Be able to calculate
the volume of a cube
or cuboid using a formula

The Volume of a shape is the amount of space it takes up．
Remember how to calculate the volume of a cuboid？

The top layer has 6 rows， 4 deep $=6 \times 4=24 \mathrm{~cm}^{3}$ ． 5 layers each with $24 \mathrm{~cm}^{3}=5 \times 24=120 \mathrm{~cm}^{3}$ ．

So there are $6 \times 4 \times 5=120 \mathrm{~cm}^{3}$ ． or as a formula ：－

Volume $=$ length \times breadth \times height

The Volume of a cuboid can be found using the formula ：－

$$
V=L \times B \times H
$$

Exercise 1

（You may use a calculator but show all working）．

1．Copy and complete for this cuboid ：－

$$
\begin{aligned}
& V=L \times B \times H \\
& V=8 \times 5 \times 3 \\
& V=\ldots \ldots \ldots . . \mathrm{cm}^{3}
\end{aligned}
$$

2.

3．Use the formula to calculate the volume of this cuboid．

Use the formula $V=L \times B \times H$ to calculate the volume of this cuboid．
（Show your working）．
What is this cuboid better known as ？

4. Calculate the volume of each of the following cuboids :- (Show your working).
a

b

c

d

3 mm
e

f

5. Calculate the volume of each box :- (You may use a calculator but show all working).
a

d

b

12 cm
e

6. Calculate the volume of these objects, giving your answer in $\mathrm{mm}^{3}, \mathrm{~cm}^{3}$ or m^{3} :-
a

b

d

e

7. By calculating the volume of each "block" in the shape, find the total volume each time :-

9. Calculate the length of the missing edge in each of the following cuboids :-

Volumes of Triangular Prisms

A Prism is a solid shape :-
Have the same
shape and size.

- whose bases (or ends) are congruent, and
- whose bases are parallel to one another, and
- whose other faces are rectangles (or parallelograms).

Be able to calculate the volume of a Triangular Prism

triangular based prism

square based prism

pentagonal based prism

circular based prism

irregular shaped prism

To find the volume of any prism :-

- calculate the area of one of the parallel faces (the base).
- multiply this by the distance between the parallel faces (the height ?).

Volume of a Triangular Prism is :-
Volume $=$ Area $_{\text {base }} \times$ height

Example :- The blue base of this prism is an isosceles triangle.
The prism's height is 5 centimetres. Calculate its volume.
Step 1 :- Find the area of the base first :-

$$
A_{\text {(blue) base }}=\frac{1}{2} \text { base } \times \text { height }=\frac{1}{2} \text { of } 6 \times 8=24 \mathrm{~cm}^{2}
$$

Step 2 :- Find the volume of the prism :-

$$
\begin{aligned}
& V=A_{\text {base }} \times h . \\
& V=24 \mathrm{~cm}^{2} \times 5 \mathrm{~cm}=120 \mathrm{~cm}^{3}
\end{aligned}
$$

Exercise 2

1. Calculate the volume of this (isosceles) triangular prism.

Copy and complete :- $\quad \boldsymbol{A}_{\text {base }}=\frac{1}{2}$ base \times height $=\frac{1}{2}$ of $5 \times \ldots=\ldots . . \mathrm{cm}^{2}$

Vol $=A_{\text {base }} \times h$.
$=\ldots . . \mathrm{cm}^{2} \times 7 \mathrm{~cm}=\ldots \ldots \mathrm{cm}^{3}$

2.

Calculate the volume of this (isosceles) triangular prism using the same method shown in question 1.
3. This large Botlerone Bar is an (equiangular) triangular prism. Calculate its volume.
4.

4

This time, the face of the prism is a right angled triangle.
a Calculate the area of the triangular face.
b Now calculate the volume of the triangular prism.

6.

7. Here is a hexagonal prism with one section removed.
a Calculate the volume of the yellow prism.
b Now calculate the volume of the whole hexagonal prism.
8.

Shown is an animal drinking trough.
The ends are isosceles triangles.
Calculate the volume of water in the trough when it is full.
Calculate the volume of this 2 person tent.

10. Calculate the total volume of each of these shapes by considering the individual components.
a

b

c

d

11. Sarah keeps her plants in a little mini-greenhouse.

Calculate the total volume of space in the greenhouse.

25 m

12.

80 cm
This swimming pool is 25 metres long by 10 metres wide.
It is 1.5 metres deep at the shallow end and 3.5 metres at the deep end.

Calculate the volume of water in cubic metres in the pool when it is full.
13. Shown is a leather covered soft play toy used in a nursery. It is in the shape of a hexagonal prism.
By calculating the volume of the yellow cuboid and the green and blue triangular prisms, find the total volume of the toy.

If you have a hollow cube measuring 1 cm by 1 cm by 1 cm , it has a volume of $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}=1 \mathrm{~cm}^{3}$.

If you now fill that small cube with water, it holds $1 \mathrm{~cm}^{3}$.

$1 \mathrm{~cm}^{3}$

Be able to find the capacity of a container and convert from I to ml

- cm^{3} are usually used to define the volume of a solid shape.

Liquid volume is measured in millilitres where 1 millilitre $=1 \mathrm{~cm}^{3}$.

Another name for liquid volume is capacity. We say the cube has a capacity of 1 millilitre (1 ml).

Example :- This hollow container is filled with water.

$$
\begin{aligned}
\text { Its volume is } \quad & V=L \times B \times H \\
& V=15 \times 10 \times 4=600 \mathrm{~cm}^{3} \\
\text { Its capacity is } \quad C & =600 \mathrm{ml}
\end{aligned}
$$

10 cm

Note :- This box measures 10 cm by 10 cm by 10 cm

$10 \mathrm{~cm} \quad$| Its volume is | $V=L \times B \times H$ |
| :--- | :--- |
| | $V=10 \times 10 \times 10=1000 \mathrm{~cm}^{3}$. |
| Its capacity is | $C=1000 \mathrm{ml}$ or 1 litre. |

$$
1 \text { litre }=1000 \text { millilitres } \quad(1 \mathrm{~L}=1000 \mathrm{ml}) .
$$

Exercise 3

1. a Calculate the volume of this box in cm^{3}.
b Now write down its capacity in ml .

2. Determine the capacity of these three containers :-
a

b

c

3. Change the following from litres to millilitres :- (Remember :- 1 litre $=1000 \mathrm{ml}$).
a 2 litres
b 5 litres
c 8 litres
d 25 litres
e 3.2 litres
f 12.75 litres
90.9 litre
h 11.234 litres
i $\frac{1}{2}$ litre
j $4 \frac{1}{2}$ litres
k $1 \frac{1}{4}$ litres
I $3 \frac{3}{4}$ litres.
4. Change the following from millilitres to litres :- (Remember :- $1000 \mathrm{ml}=1$ litre).
a 6000 ml
b 9000 ml
c 15000 ml
d 35000 ml
e 2500 ml
f 7250 ml
g 250 ml
h 1300 ml
i 4650 ml
j 12620 ml
k 100 ml
। 15 ml .
5. This cold storage water tank measures 80 cm by 50 cm by 40 cm . a Calculate its volume in cm^{3}.
b Calculate its capacity when full of water :-
(i) in millilitres
(ii) in litres.

6.

Scouts use large containers like this to store their drinking water to allow them to replenish their drinks bottles.
a Calculate the capacity of the large container in litres.
b How many drinks bottles can be filled from a full container ?

7. The inside of this rectangular paddling pool is a cuboid measuring 2.4 m by 1.5 m by 80 centimetres deep.
a Change 2.4 m and 1.5 m each to centimetres.
b Calculate the volume of the inside of the pool in cm^{3}.
c How many litres of water will it need to half fill it?

8.

9. Shown is a large storage container with its internal dimensions 3 metres by 4 metres by 12 metres.
Calculate the volume of air inside the container and give your answer in litres. (Not 144 litres).

Water pours into this stainless steel storage tank at a rate of 4 litres per minute.

How long will it take before the tank overflows?

Volume

