type of
least 3 types of short-term aid	short-term aid	short-term aid
Section 5 - A detailed description of	Section 5 – A description of long-term	Section 5 - Mentioning one type of
long-term aid (Mentioning 3 vaccines	aid (Mentioning 2 vaccines)	long-term aid
and boosters) <u>Conclusions</u> a detailed summary of	<u>Conclusions</u> a basic summary of your key findings	<u>Conclusions</u> a limited summary of your key findings
your key findings References - all references included	References - most references included	References - One or two references included

Exemplification of Standards - Biodiversity Assessment S2

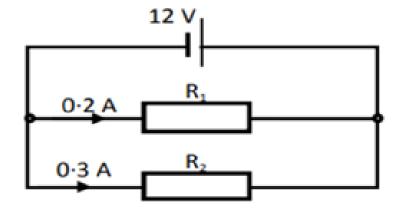
Example of Assessment Material Miss Hackney

	Everyone can	Most People	can also	Some people can also
	Extract information from a	Extract inform	ation from a	Explain the impact of the
	passage to complete a food	passage and align this with		increased numbers of specific
	chain.	previous know	ledge of	organisms on the size of
Knowledge &	owledge & Biodiversity Terms e.g.		rms e.g.	population of another organism.
Understanding	Expected response:	Ecosystem, Pr	oducer, Habitat	
		etc.		Expected response:
	Greenfly feed on Oak trees.			
	Ladybirds feed on Greenfly, but	Expected resp	onse:	As the numbers of Greenfly
	are also prey for Blackbirds.			increase, the numbers of
		Greenfly feed on Oak trees.		Ladybirds would also increase as
	Oak Tree \rightarrow Greenfly \rightarrow	Ladybirds feed on Greenfly, but		their food source has been
	Ladybird→ Blackbird	are also prey for Blackbirds.		increased.
		Term	Named example	
		Predator	Ladybird	
	Drawing a bar graph:	Assign a scale	to the x-axis.	Accurately plot the correct bars
				of the graph.
	Assign a given label, including			
Scientific Skills	units, to the x and y axis of a			Extract information from a table
	graph.			to carry out a percentage
				calculation.

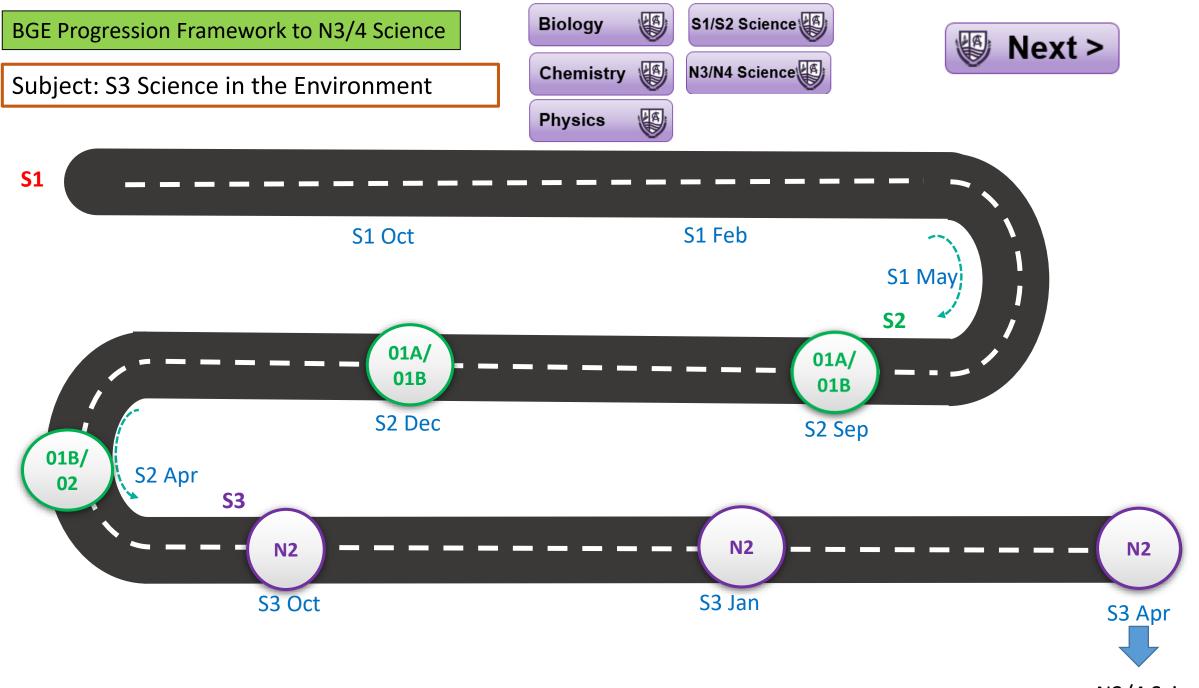
Electricity S2 – Exemplification of Standards Mr Wyllie

Example Question: Draw a circuit that will allow 3 bulbs to be switched on and off separately. Each bulb will require its own switch. The circuit should operate from 2 batteries connected in series.

	Everyone can	Most people can also	Some people can also
Expected response:	Draw a complete circuit, using a ruler, which includes 3 bulbs and a battery	Choose to draw a circuit with the bulbs in parallel and the battery in series.	Include 3 switches placed in the parallel branches.
Criteria:	All pupils expected to recognise that the circuit should have no gaps and that the bulbs and batteries should not be placed on corners	Most pupils expected to be able to identify and draw parallel circuit with the batteries together in series.	Some pupils would be able to insert the switches appropriately within the parallel branches.



Example Question: Two resistors are connected in parallel to a 12 V battery.


(a) What is the voltage across R₁.

(b) What is the voltage across R₂.

(c) Calculate the current drawn from the battery

Everyone can	Most can also	Some can also
Recognise that the battery delivers 12v.	Recognise that in a parallel circuit the voltage remains the same at all points and R2 will be the same as R1.	Recognise that current splits in a parallel circuit and be able to add the different currents to find the total current drawn

N3/4 Science

Year	Period	Science in the Environment Course Overview
S3 Science in Environment	May - December	Living Things Everyday Materials
	January - May	Everyday Materials Forces <u>or</u> Keeping our Planet Healthy

Assessment of the two/three units takes place at a time appropriate for the student.

Exemplification Link:

National 2 Science in the Environment - SQA

