

IMPORTANT

This is an Accessible Digital Copy of a printed book. The original digital file from which the Accessible Copy was made was kindly provided by the publishers. All rights to the Accessible digital copy are retained by the rightsholders of the printed books.

This Accessible Digital Copy is for the personal use of an "Authorised Person" who is defined as "a pupil who is visually impaired or otherwise disabled and by reason of such visual impairment or disability is unable to read or access the original printed book".

An Authorised Person is regarded as "visually impaired" in accordance with s.31F (9) of the Copyright, Designs and Patents Act 1988, or, as appropriate, as a "disabled person" in accordance with s. 1 of the Disability Discrimination Act 1995.

No other pupils can use the Copies.

The Accessible Copy may be stored on the students' personal computer or other electronic device, or on a secure password-protected intranet limiting access to the student(s) only.

The user(s) of the Accessible Digital Copy must have legal access to a hard copy of the book, bought either for personal use or as part of a class set.

If the pupil(s) cannot access the Accessible Digital Copy, it may be converted into another Alternative Format. The book may not be altered except as required for conversion to the Alternative Format, and conversion must retain the integrity of the text.

The student(s) may print the contents of the book for personal use only.
The Accessible Copy may not be further copied, nor may it be supplied to any other person, without permission. It may not be made available on the world wide web or copied or transferred to any third party.

The Accessible Digital Copy should be deleted once the pupil(s) have completed the course for which it was supplied.

Do not supply the Accessible Copy to other pupils. If you require another Accessible Copy of this book for more pupils, you must download another copy from the Books for All Scotland Database.

Please note that that usage of Accessible Digital Copies outwith these terms and conditions may result in legal action against you and/or your educational establishment.

P.O. Box 1375
Barrhead
Glasgow
G78 1JJ

Tel: 01418806839
Fax: 08701249189
e-mail: teejaypublishers@btinternet.com
web page: www.teejaypublishers.co.ok
© TeeJay Publishers 2011
First Edition published by TeeJay Publishers - November 2011
All rights in this book are reserved. No part of this book may be copied or reproduced in any format, including electronic, without the express permission of the authors in accordance with the Copyright, Design and Patents Act of 1988.

Any person or organisation who makes unauthorised copies of any part of this book may be liable to prosecution and possible civil claims for damages.

Level 2(b) Textbook

Produced by members of the TeeJay Writing Group
T Strang, J Geddes and J Cairns.

Level 2(b) Textbook

The book, along with CfE Book 2(a) can be used in both Primary and Secondary with pupils who have successfully completed CfE Level 1.

- Most pupils will complete the contents of books 2(a) and 2(b) throughout Primary 5 to 7 , some earlier and some later into Secondary 1 or 2.
As a guide, Book 2(b) might be started with the majority of pupils at the beginning of, or part way through P6.
- There are no A and B exercises. The 2 books cover the entire Level 2 CfE course without the teacher having to pick and choose which questions to leave out and which exercises are important. They all are!
- Pupils who cope well with the contents of Level 2 may be able to begin work on Level 3 during P7. Books 3(a) and 3(b) can then be used to work through CfE Level 3 either at this stage or in Secondary 1 or 2.
- Book 2(b), unlike Book 2(a) does not contain a "Chapter Zero". Instead, every chapter is preceded by a "Consolidation Exercise" which revises the corresponding work from Book 2(a), prior to tackling the new work in the following chapter.
- Non-calculator skills are emphasised and encouraged throughout the book.
- Each chapter will have a "Revisit - Review - Revise" exercise as a summary.
- Teachers are encouraged, at the end of various chapters, to consider assessing the pupils using the corresponding TeeJay Outcome Assessment.
- Homework* is being developed and will be available as a photocopiable pack.
- TeeJay's Assessment Pack* for each Level, early to 3, is already available and can be used topic by topic or combined to form a series of Level 2 cumulative Tests.

Pupils should then be able to complete their National $4 / 5$ course leisurely by the end of S3 or early in S4.

We make no apologies for the multiplicity of colours used throughout the book, both for text and in diagrams - we feel it helps brighten up the pages !!

T Strang, J Geddes, J Cairns

(November 2011)

[^0]
Contents

			page
Ch 1	Whole Numbers	Consolidation of Whole Numbers from Book 2(a)	1-2
		Place value to 1000000 and beyond	3-4
		Multiply and divide by 20,300, 4000 etc	5-6
		Round to nearest 10, 100 and 1000	7
		Estimate/check answers using rounding	8
		Problems using a calculator	9-10
		BOMDAS - the order of operations	11
		Revisit - Review - Revise!	12-13
		TeeJay's MNU 2-01a and MNU 2-03a, Diag Assessments	
Ch 2	Symmetry	Consolidation of Symmetry from Book 2(a)	14
		Creating symmetry with horizontal/vertical/oblique line with grids	15-18
		Revisit - Review - Revise!	19
		Attempt TeeJay's MTH 2-19a Diagnostic Assessment	
Ch 3	Time 1	Consolidation of Time from Book 2(a)	20
		Longer time intervals including overnight	21-22
		Further timetables (including overnight)	23-24
		Minutes and Seconds (revision)	25
		Stopwatches	26-28
		Revisit - Review - Revise!	29-30
		Attempt TeeJay's MNU 2-10a and MNU 2-10b Diagnostic Assessments	
Ch 4	Decimals	Consolidation of all the Decimal work from Book 2(a)	31-37
		Decimal Multiplication by multiples of 10, 100 and 1000	38
		Decimal Division by multiples of 10,100 and 1000	39
		Revisit - Review - Revise!	40
		Attempt TeeJay's MNU 2-02a and MNU 2-03b/c diagnostic Assessments	
Ch 5	Angles and	Consolidation of Angles from Book 2(a)	41
	Triangles	Draw triangles using compasses, ruler and protractor	42-47
		(Extension) - Calculate missing angles	48
		Revisit - Review - Revise!	49-50
		Attempt TeeJay's M TH 2-17a and MNU 2-17b Diagnostic Assessments	
Ch 6	Scale	Consolidation of Compass Points	51
	Drawing	Using scales	52-54
		Basic scale drawings	55-56
		Harder scale drawings using protractor	57-59
		3 figure bearings	60-61
		Measuring and drawing 3 figure bearings	62-63
		Revisit - Review - Revise!	64
		Attempt TeeJay's MTH 2-17c and MTH 2-17d Diagnostic Assessments	

Ch 7	Money	Consolidation of all Money work from Book 2(a)	65
		Bank or debit cards/credit cards	66-67
		Budgeting	68
		Profit and loss	69-70
		Discount	71
		Hire purchase	72-74
		Foreign exchange	75-76
		Foreign exchange in reverse	77-78
		Revisit - Review - Revise!	79-80
		Attempt TeeJay's MNU 2-09a and MNU 2-09c Diag Assessments	
Ch 8	Negative	Interpreting negative numbers	81-82
	Numbers	Simple "up" and "down" using a thermometer	83-84
		Simple adding and subtracting using a thermometer	84-85
		Revisit - Review - Revise!	86
		Attempt TeeJay's MNU 2-04a Diagnostic Assessment	
Ch 9	Time 2	Basic calculation of distance ($=$ speed \times time)- whole hours only	87
		Basic calculation of time (= distance \div speed) - whole hours only	88-89
		Basic calculation of speed (= distance \div time) - whole hours only	90-91
		Mixed problems involving time-distance-speed triangle	92-93
		Revisit - Review - Revise!	94-95
		Attempt TeeJay's MNU 2-10c Diagnostic Assessment	
Ch 10	2 - Dimensions	Consolidation of all 2-D Work from Book 2(a)	96
		Properties of the square	97-98
		Properties of the rectangle	99-100
		Properties of the rhombus	101-102
		Properties of the kite	102-103
		Properties of the parallelogram	104-105
		Revisit - Review - Revise!	106-107
Ch 11	Algebra	Consolidation of all Algebra from Book 2(a)	108
		Extended number machines to include 2 steps	109-110
		Solve basic equations of the form $x+2=11$ and $3 x=15$	111
		Solve equations up to the format $3 x-2=16$ including word problems	112-113
		Inequalities	114-115
		Solve inequalities like $x+3>7,5 x \leq 15, ~(2 x-5<13)$	116-117
		Revisit - Review - Revise!	118
		Assessment based on MTH 2-15a	
Ch 12	Fractions/	Consolidation of Fractions, Decimals and Percentages from Book 2(a)	119-120
	Decimals/	Percentages to fractions and reducing to their simplest form for comparison	121-122
	Percentages	Calculating a simple percentage without and with a calculator	123-125
		Revisit - Review - Revise!	126

Attempt TeeJay's MNU 2-07a, MNU 2-07b and MNU 2-07c Diag Assessments

Ch 13	Measurement	Consolidation of Length, Area, Volume and Weight from Book 2(a)	127-130
Ch 14	Patterns	Consolidation of all Patterns from Book 2(a)	131
		Linear patterns of the form $D=3 P$	132-135
		Linear patterns of the form $D=3 P+1$	136-139
		Revisit - Review - Revise!	140-141
		Attempt TeeJay's MTH 2-13a Diagnostic Assessment	
Ch 15	Coordinates	Consolidation of Coordinates	142
		(Extension) Coordinates in all 4 quadrants.	143-144
		Revisit - Review - Revise!	145
Ch 16	3 - Dimensions	Consolidation of 3 dimensional shapes from Book 2(a)	146
		Nets of cubes and cuboids	147-149
		Nets of triangular prisms and other shapes (cones, prisms etc)	150-151
		Skeletons of solids + practical work - straws, rolled up paper etc.	152-153
		Revisit - Review - Revise!	154-155
		Attempt TeeJay's MTH 2-16a, MTH 2-16b and MTH 2-16c Diag Assessments	
Ch 17	Statistics	Consolidation of all Statistics work from Book 2(a)	156-159
Ch 18	Probability	Probability/chance - simple predictions	160
		Probability calculations	161
		Simplifying probabilities	162
		Revisit - Review - Revise!	163
		Attempt TeeJay's MNU 2-22a Diagnostic Assessments	
Ch 19	Revn-Level 2	Consolidation of Level 2 work all for Diagnostic Assessment for CfE Level 2 Attempt TeeJay's Level 2 Diagnostic end-of-course Assessment	164-169
Answe			171-179

Consolidation of Whole Numbers

1. Write out fully in words :- a 20060 b 702005
2. Write these numbers using digits:-
a twenty thousand eight hundred and thirty b sixty five thousand and four.
3. Rearrange the numbers given below in order, starting with the smallest :-
$29028 \quad 29208 \quad 30002 \quad 28982 \quad 30010 \quad 28899$.
4. a What numbers are represented by A, B, C and D on the given scales?

b What is the reading on this thermometer?

5. What number lies halfway between :-
a 2900 and 3100
b 68000 and 74000 ?
6. Do the following mentally :-
a $69+22$
b $\quad 257+49$
c $3200+4500$
d 81-17
e 2000-380
f 20000-17300
g $9999+12400$
h 9000-13.
7. Try this question mentally :-

James empties his right pocket and finds he has 68p.
He looks in his left pocket and discovers an extra 9p.
He goes into a shop and spends 23p on a sweet.
On the way home he finds a 50p coin on the ground.
How much does James now have altogether?

8. Set down the following and calculate :-
a 5263
b $\quad 7529$
c $6809+574$
d 20000-15482.

+ 1638
- 3845

9. Round to the nearest 10 :- a 68
b 584
c 3997.
10. Round to the nearest 100 :- a 1239
b 6953
c 56850 .
11. Round to 1 figure accuracy and find an approximate answer to each of the following :-
a $93+79$
b 821-196
c $6820+2239$
d 34200-19040.
12. Find:-
a 53
b 8217
c 607×8
d 5×2143.
13. Copy the following and complete :-
a 9504
b $7132 \div 4$
c $\frac{6935}{5}$
d $4312 \div 8$.
14. Do the following mentally :-
a 47×10
b 10×2310
c 504×100
d 100×600
e $9700 \div 10$
f $8000 \div 10$
g $49000 \div 100$
h $16000 \div 1000$.
15. Attempt these problems, showing all working :-
a By 1950, 3279 species of butterflies had been discovered. During the following 50 years a further 1964 species were discovered.

How many species of butterflies had been discovered altogether by 2000?
b

A van driver makes a round trip of 243 km each day. How far does he drive working Monday to Saturday?
c The combined weekly earnings of 5 office workers is $£ 2085$. If they get paid equally, how much does each earn ?

d

Brian's hot tub holds 2615 litres. Davy's holds 1862 litres. How much more does Brian's hot tub hold than Davy's?
e A small bag of cement weighs 23 kg . A truck is loaded with 100 bags.
If the empty truck weighs 215 kg , what is the total weight of the truck and the bags of cement?

16. Do the following :-
a $203 \times 4 \times 7$
b $1890 \div 7 \div 5$.
17. Put the correct sign $(+,-, x, \div)$ into the calculations to make the statements correct :-
a 27$27=54$ b 91$91=0$ c 15 \square $15=225$
d 63$63=1$.
18. Explain a simple rule for multiplying a number by a million.

Whole Numbers 3

Place Values
Understand place value for numbers

In the number 2346785 , the 2 stands for two million 2000000
300000 the 3 stands for three hundred thousand the 4 stands for forty thousand the 6 stands for six thousand the 7 stands for seven hundred the 8 stands for eight tens the 5 stands for five units

2000000
300000
40000
6000
700
80
5
2346785

Exercise 1

1. What do the following digits stand for in the number 1487293 :-
a 1
b 7
c 8
d 4
e 9 ?
2. What does the 7 stand for in each of these numbers :-
a 58740
b 35279
c 647900
d 7340601 ?
3. Write the following numbers out fully in words :-
a 4080
b 21900
c 71350
d 235080
e 703460
f 1870000
g 4093070
h 27050062.
4. Write the following numbers using digits:-
a four thousand, two hundred and nine b seventeen thousand and fifty
c sixty thousand and ninety eight d two hundred and thirty thousand and one
e five million, four hundred and seven thousand
f one million and seven
9 twelve million, sixty thousand and forty.
5. Put the following sets of numbers in order, smallest first :-
a $7068,6876,7086,6786,7008,7080,6867$.

b $100870,99924,100086,98999,90887,100076$.
6. Write down the number that is :-
a 40 after 290
b 200 after 1990
c 70 before 394210
d 600 before 11450 e
g 8700 after 975000 h 200500 before 3300500 .
7. Look at the following scales. What numbers are represented by the letters A, B, C, \ldots ?

8. What number lies halfway between :-
a 970 and 980
b $\quad 3400$ and 3500
c 44000 and 44700
e 730500 and 830500
d 820000 and 880000
f 940000 and 1200000 ?
9. Write out in figures :-
a 1 million
b $\frac{1}{2}$ million
c $\frac{1}{4}$ million
d $\frac{3}{4}$ million.
10. In July 2011, a family from Largs won $£ 161.653$ million in the Eurolottery. That was the largest amount ever won since it started.
a Write out this amount of money in full, in figures.

nillons
b Now write it out, using words.
11.

Chelsea paid $£ 2.3$ million for a defender.
Liverpool paid $£ 6.5$ million for a forward.
Arsenal paid exactly halfway between these payments for a goalkeeper.
Write how much Arsenal paid, in words.
12. a By the late 2010's, the population of China is expected to reach 1.4 billion. Write out this number fully, in figures.
b Find the population of 6 other countries and write them in figures.

To multiply by 30, 200 or 4000, use two steps :-
Step 1 multiply by the 10,100 or 1000 first
Step 2 => then multiply by the 3, 2, 4 etc.

Examples :-

To multiply 382×30
Step 1 Find $382 \times 10=3820$
Step 2 Find $3820 \times 3 \ldots$
$\begin{array}{r}3820 \\ \times \quad 3 \\ \hline 11460\end{array}$

To multiply 218×400
Step 1 Find $218 \times 100=21800$
Step 2 Find $21800 \times 4 \ldots$
21800
$\begin{array}{r}\times 4 \\ \hline 87200\end{array}$

Exercise 2

1. Try to do the following mentally:- (use the 2-step approach)
a 17×20
b $\quad 42 \times 30$
c 19×60
d 33×50
e 40×223
f 70×204
$9 \quad 61 \times 200$
h 400×34
i 115×600
j 800×212
k 2000×24
I 130×9000.

2. Calculate each of the following (not necessarily mentally) :-
a 436×30
b $\quad 617 \times 40$
e 70×980
h 2184×30
[Find 436×10 first $=4360$ and then find 4360×3]

$$
\begin{array}{llll}
\text { c } & 209 \times 50 & \text { d } & 3218 \times 60 \\
\text { f } & 1231 \times 80 & g & 6507 \times 90 \\
\text { i } & 90 \times 3046 & \text { j } & 12345 \times 20 .
\end{array}
$$

3. Work out each of the following using the same 2 steps :-
a 108×400
b $\quad 352 \times 300$
e 758×200
h $\quad 407 \times 800$
k $\quad 706 \times 6000$
n 8000×119
[Find 304×100 first $=30400$ and then find 30400×3]
c 456×500 d 179×700
f 600×305
g 975×300
i $\quad 900 \times 821$
j 2000×732
I 452×4000
m 734×3000

- 7000×2043
p $\quad 9000 \times 5320$.

There is a quick way of doing the following multiplications mentally :-
Example :- 40000×8000

```
=>> simply find 4\times8(= 32) and then add on 7 zeros => 320000000
```

4. Do the following mentally :-

a	60×20	b	80×90	c
d	500×90	e	50×7000	f
g 200×900	h	500×900	i	3000×700
j 600×9000	k	4000×7000	i	6000×8000.

Similarly, there is a quick way of doing the following divisions mentally :-
Example :- $420000 \div 6000$

$$
\begin{array}{ll}
\Rightarrow \text { simply cancel out equal numbers of zeros } 420 \varnothing \varnothing \varnothing \div 6 \varnothing 8 \varnothing \\
\Rightarrow \text { then do the simpler division } & 420 \div 6=70
\end{array}
$$

5. Do the following mentally :-

a	$2100 \div 30$	b	$2800 \div 40$	c	$49000 \div 70$
d	$24000 \div 400$	e	$180000 \div 3000$	f	$600000 \div 200$
g	$5600000 \div 800$	h	$25500000 \div 500$	i	$4200000 \div 600$
j	$4160000 \div 8000$	k	$21700000 \div 7000$	l	$5670000 \div 9000$.

6. a 20 cars in a garage forecourt had each done 38000 miles. What is the combined number of miles these cars have travelled ?

b
A machine automatically puts chewy sweets into jars.
7500 chews are spread equally into 60 jars.
How many are in each jar ?
c 300 workers in a telesales company are in a lottery syndicate. They win the second prize of $£ 417000$.

How much should each person receive?

d

There are 1440 minutes in 1 day.
How many minutes are there in 50 days ?
7. When you write all the numbers from 1 to 20 :-
$1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20$
you will have used 31 digits altogether.
How many digits are needed to write all the numbers from :-
a 1 to 100
b $\quad 1$ to 1000
c $\quad 1$ to 1000000 ?

Revision :-

To round to the nearest 10

- if it is a $0,1,2,3$ or 4 -
- if it is a $5,6,7,8$ or 9 -

To round to the nearest 100

- if it is a $0,1,2,3$ or 4 -
- if it is a $5,6,7,8$ or 9 -

To round to the nearest 1000

- if it is a $0,1,2,3$ or 4 -
- if it is a $5,6,7,8$ or 9 -
look at the units digit :-
leave the 10's digit as it is. round the 10's digit up by one.

$$
157 \rightarrow 160
$$

look at the tens digit :leave the 100's digit as it is. round the 100's digit up by one.

```
2374 -> 2400
```

look at the units digit :leave the 1000's digit as it is. round the 1000's digit up by one.

Exercise 3

1. Round to the nearest 10 :-

a	57	b	42	c	69	d	35	e
f 183	g	375	h 292	i	8	j	405	
k 594	I	329	m	2766	n	9804	0	7096.

2. Round to the nearest 100 :-
a 332
b 872
f 777
g 4747
c 829
d 784
e 250
k 26284
\| 29850
h 4098
i 9480
j 7241
m 16050
n 7891

- 20495.

3. Round to the nearest 1000 :-

a 8700	b 23200	c 48810	d 37960	e 57482
f 91501	g 19610	h 77499	i 83960	j 74498
k 16505	1 357600	m 436492	n 368602	- 799984.

4.

The overall attendance at Wimbledon 2011 was 489946. Round this figure to the nearest :-
a 10
b 100
c 1000 .
5. At the time of his signing for Chelsea, Michael Essien was the most expensive African footballer in history. He cost $£ 24356000$.
Round this figure to the nearest :-
a $£ 10000$
b £million
c $£ 10$ million.

It is possible to "MENTALLY" estimate the answer to a question by rounding the numbers to "1 figure" accuracy first.

Examples :-
79×42
is approximately
80×40
≈ 3200

$$
\begin{gathered}
7982 \div 396 \\
\text { is approximately } \\
8000 \div 400 \\
\approx 20
\end{gathered}
$$

" \approx " approximately equal to.

Exercise 4

1. The answer to 62×78 is either $\{486,4836$ or 48036$\}$. (no calculator!)
 By rounding $62 \times 78=60 \times \ldots . .=\ldots .$. , decide which of the 3 answers has to be the correct one.
2. Round your numbers before multiplying. Use this to decide which of the 3 given answers is most likely to be the correct one :-

| a 39×61 | Choice of $\{237.9,2379$ or 23799$\}$ |
| :--- | :--- | :--- |
| b 178×18 | Choice of $\{3204,32440$ or 32004$\}$ |
| c 614×57 | Choice of $\{3498,34998$ or 349908$\}$ |
| d 293×116 | Choice of $\{5849,13988$, or 33988$\}$ |
| e $153832 \div 287$ | Choice of $\{53600,5360$ or 536$\}$ |

3. Round each number to 1 figure accuracy, then give an estimate for :-

a	71×28	b	37×52	c	88×81	d	397×61
e	304×78	f	785×182	g	$796 \div 16$	h	$4031 \div 37$
i	$5918 \div 192$	j	$64128 \div 302$	k	$19096 \div 188$	l	$99909 \div 2347$.

4. a A tin of pea \& ham soup weighs 415 grams.

What is the approximate weight of a box containing 36 tins ?

b

A school put in a $£ 110624$ bid to the Council for 208 laptops.
Approximately, what was the cost of a laptop?
c On average, a coach driver travels 37918 miles per year while at work.
If a bus company employs 175 drivers, what will the approximate total milage travelled by these drivers be ?

Exercise 5

1. A supermarket buyer bought 3500 litres of cola at 80 p per litre. What did she pay for all this juice?

2.

Tennis player Rory McGrory has earned $£ 1.25$ million so far in his career. Angus McTavish has so far won $£ 785000$ in prize money.
How much is Rory ahead of Angus in winnings?
3. A chief executive earns a gross yearly salary of $£ 1357180$. His total deductions for tax etc. come to $£ 271436$, which is taken off his gross salary.
How much money is he left with in his pay?

4.
Geanvmastes:
General
Maths
36
then

A Secondary Teejay Maths Textbook has 106 double sided pages. How many pages are needed to print :-
a 500 books b 14000 books ?
5. The attendances for 3 rugby matches at kick-off time are shown.
a How many spectators were present in total at the start of the matches?
b If a total of 16892 spectators left the games before they finished how many were
 still in the stadia at the end?
6.

A notepad has 280 sheets of paper.
How many sheets are there in 36 notepads?
7. A shop has three thousand seven hundred and eighty DVD's to sell.

If an equal amount are stacked on to twelve shelves, how many DVD's are on each shelf?

8.
 Betty gets paid $£ 15$ per hour and worked 42 hours last week.
Her husband Joe gets paid $£ 13$ per hour and worked 39 hours last week.
How much did they earn altogether?
9. A greengrocer bought 30 boxes of oranges for $£ 482$.

He sold them for $£ 18$ per box.
a How much money did he collect when he sold all the boxes of oranges?
b How much more was this than he had paid for them?

10. When full, London's Dominion Theatre holds 2100 people.

If the theatre was full 250 nights in a row, how many people visited it?
11.

A group of 80 part-time telesales operators took 5120 calls in total in one hour.

Assuming they are scheduled to take the same number of calls, how many calls did each operator take in the hour?
12. The Greig family won $£ 159300$ in the Lottery.

Each got an equal share of $£ 13275$.
How many people must there be in the Greig family?

13.

Paris spends $£ 180$ every time she visits the beauty parlour. She goes there every two months, knowing she has to stick to a budget of $£ 1000$ a year.
Does Paris stick to her budget? Explain.
14. A Boeing 777 can carry 430 passengers.

How many of these planes are needed to take 7740
 football supporters to a Champions League away match?
15.

In a new housing estate all 170 houses are identical. A total of 400180 bricks were used to build them.

How many bricks were used for each house?
16. A box holds 375 envelopes. A car insurance company orders 25 boxes. 8950 envelopes are used to send information about their new product to customers.
How many envelopes does the company have left?

17.

Thomas had a conservatory built in August 2011.
It cost $£ 16800$ plus tax at $£ 3360$.
a What was the total cost of his conservatory at this point?
Thomas received a voucher from the company for $£ 275$ for introducing a friend.
b What was the final cost of the conservatory to Thomas?
18. Film star Jan Ravolta cannot get used to her fame.

She buys a private jet by paying $£ 575000$. She then made 20 monthly payments of $£ 230000$ to complete her purchase.

What is the total cost of her plane?

19.

Jenny bought 1160 euros for $£ 800$ in a bank. Her brother got 1776 euros for $£ 1200$ from a travel agent.
a Work out how many euros each of them received for $£ 1$.
b Who got the better buy?

Many calculations have to be completed in a specific order.
(You will find out much later in Mathematics why !)

Example:- For $3+4 \times 2 \ldots$ the answer is NOT .. $7 \times 2=14$. The answer IS \qquad $3+8=11$.

An easy way to remember which part of a calculation comes first is using the mnemonic BOMDAS.

Example 1
Example 2
one half of $30 \div 5$
Of first
$=15 \div 5$
$=3$

Example 3

$$
\begin{aligned}
& (18-2) \div(2 \times 4) \\
& \text { Brackets first } \\
& =16 \div 8 \\
& =2
\end{aligned}
$$

- Multiply \& Divide rank equally
- Add \& Subtract rank equally

1	$\mathbf{2}$	$\mathbf{3}$	4
B	0	M	A
		or	or
		D	S

After you have done any B (rackets) or $O(f)$, then go from left to right doing any M(ultiplication) or D (ivision) as you find them. Then go from left to right doing any A(ddition) or S(ubtraction) as you find them.

Exercise 6

1. Use BOMDAS to help you calculate :-
a $\quad 10+7 \times 2$
b $\quad 11+2 \times 3$
d $20-16 \div 4$
e $\quad 60-50 \div 10$
c $3 \times 2+6$
f $13-12 \div 2$.

Brackets
Of
Multiplication
Division
Addition
Subtraction
2. Calculate :-
a $20-12+2-10$
b quarter of $20 \div 5$
d $\frac{1}{2}$ of $16 \div 4$
e $\quad 10+\frac{1}{3}$ of 15
c fifth of 50-10
g $5 \times 3-12 \div 4+8$
h $5 \times 4-2 \times 3+16 \div 4$
f $13-\frac{1}{4}$ of $12+2$
i $\quad 13-\frac{1}{4}$ of $(20-8)$.
3. Find, showing two more steps each time :-
a $\quad 5+(12 \div 2)$
b $\quad 16 \div(10-2)$
c $\quad 5 \times(6+3)$
d $100 \div(6+4)$
e $\quad 6 \times(7+2)-24$
f $\quad(5+2) \times(6-2)+5$.
4. Find:-
a $\quad 100 \div 4+5 \times 2$
b a quarter of $(16+4)$
c $6 \times(5+4)$
d $6 \times 5+4$
e $\quad 6+5 \times 4$
g $100-\frac{1}{2}$ of 10×10
h $\frac{1}{2}$ of $\left(\frac{1}{3}\right.$ of 12$)$
f $\quad(6+5) \times 4$
i $((6+4)+2) \times 3-(20+2)$.

2 of $\frac{1}{3}$ of 12)
5. Copy each of the following and insert brackets to make each calculation correct :-
a $5+3 \times 2=16$
b $\quad 18-5 \times 2=8$
c $20+4 \div 6=4$
d $10+6 \div 2 \times 5=25$
e $10+20 \div 5-1=15$
f $\quad 5+2 \times 8-6 \div 2=7$.

Revisit - Review - Revise

1. a Round to the nearest 10 :-
(i) $88 \quad$ (ii) 3694
(iii) 12747
b Round to the nearest 100 :-
(i) 346
(ii) 1480
(iii) 17382
c Round to the nearest 1000 :-
(i) 5548
(ii) 29672
(iii) 328299 .
2. a Round both numbers to the nearest 10 , then estimate :-
$369+385$
b Round both numbers to the nearest 100, then estimate :-
7452-1718
c Round both numbers to the nearest 1000 , then estimate :-
$17840+6499$.
3. Estimate :a 3164×9
b $17868 \div 6$.
4. Cheryl bought two second hand cars - a classic at $£ 4356$ and a convertible costing $£ 3842$.
Round both these prices to the nearest $£ 100$ and find an approximate answer for the total amount she paid for the cars.

5.

West Fife signed Davie Prunty for $£ 28625$ and Jamie Greig for £19 365.

Round both figures to the nearest $£ 1000$ and find out approximately how much more expensive Prunty was than Greig.
6. The population of Scotland in the autumn of 2010 was 5252100. Round this number to the nearest hundred thousand.

7. Set down these calculations and work them out :-

a	$17586+312$	b	$48104-37889$	c	1874×7
d	3679×4	e	$38429+122485$	f	12976×9
g	$129705 \div 5$	h	$26307 \div 3$	i	$2834312 \div 8$.

8. Write down the answer to :-
a 430×10
b 367×1000
c 458×100
d 6000×1000
e $270 \div 10$
f $23900 \div 100$
g $7804000 \div 100$
h $7102000 \div 1000$.
9. Find :-
a 145×30
b 74×200
c 599×500
d 123×8000
e $540 \div 60$
f $23800 \div 700$
g $7804800 \div 900$
h $7160000 \div 4000$.
10. I flew from Aberdeen to New York, a distance of 3280 miles and then on to Los Angeles, a further 2448 miles. a How far did I travel in total?
b How much longer was the first journey?

11. When a number is multiplied by 9 the answer is 78714 .

What is that number?
12.

700 metres of plastic piping costs $£ 2030$ to lay. 600 metres of metal piping is priced $£ 1800$ to lay.
a Calculate the cost of one metre of piping for each.
b Which is the cheaper piping to put down?
13. The total amount of annual fees collected by the secretary of a golf club consisting of 480 members was $£ 397200$.

How much did each member have to pay?

14.

There are 48 tins of tomato soup in a carton.
There are 20 cartons in a box.
There are 15 boxes in a crate and 8 crates on a lorry.
How many tins of soup are on the lorry?
15. 35 people work a six hour shift at a call centre.

If the total wage bill for them is $£ 1470$, what is their hourly rate of pay?

16.

A buyer for a phone store bought 60 phones for $£ 2280$.
The store managed to sell all but 5 of them for $£ 42$ each.
a How much money did the store take in?
b How much did the store make out of these sales?
17. Gerry bought a new people carrier worth $£ 35620$. He arranged to pay the garage $£ 7000$ and then pay what was still owed over a period of 36 months. After that first payment :-
a how much did he still owe the garage?
b what had he to pay per month to clear what he owed?

Consolidation of Symmetry

1. Define, in your own words, what is meant by saying that a shape has a line of symmetry.
2. How many lines of symmetry do each of the following shapes have?

9

h

3. Trace or copy these shapes NEATLY onto squared paper.
a

b

c

Mark in colour ALL the lines of symmetry.
4. Trace or copy the following shapes neatly and draw in the other half so the red lines are lines of symmetry.
a

b

c

Creating a Symmetrical Shape

Be able to create "the other half of a symmetrical shape

If you are given half of a symmetrical shape on a grid with the line of symmetry shown, it is fairly straightforward to create the other half.

Example :-

Discuss different ways of creating the above symmetrical shape.

Exercise 1 (You will need a ruler)

1. a Copy this shape onto squared paper. (or into your jotter).
b Now draw in and shade/colour the other half such that the green line is a line of symmetry.
2. Copy each of the following shapes neatly onto squared paper, then complete each shape so that the green line is a line of symmetry.

C

2. d

e

h

3. Copy each of the following shapes neatly onto squared paper, then complete each shape so that the green line is a line of symmetry.

4. These are harder. Copy and draw the other half of the following symmetrical shapes :-

k

I

5. This time, each shape has 2 lines of symmetry, each shown in green. Copy and draw the other 3 parts of each shape.

6. In pairs or groups, draw your own shapes, put in a line (or lines of symmetry) and create posters for a display.
7. Ask your teacher for some isometric or triangular dotted paper and make more symmetrical pictures for a display or project.
8. Using straight lines and a 4×4 grid, (as shown) create a set of computer fonts for all those letters of the alphabet which have exactly 1 line of symmetry.

The 3 9 's

Revisit - Review - Revise

1. Copy or trace each of these shapes and draw in any lines of symmetry :-
a

d
b

c

e

f

2. Complete each shape so that the dotted line is a line of symmetry :-

c

d

e

f

Consolidation of Time

1. Write the following in 12 hour format :- (remember to use am or pm).
a 0302
b 1840
c 1038
d 2345 .
2. Change these times to 24 hour format :-

| a 5.30 am | b 5.02 pm | c 20 to midnight | d | Noon |
| :--- | :--- | :--- | :--- | :--- | :--- |
| e 1245 am | f 5 to 10 at night | g 10 past midnight | h | $\frac{1}{4}$ to 8 at night. |

3. Jason left for school at 0815 and returned home at 1605.

How long had he been away?

4.

The local postie started work at 20 to 7 in the morning. It took him 5 hours and 35 minutes to sort and deliver the mail .

When did he finish his work?
5. A bus is laid on twice per day to take shoppers from a country village to specialist shops in the area. The shoppers are allowed 20 minutes in each shop.

A timetable showing DEPARTURE times from each shop is shown below.

	Village Centre	Mosco Market	Harry's Fish Shop	Irn Mongers	Holmes Farm	Cospo Homeware	Tea Shop
Bus 1	0925	1010	1040	1115	1135	1155	1220
Bus 2	1425	1445	1540				
a When does the 1st bus arrive at Irn Mongers?							
b How long does the journey from Harry's Fish to Irn Mongers take?							

c How long does it take from leaving Holmes Farm to arriving at the Tea Shop?
d Assuming both buses go at the same speed, at what time will bus 2 leave the Tea Shop?
6. a How many days are there in :-
(i) April
(ii) October?
b How many days from 25th of June and 10th of July, including both dates?
7. May ran a half marathon in 2 hours and 12 minutes. Kate ran it in 1 hour and 48 minutes.
a Who finished first and by how many minutes?
b If they ran a full marathon at the same pace how long would each take?
8. Cyprus time is 2 hours ahead of British time.

This means that when it is 9 am here, it is 11 am in Cyprus.
I flew from Glasgow Airport to sunny Cyprus, leaving at 1020.
If the flight took 5 hours 25 minutes, at what time (Cyprus time), did I arrive at Pathos Airport in Cyprus?

Longer Time Intervals

Be able to calculate a time interval

Counting on :- As we saw in Book 2a, the easiest way of finding how long something lasts is by "counting on".

Example 1 :-
A late night film started at 2250 and lasted for 2 hours 15 minutes. When did it finish ?

Example 2 :-
How long is it from 7.05 pm on Friday until 1.30 pm on Saturday?

Exercise 1

1. What time is it :-
a 1 hour after 0730
b 2 hours after 1850
c 3 hours 30 minutes after 0930
e 1 hour 30 minutes after 2330
95 hours 50 minutes after 2130 Friday
i 7 hours 8 minutes after 2032 Monday
d 4 hours 5 minutes after 1555
f 3 hours 40 minutes after 1745
h 6 hours 45 minutes after 1920 Tuesday
j 9 hours 22 minutes after 1848 Saturday?
2. What time is it :-

a $\quad 2$ hours after 6.50 pm	b 3 hours after 8.32 am
c $\quad 4$ hours 30 minutes after 8 am	d 3 hours 25 minutes after 8 pm
e 2 hours 45 minutes after 3.15 pm	f 4 hours 20 minutes after 9.40 pm Monday
g 6 hours 40 minutes after 9.10 am	h 2 hours 50 minutes after 11.40 pm Thursday
i 5 hours 50 minutes after 11.20 pm Fri.	j 8 hours 20 minutes after 9.50 pm Wed. ?

3. What is the time :-
a 1 hour before 2330
b 2 hours before 9.32 pm
c 1 hour 30 minutes before 0240
e 3 hours 20 minutes before 6.30 am
93 hours 20 minutes before 2 am Tues.
d 3 hours 5 minutes before 1900

f 1 hour 30 minutes before 0030 Sunday h 4 hours 45 minutes before 3.15 am Wed.
i 6 hours 25 minutes after 1950 Mon.

4. How long is it from :-
a $\quad 4.15 \mathrm{pm}$ to 10.15 pm
b midnight to 2.30 pm
c 8.45 am to 11.20 am
d 1735 to 2130
e 1315 to 2105
f 9 am to 8.10 pm
g $\quad 4.30 \mathrm{pm}$ to 9.20 pm
h 9 pm Wednesday to 1.30 am Thursday
j 2245 Saturday to 1045 Monday?
i $\quad 11.30 \mathrm{pm}$ Monday to 3.15 am Tuesday
5. These clocks indicate the start of the activities for a day at the U-IN-THE-PARK music festival and when they were due to end.

For how long did the festival last that day?

6.

One bright morning Tommy decided to cycle to work. He left home at 0645. It took exactly 1 hour 18 minutes to get there.
Did he make it to his office on time for an 8 am start? (Explain).
7. Sammi plans to meet her pen pal in Paris at 9.40 am on the Sunday morning. She thinks that if she takes the overnight train, leaving Inverness at 11.25 pm on the Saturday, she will have enough time to get to Paris. The journey from Inverness to Paris, via London, is to take 10 hours 10 minutes.

Will Sammi make it on time?

8.

Jet3's scheduled flight to Portugal leaves Edinburgh Airport every Tuesday and Friday at 2255.
The flight takes 3 hours 17 minutes.
What time are the flights due to land in Portugal ?
9. British Airways flight BA123 left Gatwick Airport at 1855 on Monday and arrived in Las Vegas at 0505 (British time) on Tuesday morning.

a How long did the flight take?
b Las Vegas is 8 hours behind London time.

What time was it in Las Vegas when the plane landed?
10. How long is it from :-
a 2230 on Wednesday 1st August until 2240 on Friday 3rd August
b $\quad 2.45 \mathrm{pm}$ on Monday 19th November until Thursday 22nd November at 3 pm
c 2130 on Tuesday 10th February until 0010 on Thursday 12th February?

Exercise 2

1. Here are the train timetables for "London to Perth" and "Perth to London".

London $\langle\rightarrow$ Perth			Perth				London		
London Euston	leave	0525	2115	Perth	leave	0910	1922		
Watford	arrive	0544	2133	Gleneagles	arrive	0930	1941		
	leave	0545	2134		leave	0932	1943		
Crewe		0805	2355	Dunblane		0945	1957		
Preston	arrive	0903	0052	Stirling	arrive	0956	2008		
	leave	0908	0057		leave	1000	2009		
Stirling		1323	0454	Preston		1415	0032		
Dunblane		1334	0504	Crewe		1514	0132		
Gleneagles	arrive	1349	0520	Watford	arrive	1730	0353		
	leave	1351	0522		leave	1732	0355		
Perth	arrive	1410	0541	London Euston	arrive	1749	0410		

Write the following times in 12 hour time with am or pm :-
a When did the overnight train from London to Perth leave Preston?
b At what time did the overnight train from Perth to London pass through Preston?
c At what times do the trains leave Watford for London?
d For how long do all trains stop at Gleneagles?
e On the daytime London to Perth train, how long is the journey from Stirling to Dunblane?
f On the daytime Perth to London train, how long is the journey from Dunblane to Stirling?
9 On the overnight London to Perth train, how long is the journey from Preston to Stirling?
h On the overnight Perth to London train, how long is the journey from Stirling to Preston?
i You were hoping to board the London bound train at Stirling Station, but arrived 10 minutes too late for the morning train. How long is it till the next one?
j I left London on the early train for a meeting in Gleneagles at 2.30 pm . The train pulls out of London 35 minutes late. Am I still likely to be on time for my meeting?
$k \quad$ Which of the four trains takes the shortest time between the two cities ?

Shown below is an extract from a advert for holidays from Glasgow Airport in 2011.

Flying To	Time	No. Days	Flying No.	Dates	Company
Malaga	Sun 0545	14	TAX4533	$08 / 05-16 / 10$	TourAir
Malaga	Sun 1315	7	DBX4534	$08 / 05-16 / 10$	Direct Breaks
Malta	Tue 0855	$7 \& 14$	TAX3014	$03 / 05-25 / 10$	TourAir
Malta	Tue 0855	7	TAX3014	$03 / 05-25 / 10$	Direct Breaks
Naples	Fri 1455	$7 \& 14$	FCX1544	$06 / 05-28 / 08$	First Class Hols
Naples	Fri 1455	$7 \& 14$	FCX1544	$06 / 08-28 / 10$	Timmy Cook
Orlando	Mon 1005	14	TAX328	$27 / 06-18 / 07$	TourAir
Orlando	Fri 0430	14	DBX328	$24 / 06-18 / 09$	Direct Breaks
Majorca	Sat 1750	7	TCX1138	$15 / 10-15 / 10$	Timmy Cook
Majorca	Sat 2145	10	DBX1139	$15 / 10-15 / 10$	Direct Breaks

| Malaga Sun 0545 | 14 | TAX4533 | 08/05-16/10 TourAir |
| :---: | :---: | :---: | :---: | :---: |
| Means that the holiday is in Malaga, Spain, leaving Glasgow on Sunday at 5.45 am for 14 days and the flight | | | |
| number is TAX4533. The holiday is available between 8 th May | $=16$ th | October, flying with TourAir. | |

2. a State all of the details for the Monday flight to Orlando.
b First Class Holidays only offer 1 holiday. Where to and for how long?
c If I can only go to Orlando on a Friday, at what time is the flight ($\mathrm{am} / \mathrm{pm}$) and with which tour company?
d I want to go for a 10 day break.
Give the full details of my only choice.
e Sheila decides to go to Malaga for 7 days.
When is her flight and what company must she book it with ?
f I want to go on holiday on 28th October. Where can I go and what's the flight number ?
9 There are 2 flights to Majorca :- (i) what is the "same" about these flights ?
(ii) list four "differences".
h List the two "differences" when comparing the flights to Malta.
i I leave on Sunday 8th May in the afternoon.
Give the full details of this holiday.
3. Use a computer or a holiday brochure to plan a holiday sometime in the near future to a hot country for 2 weeks for a family of four, 2 adults and two children aged 4 and 8.
a List all the details including the cost.
b Make a list of all the essential things needed for the holiday.

When adding or subtracting units of time you need to remember that there are 60 seconds in 1 minute.

Exercise 3

1. One of Elvis' Rock \& Roll songs "Jailhouse Rock" lasts for 155 seconds.

Write this time in minutes and seconds.
2. Change each of these to minutes and seconds :-

a 80 secs
b 138 secs
d 300 secs
e 930 secs
c 210 secs
f 600 secs.
3. Change each of these to hours and minutes :-

a 95 mins	b $\quad 135 \mathrm{mins}$	c	255 mins
d	480 mins	e $\quad 1210 \mathrm{mins}$	f

4. Copy the following and complete :-

a	3 mins	10 secs	b	6 mins	40 secs	c	9 hrs	35 mins
	+ 5 mins	45 secs		+ 2 mins	40 secs		+ 2 hrs	45 mins
d	6 mins	35 secs	e	8 mins	00 secs	f	9 hrs	30 mins
	- 3 mins	20 secs		- 2 min	45 secs		- 8 hrs	50 mins

5. Four men ran in a 4 by 1000 metre relay race. Their times were as follows :-

Mike -2 mins 45 secs, Alex -2 mins 50 secs, Eric -2 mins 25 secs, Bill -2 mins 35 secs.
How long did the race last altogether ?
6. Comet Isikiel was viewed by Julie through her telescope twice.

The first time was at 2257 on January 8th.
She next saw it at 0027 on January 10th.
How much time had passed between her 2 sightings?
7. a How many seconds are there in April?

b George is celebrating his 10th birthday. Approximately, how many seconds has he been alive?

For accuracy, especially in sport, time is measured in minutes and seconds, and the seconds are sometimes measured to 1 or 2 decimal places.

Revision Example :-

This stopwatch shows the time in minutes and seconds.

The time shown is 4 minutes 13.07 seconds.

Exercise 4

1. Revision
a Round the following times to the nearest second :-
(i) $32 \cdot 9$ secs
(ii) 3 mins $15 \cdot 3 \mathrm{secs}$
(iii) 8 mins 7.62 secs.
b Change each of these to minutes and seconds :-
(i) 84 secs
(ii) 187 secs
(iii) 510 secs.
c Change each of these to hours and minutes :-
(i) 73 mins
(ii) 145 mins
(iii) 348 mins.
d Copy the following and complete :-
(i) $\begin{array}{r}2 \mathrm{mins} 40 \mathrm{secs} \\ +3 \mathrm{mins} \quad 35 \mathrm{secs}\end{array}$
(ii) 1 hr
55 mins
35 mins
(iii) 5 mins 20 secs
-2 mins 30 secs
2. Round the following times to 1 decimal place :- (e.g. 4.36 secs $\rightarrow 4.4$ secs)
a $\quad 3.87 \mathrm{secs}$
b $\quad 5.02$ secs
c $\quad 12.58$ secs
d 18.64 secs
e 24.156 secs
$9 \quad 5.443$ secs
h 19.777 secs
f 7.99 secs
i 0.351 secs.
3. Here are the times for the first 6 runners to finish a 400 metre race :-

| Samson - 45.27 secs | Thomson - 46.36 secs | McGovern - 44.78 secs |
| :--- | :--- | :--- | :--- |
| Murray - 46.45 secs | Goodwin - 45.08 secs | Van Zanten -46.09 secs |

List the 6 runners in order, winner first.
4. Here are the individual times for each of the four runners for a top USA team in the 4 by 400 metre relay race in an event in Germany.

```
Morry - 44.61 secs, Johnstone - 43.28 secs, Watt - 42.94 secs, Reynold - 43.78 secs
```

Calculate the total time they took for the race.
(Give your answer in minutes and seconds).
5. Here are the times for the four British runners :-

```
Steel - 44.59 secs, Tobine - 43.76 secs, Breingan-43.1 secs, Ronson - 43.69 secs
```

Calculate the total time the British team took. Which team was faster?
6. At the Olympic games in Beijing 2008, Shelley-Ann Fraser of Jamaica, ran the women's 100 metre race in 10.78 seconds followed by compatriots Sherone Simpson and Kerron Stewart, both on 10.97 seconds. Lauryn Williams (USA) finished fourth, with a time of 11.03 seconds.
By how much did Fraser beat Williams?

7. Tirunesh Dibaba broke her own women's 5000 metre world indoor record of 14 minutes 32.91 seconds at the Boston Indoor Games in 2007 by 5.49 seconds.
What was her new world record time?
8. This stopwatch shows the time in minutes and seconds.

The time shown is 7 minutes $23 \cdot 95$ seconds.
State the times which are shown on the
following stopwatches :-

a

b

c

d

e

9. The tachograph* on a minibus shows how long a driver has been driving. The times are in hours, minutes and seconds.

Write down these times :-

c

* A tachograph is used to control how long lorry and bus drivers drive without a break.

10.

11. Look at the lap times for 2 motocross bikers.
a Who was faster, Pete or Cliff ?
b How much faster was one than the other?
 Gregor's lap time in the same race was 2 minutes 55.88 seconds.
a How much faster was Gregor than Pete?
b The slowest time in the race was by Billy. He was 4.04 seconds slower than Pete.
What was Billy's time?
13. Look at the times for 2 runners in a 1500 metres race.

Mason and Selleck finished well ahead of the other runners.
a Who won, Mason or Selleck ?
b By how many seconds had the winner beaten the runner-up?

c Segal was third, 1.25 seconds behind the runner-up.
What was Segal's time for the race ?
Lucas won the race in a time of 1 minute 12.3 seconds.
Sidwell was only $\frac{9}{10}$ of a second behind him.
What was Sidwell's time?
12.

14.

Paula's time for the marathon is shown on this stopwatch. Amanda's time was 2 hours 46 minutes 30.35 seconds.
a By how much had Paula beaten Amanda?
b The last runner in the race crossed the finishing line 4 hours 10 minutes 42.75 seconds after Paula.
What was her time?
15. Helga and Ingrid are training for a marathon.

Helga lives on an island and Ingrid lives on the mainland.
Helga plans to leave from her house and run over every one of the 7 bridges only once before ending up at Ingrid's house.
Make a copy of the map.
Can you find a route for Helga?
Remember to cross every bridge but only once.

Revisit - Review - Revise

1. $\mathbf{0 5 3 0}$ can be written as "half past five in the morning".

Write these times in words :-
a

b

2. Write the time shown on this clock in am/pm notation.
3. Write the times shown below as 24 hour times :-
a $\quad 8.17 \mathrm{pm}$
b twenty to five in the morning
c $\quad 11.29 \mathrm{pm}$
d seven minutes to nine at night.
4. Write these as 12 hour times :-

home from school
a 0245
b 1709
c 2157 .
5. Here are the times of two wine \& dine cruises down the west coast of Scotland.

	Ullapool	Mallaig	Fort William	Oban	Greenock	Ayr	Stranraer
Early dep.	0845	1134	1520	1725	1958	2112	2245
Late dep.	1330	1619	2105				

c Assuming both sails take the same time, at what time would the Late sail pass Ayr ?
6. A timetable for a special Senior Citizens Minibus is shown.
a When the Minibus leaves Erskine at 09.10, at what time does it arrive at Wemyss Bay?
b The Minibus arrives at Wemyss Bay at 22.25. Where did it set out from and when did it leave?

c I am at the bus stop in Langbank at 6.15 pm .
How long do I have to wait for the next Wemyss Bay bus to come along?
d How long does the journey take from :-
(i) Erskine to Langbank
(ii) Erskine to Greenock
(iii) Langbank to Greenock
(iv) Erskine to Wemyss Bay?
7. Round to the nearest second :-
a $\quad 12 \cdot 6 \mathrm{secs}$
b $\quad 38.47$ secs
c $1 \mathrm{~min} 17.75 \operatorname{secs} d 56 \min 53.5$ secs.
8. Change the following into minutes and seconds :-
a 70 secs
b 132 secs
c 201 secs
d 390 secs.
9. Write these in hours and minutes :-
a 86 mins
b $\quad 150 \mathrm{mins}$
c 193 mins
d 423 mins .
10. Here are the times taken by four horses to jump six fences :-

$$
\begin{array}{ll}
\text { Masie }-24.68 \text { secs } & \text { Dandie }-23.46 \text { secs } \\
\text { Lucy }-24.72 \text { secs } & \text { Cherrie }-23.4 \text { secs. }
\end{array}
$$

Find the total time they took to jump the fences,
 answering in minutes and seconds.
11. Copy and complete :-
$\begin{array}{r}4 \mathrm{mins} \\ +5 \mathrm{mecs} \\ +5 \mathrm{mins} \\ \hline\end{array}$
b $\quad 6 \mathrm{hrs} \quad 15 \mathrm{mins}$

- 2 hrs 40 mins

12.

There are two films showing in the cinema this weekend.
"Alien Zombies" which lasts for 1 hour 56 minutes and "Pirates of the Amazon" lasting for 2 hours 35 minutes.
a How much shorter is "Alien Zombies" ?
b I decide to watch both films, taking a
 half hour break between them.

How long will that be in total?
13. Hamilton's time for a practice lap is shown on this stopwatch.

Button's time was 1 minute 30.92 seconds.
a By how much did Button beat Hamilton?
b The fastest practice lap was done by Alonso, and was $\frac{3}{100}$ of a second faster than Button.

What was Alonso's time?

Consolidation of Decimals

What is a Decimal number?

Calculators should NOT be used in this Chapter unless otherwise instructed

1. In this question,
 stands for 1 (whole number).

What do the following diagrams represent?
a

b

c

2. A circle has been divided into 10 sections.

The remaining pink part represent 0.8 .
What decimal number does each of the following represent?
a

3. The blue diagram shown represents the decimal number 0.53. Write down the number represented by each diagram below :-

a

\square

c

4. In the decimal number 14-293, what does the :-
a 9 represent
b 3 represent?
5. What does the 2 represent in each of the following decimal numbers :-
a 172.633
b 5.028
c 0.2139
d 203.688
e 1.042?
6. Arrange the following groups of decimal numbers in order, smallest first :-
a 1.97, 1.098, 2.001, 1.8, 2.090, 1.898, 1.008.
b 0.976, 0.967, 0.908, 0.89, 0.977, 0.807, 1.102.
7. The number 3.458 can be thought of as follows :-

$$
3.458=3 \text { units }+\frac{4}{10}+\frac{5}{100}+\frac{8}{1000} \text { or } 3 \text { units }+\frac{458}{1000} .
$$

Write the following decimals in the same two ways :-
a 4.738
b 7.285
c 0.416
d 20.502
e 0.013 .
8. What number is:-
a $\frac{3}{10}$ up from 8.4
b $\frac{5}{10}$ down from 8.62
c $\frac{6}{100}$ up from 0.52
d $\frac{7}{100}$ up from $2 \cdot 119$
e $\frac{3}{1000}$ up from 3.687
f $\frac{9}{1000}$ down from 7.909?

Reading Decimal Scales

9. Say what number each of these arrows is pointing to :-
a

b $\left\{\begin{array}{llllllllll|}\mid & \mid & 1 & \mid & \mid & \mid & \mid & \mid & \mid \\ & 5 & & A & & 6 & & & & \\ \hline\end{array}\right.$
c

d

e

9

10. Look at the scale below and write down what numbers the arrows $A, B, C . . .$. are pointing to :-

Rounding

11. Round these to the nearest whole $£:-$
a $£ 8.23$
b $£ 1.75$
c $£ 18.67$
d $£ 19.48$
e $£ 11.61$
f $£ 0.52$
$9 £ 0.50$
h 18762 pence.
12. Round these measurements to the nearest whole centimetre :-
a 7.3 cm
b 8.7 cm
c 3.48 cm
d 11.55 cm
e 13.37 cm
f 69.91 cm
g 41.14 cm
h 99.50 cm .
13. Round these numbers to the nearest whole number :-
a $1.4 \rightarrow$
b 4.9 ->
c 8.26 ->
d 36.348 ->
e 15.74 ->
f 27.059 ->
g 14.755554 —>
h 342.09999 ->
14. Round these numbers to 1 decimal place :-
a $8.24 \rightarrow 8$....
b 2.913 ->
c 11.49312 ->
d 18.46576 ->
e 4.04717 ->
f 14.88437 ->
g 0.34789—>
h 0.08201 ->
15. Use your calculator to do the following divisions, then write down the answers correct to 1 decimal place :-
a $80 \div 15$
b $5200 \div 17$
c $17.6 \div 0.76$
d $614 \div 35 \cdot 3$
e $0.25 \div 0.07$
f $8000 \div 316 \cdot 9$.

16. Use your calculator to change these fractions to decimals and round your answers to 1 decimal place :-
a $\frac{3}{7}=(3 \div 7)=0.4285714 \ldots=0 \cdot \ldots$.... (to 1 decimal place)
b $\frac{3}{11}=(3 \div 11)=0$.
c $\frac{7}{9}=(7 \div \ldots)$
d $\frac{12}{19}=$
17. We can estimate answers by rounding to 1 decimal place.

First, round each number to 1 decimal place, and then find an estimate to :-
a $4.187+7.639$
b $17.513+38.399$
c 11.631-5.185
d $0.665+4.714$
e 45.966-14.515
f $7.287+0.176$
18. Round these numbers to 2 decimal places :-
a 9.367 —> 9.3...
b 3.854 ->
c 13.26909 ->
d 19.51098 -
e 4.00617 ->
f 23.89704 ->
g 0.275—>
h 0.099611 ->
19. a A banner, $7 \cdot 3$ metres long, is cut into 4 pieces of equal length. What length will each part of the banner be (to 1 decimal place)?
b 11.27 kg of potatoes are placed in equal amounts into 6 pots.
How many kilograms will there be in each pot (to 1 decimal place)?

Adding and Subtracting Decimals

20.

a	$3.8+1.1$	b	$18.6+12.3$	c	$33.9+8.4$	d	$5.73+6.5$
e	$0.348+0.46$	f	$0.89+0.376$	g	$0.754+0.78$	h	$10.44+10.976$
i	$25.2+15.56$	j	$19.1+2.458$	k	$703.99+84$	l	$222.7+115.658$
m	$4.8-4.5$	n	$19.6-16.2$	o	$78.7-40.6$	p	$2.57-0.5$
q	$47.7-34.92$	r	$718.4-511.86$	s	$3-0.084$	t	$1111-100.861$.

21. Find the total length or height for each of the following :-
a

b

22. Find :-
a An empty barrel weighs 8.62 kilograms.
7.7 kilograms of apples are put into the barrel.

What is the combined weight?

b

It is 11.4 kilometres to cycle from my house to the gym.
Taking a short cut, it is only 8.53 kilometres to the gym.
How much shorter is it to take the short cut?
c Baz collects his paper round money on a Monday.
He collects $£ 8.75$ from Ash Lane, $£ 11.80$ from
Beech Grove and $£ 18.90$ from Cedar Street.
(i) How much should he collect altogether?
(ii) He received $£ 55$ including tips. How much did he get in tips?

d

Drew cycles 8.7 kilometres of a 12 kilometre journey.
Tara jogs 4.72 kilometres of an 8.5 kilometre run.
Who has still to travel the farthest and by how much?
e Ally has a square garden of side 8.72 metres.
Chere has a rectangular garden with length 8.14 m and breadth 9.2 m .

They calculate the perimeters of their gardens.
Who has the larger perimeter and by how much ?

Multiplying and Dividing involving Decimals

23. Copy the following and complete the calculations:-
a

$23 \cdot 8$
$\times 4$

b $\quad 142 \cdot 73$
$\begin{array}{r}\times 7 \\ \hline\end{array}$
c $\quad 345 \cdot 6$
d 974.28
$\times 5$
24. Rewrite each of these in the above form and complete the calculations :-
a 7.7×8
b 27.5×4
c 39.715×5
d 6×4012.84
25. Show your working in answering the following questions :-
a

A tray of strawberries weighs 3.2 kilograms.
What is the weight of 8 trays?
b Henry the plumber earns $£ 38.48$ per hour.
How much does he earn for working one day from 7.30 am till 2.30 pm ?
c A baby monkey gained 176 grams per week over the past 8 weeks.
How much is this weight increase in total ?
d

Alex saved $£ 8.85$ per week for 6 weeks.
 Senna saved $£ 7.25$ per week for 7 weeks.

Who had saved more money and by how much ?
26. Copy the following and complete the calculations:-
a $4 \longdiv { 5 0 . 7 6 }$
b $\quad 5 \longdiv { 7 9 . 1 5 }$
c $7 \longdiv { 1 1 1 . 5 8 }$
d $9 \longdiv { 5 0 . 7 6 }$
27. Rewrite each of these in the above form and complete the calculation :-
a $7 \cdot 6 \div 2$
b $53.4 \div 6$
c $12.09 \div 3$
d $145 \cdot 35 \div 5$.
28. Show your working in answering the following questions :-
a 9 identical stone blocks weigh 433.8 tonnes.
What is the weight of 1 block?

b Sammi is paid $£ 154.64$ for working 8 hours as a surveyor.
How much does she earn each hour ?
c A distance runner practised the same route each day for 9 days.
He covered a total distance of 131.67 kilometres.
What was the distance of the route each day?
29. Write down the answers to the following :-
a 8.6×10
b 1.8×10
c 10×1.01
d 10×0.02
e 32.387×10
f 5.101×10
910×0.007
h 0.0102×10.
30. Write down the answers to :-
a 5.32×100
b 9.44×100
c 100×2.03
d 100×5.5
e $11 \cdot 123 \times 100$
f 100×0.155
g 100×0.0176
h 0.0094×100.
31. Write down the answers to :-
a 1.147×1000
b 6.060×1000
c 1.34×1000
d $1000 \times 56 \cdot 1$
e 1000×0.789
f 0.0654×1000
g 1000×1.0101
h 1000×0.7007.
32. A large jar of jam weighs 4.4 pounds. What is the weight of :-
a 10 jars
b 100 jars
c 1000 jars?

33. There are 1000 grams in 1 kilogram. How many grams are there in :-
a 8.435 kg
b 91.7 kg
c 0.1 kg
d 0.001 kg ?
34. Write down the answers to the following :-
a $43 \cdot 1 \div 10$
b $88.8 \div 10$
c $23.05 \div 10$
d $15 \div 10$
e $9 \div 10$
f $0.54 \div 10$
g $0.6 \div 10$
h $0.011 \div 10$.
35. Do the following :-
a $159.5 \div 100$
b $753.32 \div 100$
c $45 \cdot 1 \div 100$
d $87.04 \div 100$
e $880 \div 100$
f $95 \div 100$
g $1 \cdot 1 \div 100$
h $0.5 \div 100$.
36. Find:-
a $3598.2 \div 1000$
b $325876 \div 1000$
c $4560 \div 1000$
d $834 \cdot 1 \div 1000$
e $120 \div 1000$
f $400 \div 1000$
g $34 \cdot 3 \div 1000$
h $11 \div 1000$.
37. a

The total weight of 100 safety pins is 121 grams.
What is the weight of 1 safety pin ?
b $\quad 10$ people shared a $£ 175.80$ bill in a restaurant.
How much did each person have to pay?
c One thousand people each paid $£ 33 \cdot 20$ into a charity last week.
 How much did the charity receive last week?

Mixed problems

38. Round each of the following to the number of decimal places shown in each bracket :-
a 2.641 (1 decimal place)
d 9.16789
(2)
e 0.07651
(2)
b 18.951 (1)
c 0.8499
(1)
f 99.765 (2). g 0.00796
39. Write down the answers to the following :-

a	$8.8+1.11$	b	$12.6-8.9$	c	33.9×4	d	$5.75 \div 5$
e	0.348×100	f	$0.89 \div 10$	g	1000×2.583	h	10×1.976
i	25.2×7	j	19.1×100	k	$703.98 \div 3$	l	$111.7+11.527$
m	$403.8-47.52$	n	$16 \div 100$	o	0.004×10	p	$100 \times 0.1 \times 10$.

40. a A joiner has a 4.65 metre plank of wood. He cuts off a 2.8 m and a 0.82 m piece. How much of the plank is remaining?

b

Jane has a bookshelf. She can fill the bookshelf by stacking 4 books which are 6.74 cm wide.

Find the length of the shelf.
c Farmer Todd has a field which is 112.5 metres wide. He creates 9 equally spaced rows in the field to plant beetroot. Calculate the width of each row.

d

A gardener buys 124.8 kilograms of horse manure for his field. The manure is spread into equal amounts over 8 areas of his garden. How much is spread over each area?
e A bug crawls along a telephone wire.
He crawls 6.2 m , then turns and crawls back 2.84 m . He turns again and crawls forward 1.77 m .

How far is the bug from its starting point?

41. Calculate. (Hint - use BOMDAS).

a	$4+5 \times 2$	b	$11-3 \times 3$	c	$3 \times 4-8 \div 2$
d	$10+8 \div 4-6$	e	20-16 $\div 4$	f	$60-50 \div 10$
9	20-12+2-10	h	a quarter of $20 \div 5$	i	a fifth of 50-10
j	$\frac{1}{2}$ of $16 \div 4$	k	$10+\frac{1}{3}$ of 15	1	$13-\frac{1}{4}$ of $12+2$
m	$18 \div(6-3)$	n	$16 \div(10-2)$	0	$5 \times(6+3)$.

Decimals

Multiplication of Decimals by multiples of 10, 100, 1000

Remember :-

Be able to multiply any decimal number by a multiple of 10, 100 or 1000

If you multiply by 10, move all the figures ONE place LEFT (or move the point one place right).

If you multiply by 100, move all the figures TWO places LEFT (or move the point two places right).
If you multiply by 1000, move all the figures THREE place LEFT (or move the point three places right).

Learn the following rules :-

To multiply by 20	\Rightarrow	multiply by 10 then times by 2.
To multiply by 300		multiply by 100 then times by 3.
To multiply by 4000		multiply by 1000 then times by 4.

Exercise 1

1. Copy and complete each sentence :-
a To multiply by 60 you would multiply by 10 then times by
b To multiply by 800 you would multiply by then times by
c To multiply by 9000 you would multiply by \qquad
d To multiply by 70
2. Copy and complete using the rules above :-
a $1.32 \times 20=$

c 1.1234×2000

3. Find:-
a 13.23×40
d 437.6×50
e 23.13×200
h 0.076×800 i 0.073×2000
b $\quad 12.213 \times 300$

d 1.631×400

Remember :-

If you divide by 1000, move all the figures THREE place RIGHT (or move the point three places left)

Learn the following rules:-

To divide by 20	">	divide by 10 then divide by 2.
To divide by 300	д	divide by 100 then divide by 3.
To divide by 4000	g	divide by 1000 then divide by 4.

Exercise 2

1. Copy and complete each sentence :-
a To divide by 90 you would divide by 10 then divide by
b To divide by 700 you would divide by then
c To divide by 5000
2. Copy and complete using the rules above :-
a $84.6 \div 20=$

b $\quad 123 \cdot 6 \div 300$

3. Find:-
a $32.2 \div 20$
b $137 \cdot 8 \div 40$
c $51.95 \div 50$
d $437 \cdot 6 \div 40$
e $11.46 \div 600$
f $245 \cdot 35 \div 700$
g $9.018 \div 90$
h $13 \div 500$
i $88.4 \div 2000$
ј $96 \div 4000$
k $0.8 \div 5000$
l $568 \div 4000$.
4. Find :-
a $612 \div 900$
b 6.07×80
c $51.92 \div 80$
d $436 \div 4000$
e $1.29 \div 50$
f 240×70
g $11.4 \div 300$
h $96 \div 6000$
i 17.7×70
ј $0.99 \div 300$
k $0.8 \div 40$
l 0.055×9000.
5. Use a calculator to check all your answers.

The 3

 9 's
Revisit - Review - Revise

1. Write these numbers using digits :-
a one hundred and four
b two thousand, six hundred and one.
2. Write these numbers in words :-
a 3402
b 18006
c 132500
d 2675020 .
3. What does the $\mathbf{7}$ stand for in the number :-
a 34171
b 170020
c 0.8179
d $5 \cdot 71332$?
4. Write the number that comes just :-
a before 1980
b after 120999
c before 200000 .
5. Rewrite each set of numbers in order. Start with the smallest :-
a 22333, 9999, 7654, 19999, 20112, 22121
b 10.01, 10.99, 10.009, 10.099, 10.0955, 10.19999.

6. To what numbers do the arrows point ?

7. a Round to the nearest whole number :-
(i) 31.5103
(ii) 9.4989 .
(i) 5.86
(ii) 53.749 .
(i) 11.1333
(ii) 0.9953 .
b Round to one decimal place :-
c Round to two decimal places :-
8. Find:-

$$
\begin{array}{ll}
\text { a } & 5.7+4.6 \\
\text { e } & 2.483 \times 100 \\
\text { i } & 1.2145 \times 300
\end{array}
$$

b $\quad 13 \cdot 2-5 \cdot 71$
c $15 \cdot 7 \times 3$
d $13.74 \div 6$
f $117 \cdot 6 \div 10$
$g \quad 125 \div 1000$
h $16 \cdot 88 \div 20$
j $8.08 \div 40$
k 0.32×2000
9. Find:-
a $3+5 \times 2$
b $25-10 \div 5$
c $20+6 \div 2-13$
d $5 \times(6-2)$
e $18-15 \div 3+2$
f $3+\frac{1}{2}$ of $(10-4)$.
You may use a calculator for Q 10.
10. a Cut a plank 15.24 metres long into 6 equal sections. What length is each section?
b A 9000 ml carton of juice holds 12 packets. How many ml is in each packet?
c A plumber has twenty four 3.4 metre lengths of pipe. What is the total length of pipe?
d There are twenty sweets in a packet. Fifty packets are in a box. 144 boxes in a crate. How many sweets are in a crate?

Consolidation of Angles

1. Acute, Right, Obtuse, Straight or Reflex. What kind of angles are these?
a

b

c

2. From the angles listed below, list which ones are :-
a acute
b obtuse
c right
d straight
e reflex.
$127^{\circ}, 53^{\circ}, 184^{\circ}, 90^{\circ}, 300^{\circ}, 2^{\circ}, 178^{\circ}, 97^{\circ}, 180^{\circ}, 39^{\circ}, 126^{\circ}, 63^{\circ}$.
3. Use 3 letters to name each coloured angle :-
a

b

4. Estimate the size of both angles, then use a protractor to measure them accurately.
a

b

5. Draw each of the following angles and label them with their letters :-
a $\angle A B C=30^{\circ}$
b $\quad \angle P Q R=85^{\circ}$
c $\quad \angle X Y Z=150^{\circ}$.
6. How many degrees are there from :-
a East to South (clockwise)
b North East to South (clockwise)
c South West to North (anti-clockwise)
d South to South West (anti-clockwise)?

Angles \& Triangles:

Constructing Triangles

Make an accurate drawing of a triangle, given 2 sides and included angle
The best way to draw a triangle :-

- Make a rough sketch first.
- Then make an accurate drawing using a ruler, a pair of compasses and a protractor.

You need to be given 3 pieces of information about a triangle before you can begin to draw it.

No. 1 Two Sides and the Included Angle

 (the angle between the 2 sides)Shown opposite is a rough sketch of $\triangle P Q R$.
 To draw it accurately :-

Step 1 :- Draw the line $P R=7 \mathrm{~cm}$.

Step 2 :-
Put your protractor at P and mark an angle of 40°.

Step 3 :- Draw a line $P Q$, from P through the x, to point Q.

Make sure it is 6 centimetres long.

Step 4 :- Join R to Q to complete the triangle.

You need a ruler and a protractor for this exercise.

1. On the right is a rough sketch of $\triangle A B C$.

Follow the instructions to draw it accurately :-
Step 1 :- \quad Draw the line $A B=9 \mathrm{~cm}$.
Step 2 :- Put your protractor at AA and mark (with an x) an angle of 60°.

Step 3 :- Draw a line AC, from A through the x, to point C.
(Make sure it is 6 centimetres long).
Step 4 :- Join B to C to complete the triangle.
2.

Shown is a sketch of $\triangle D E F$.
Draw it accurately using the following instructions :-
Step 1 :- \quad Draw the line $D E=6.5 \mathrm{~cm}$.
Step 2 :- Put your protractor at D and mark (with an x) an angle of 75°.

Step 3 :- Draw a line DF, from D through the x, to point F.
(Make sure it is 8.5 centimetres long).
Step 4 :- Join F to E to complete the triangle.
3. Make accurate drawings of these triangles :-

4. Make accurate drawings of the following triangles :(You should make sketches of the triangles first before drawing them).
a Draw $\triangle A B C$ where
$B C=6 \mathrm{~cm}, \quad B A=4 \mathrm{~cm}$ and $\angle A B C=40^{\circ}$.
b Draw \triangle DEF where
$E F=8 \mathrm{~cm}, \quad D E=9 \mathrm{~cm}$ and $\angle D E F=80^{\circ}$.
c Draw $\Delta G H I$ where
$G H=70 \mathrm{~mm}, G I=90 \mathrm{~mm}$ and $\angle \mathrm{HGI}=30^{\circ}$.
d Draw $\triangle J K L$ where
$K L=12 \mathrm{~cm}, \mathrm{KJ}=5.5 \mathrm{~cm}$ and $\angle \mathrm{JKL}=140^{\circ}$.
e Draw $\triangle R S T$ where
$R S=T S=9 \mathrm{~cm}$ and $\angle R S T=60^{\circ}$.

No. 2 Two Angles and One Side

Here is a sketch of $\triangle A B C$, with 1 side and 2 angles given.

To draw it accurately :-

Step 1:- Draw the line $A C=6 \mathrm{~cm}$.

Step 2 :- Put your protractor at A and mark an angle of 30° with an x.

Step 3 :-
Draw a line from A through the x.

Step 4 :-
Put your protractor at C and mark an angle of 50° with an new x.

Step 5 :-
Finally, draw the line from C through the new x point.

Mark with the letter B, the point where the 2 lines meet.

1. Shown is a sketch of $\triangle K L M$.

Follow the instructions to draw it accurately :-

$$
\begin{aligned}
& \text { Step } 1 \text { :- Draw the line } L M=7 \mathrm{~cm} \text {. } \\
& \text { Step 2:- Put your protractor at } L \text { and } \\
& \text { mark (with an } x \text {) an angle of } 60^{\circ} \text {. } \\
& \text { Step } 3 \text { :- Draw a line from } L \text { through the } x \text {. } \\
& \text { Step } 4 \text { :- Put your protractor at } M \text { and } \\
& \text { mark (with a new } x \text {) an angle of } 40^{\circ} \text {. } \\
& \text { Step } 5 \text { :- Draw a line from } M \text { through the new } x \text {, } \\
& \text { to meet your first line at point } K \text {. }
\end{aligned}
$$

2.

Shown is a sketch of $\triangle P Q R$.
Draw it accurately using the following instructions :-
Step 1 :- Draw the line $Q R=10 \mathrm{~cm}$.
Step 2 :- \quad Put your protractor at Q and mark (with an x) an angle of 85°.
Step 3 :- Draw a line from Q through that point x.
Step 4 :- Put your protractor at R and mark (with a new x) an angle of 45°.
Step 5 :- \quad Draw a line from R through the new x and mark where the 2 lines cross with a P.
3. Make accurate drawings of the following triangles :-
a

b

c

4. Make accurate drawings of the following triangles :-
(You should make sketches of the triangles first before drawing them).
a Draw \triangle FWR where
b Draw $\triangle T A M$ where
c Draw $\triangle \mathrm{PON}$ where
d Draw \triangle SME where
$F W=9 \mathrm{~cm}, \angle R F W=50^{\circ}$ and $\angle R W F=60^{\circ}$.
$A M=11 \mathrm{~cm}, \angle T A M=68^{\circ}$ and $\angle T M A=80^{\circ}$.
$P N=72 \mathrm{~mm}, ~ \angle O P N=\angle O N P=25^{\circ}$.
$S M=12 \mathrm{~cm}, \angle E S M=28^{\circ}$ and $\angle E M S=134^{\circ}$.

No. 3 Three Sides

Here is a sketch of $\triangle X Y Z$, with all 3 sides given.

Make an accurate drawing of a triangle, given the lengths of all 3 sides

To draw it accurately :you will need a ruler and a pair of compasses.

Step 1 :- \quad Draw the line $X Y=6 \mathrm{~cm}$.

Step 2 :- Set your compasses to 5 cm . place the compass point on X and draw an arc (lightly) as shown.

Step 3 :- Now set your compasses to 4 cm , place the compass point on Y and draw another light arc.
(Call the point where the $2 \operatorname{arcs}$ meet Z)

Step 4 :-
Finally, use your ruler to join X to Z and Y to Z.

You need a ruler and a pair of compasses for this exercise

1. On the right is a rough sketch of $\triangle Y B C$.

Follow the instructions to draw it accurately :-
Step 1 :- Draw the the line $B C=8 \mathrm{~cm}$.
Step 2 :- Set your compasses to 6 cm , place the compass point on B and draw a light arc.
Step 3 :- Now set your compasses to 5 cm , place the
 compass point on C and draw another arc.
Step 4 :- Name the point where the arcs meet Y. Join Y to B and to C.

Shown is a sketch of Δ NBR.
Draw it accurately using the following instructions :-
Step 1 :- \quad Draw the line NR $=7.5 \mathrm{~cm}$.
Step 2 :- Set your compasses to 10.5 cm .
Place the compass point on N and draw a light arc.
Step 3 :- \quad Now set your compasses to 8 cm , place the compass point on R and draw another arc.
Step 4 :- Call the point where the arcs meet B and join B to N and to R .
3. Make accurate drawings of the following triangles :-
a

C

4. Make accurate drawings of the following triangles :-
a Draw $\triangle C A T$ where $\quad C A=7 \mathrm{~cm}, C T=5 \mathrm{~cm}$ and $T A=3 \mathrm{~cm}$.
b Draw $\triangle M D R$ where $\quad M D=13 \mathrm{~cm}, M R=7 \mathrm{~cm}$ and $D R=6 \mathrm{~cm}$.
c Draw $\triangle \mathrm{VKL}$ where $\quad \mathrm{VK}=9.5 \mathrm{~cm}, \mathrm{VL}=\mathrm{KL}=6.5 \mathrm{~cm}$. (What kind of triangle is this ?)
d Draw $\triangle S P U$ where $\quad S P=S U=P U=68 \mathrm{~mm}$. (What kind of triangle is this ?)
5. Try to draw triangle $W G R$ with $W G=8 \mathrm{~cm}, G R=4 \mathrm{~cm}$ and $W R=3 \mathrm{~cm}$.

Can it be done? If not, why not?

Remember
A right angle has 90°.

```
A straight angle has 180}
```

Examples :- Calculate the value of? in each of the following :-

Exercise 4

1. Calculate the missing value in each of the following :-
a

b

c

d

e

4

9 $? / 125^{\circ}$
h

2. Calculate the missing value in each of the following :(Remember there are 360° round a point).

b

c

d

Revisit - Review - Revise

1. What type of angles are coloured? Answer :- acute, obtuse, right, straight or reflex.
a

b

c

d

e

f

2. From the diagram, you can see that

5 is a right angle, but so is $(7+8)$.
Make a list of all the angles from 1 to 11 that are :-
a acute angles
c obtuse angles
b right angles
d reflex angles.

3.

Write down the new position of the letter :-
a p when the shape is given a half turn.
b sunder a quarter turn clockwise.
c \mathbf{v} under a quarter turn anti-clockwise.
d \mathbf{w} when the shape is rotated a full revolution.
4. a Draw any four sided shape which has 2 acute angles.
b Draw any four sided shape which has 1 acute angle.
c Draw any four sided shape which has 3 acute angles.
5. Name the 2 types of angles (one clockwise one anti-clockwise) between the hour hand and the minute hand when the time is :-
a two o'clock
b five o'clock
c 1800
d 2010.

You need a ruler, a protractor and a pair of compasses

6. Use a protractor to measure each of these angles, then write down its name and its size.
a

b
b

N
$\sqrt[H]{ }$
c

7. Use a ruler and protractor to draw angles of size :-
a 45°
b $\quad 170^{\circ}$
c $\quad 260^{\circ}$.
8. Make an accurate drawing of a triangle $\triangle P Q R$ with $P Q=8 \mathrm{~cm}, \mathrm{QR}=5 \mathrm{~cm}$ and $\angle P Q R=50^{\circ}$. (see the sketch).

9. Make an accurate drawing of a triangle $\triangle \mathrm{EGH}$ with $\mathrm{EG}=14 \mathrm{~cm}, \angle \mathrm{HEG}=20^{\circ}$ and $\angle \mathrm{EGH}=35^{\circ}$. (make a sketch first)
10. Draw a right angled triangle with two of its sides 6 cm and 8 cm .
11. Use a ruler and pair of compasses to draw an equilateral triangle with all three sides 7 centimetres long.

12. a Use a ruler and a pair of compasses to make an accurate, full size drawing of kite VWXY as follows:-

- Start by drawing line WY $=6$ centimetres.
- Now draw $\triangle W V Y$, then triangle $\triangle W X Y$ using your compasses.
b Name the four angles of the kite and use a protractor to measure and then mark in the size of each.

Consolidation of Compass Points

1. Copy and complete the 8 points of the compass diagram shown.

2. How many degrees are there from :-
a East to South (clockwise)
c North West to East (anti-clockwise)
e N to NW (clockwise)
b North to South (clockwise)
d North to South West (clockwise)
f N to SW (anti-clockwise)
3. a

Alice is facing East. She then makes a 45° turn clockwise.
In which direction is Alice now facing?
b Bert was riding his bike North East when he came to a roundabout. He then turned his bike through 45° anti-clockwise.
In which direction was Bert then travelling?

c

A yacht was sailing South West.

The yacht turned through 90° anti-clockwise.
In which direction was the yacht now sailing?
d A jet is flying SE, away from an airport.
How many degrees would the jet have to turn to face :-
(i) West (clockwise)
(ii) South (anti-clockwise)?

4. Use a ruler and protractor to draw an accurate diagram for each of the following :-
a A bug crawls 5 cm North, then crawls 6 cm West.
b A slug slithers 4 cm South, then 5 cm South East.

c A spider crawls $8 \mathrm{~cm} N E$, then 6 cm South, then $4 \mathrm{~cm} S W$.

Scale Drawing

Using Scales

Be able to interpret and use a scale on
a basic drawing

The map shows Jareed Island.
It has been drawn to a scale of

$$
1 \mathrm{~cm}=5 \mathrm{~km} .
$$

This means that every time you measure 1 centimetre on the diagram, in real life it represents 5 kilometres.

If you measure the distance from Shale to Talis on the map, you will find it is 4 centimetres.
\Rightarrow the real distance between the 2 towns is $=4 \times 5=20$ kilometres
RULE :- If you wish to find the REAL distance between 2 places :-

- Measure the distance on the map using a ruler,
- Multiply your measurement by the "scale" value.

Exercise 1

1. This scale drawing of a Gym hall floor is drawn to a scale of :-

$$
1 \mathrm{~cm}=6 \mathrm{~m} .
$$

a Measure the length and breadth of the hall.
b Now calculate the REAL length and breadth of the hall.

2.

This bus has been drawn using a scale :-

$$
1 \mathrm{~cm}=1.5 \mathrm{~m} .
$$

a Measure the height of the bus.
b Calculate the real height of the bus in metres.
c Calculate the real length of the bus.
3. This flag is drawn to a scale of :-

$$
1 \mathrm{~cm}=40 \mathrm{~cm} .
$$

a Calculate the real height of the flag.
b Calculate the real width of the flag.
c Which country does this flag represent?

4. A large banner covering the side of a building is to advertise a Rock event.

The small poster shown has been drawn to a scale of :-

$$
1 \mathrm{~cm}=90 \mathrm{~cm} .
$$

a By measuring the length of the small poster and using the given scale, calculate the real length of the banner (in metres).
b Calculate the height of the banner.

5. This flag pole has been drawn to a scale of :-

$$
1 \mathrm{~cm}=3 \text { metres. }
$$

a Measure the height of the flagpole.
b Calculate the real height.

6. A rectangular field is used for grazing cows.

The scale is :- $1 \mathrm{~cm}=40$ metres.
a Measure the length and breadth of the field.
b Calculate the real length and the real breadth of the field.
c Calculate the perimeter of the field.

7.

This table top has been drawn to a scale :$1 \mathrm{~cm}=30 \mathrm{~cm}$.
a Measure the length of the rectangle.
b Calculate the real length of the table top. Give your answer in metres (as a decimal).
c Calculate the real width of the table top.
8. A pipe below has been drawn to a scale of $1 \mathrm{~cm}=12$ metres.
a Measure the length of the pipe.
b Find the real length of the pipe.
9. A farmers rectangular field is shown on a map.

The scale of the map is $1 \mathrm{~cm}=40 \mathrm{~m}$.
The length of the field on the map is 8 cm .
The breadth of the field is three quarters of the length.
a Find the real length and breadth of the field in metres.

b Calculate the perimeter of the farmer's field.
10. The map opposite shows 4 towns on part of the mainland :-
a Use your ruler to measure the distance from Dopazi to Talia.
b Use the scale of the map to determine the real distance between the 2 towns.
c Measure the shortest distance between the following pairs of towns and then use the given scale to calculate the real distance between them :-

(i) Akila and Talia
(ii) Dopazi and Jazera.
d Calculate the shortest walking distance between Talia and Jazera.
11.

A helicopter delivers mail to and around a group of islands as shown on the map.
The dots show the airports and the landing strips.
a Measure the distance from Avida to Bruan.
b Use the scale ($1 \mathrm{~cm}=20$ miles) to calculate the real distance from Avida to Bruan.
c Calculate the real distances from Avida to :-
(i) Crida
(ii) Dilum
(iii) Effia.
d The pilot flies from Avida to Bruan, then to Crida, Dilum and Effia before returning to Avida. How far has he flown altogether ?
12. A cross-country racing circuit is shown opposite.

By measuring the perimeter of the circuit in centimetres, calculate the real distance, giving your answer in kilometres.

Many people use drawings and scale drawings in their jobs.
Without scale drawings there would be no buildings, furniture, cars, clothes, the list is endless !
Investigate who uses scale drawings as a large part of their profession.

Exercise 2

1. This is a sketch of a rectangular living room. Make an accurate scale drawing of the room using a scale of :-

$$
1 \mathrm{~cm}=1 \text { metre. }
$$

6 metres

2.

This is a sketch of farmer's field.
Follow the instructions below on how to make an accurate scale drawing of it using a scale :-

$$
1 \mathrm{~cm}=5 \text { metres. }
$$

a If 5 metres is represented by 1 centimetre in the scale drawing,
$\Rightarrow 60$ metres (length) will be represented by $(60 \div 5)=12 \mathrm{~cm}$.
Begin by drawing a line 12 centimetres long.
b Next, 35 metres (breadth) will be represented by $(35 \div 5)=\ldots \mathrm{cm}$.
Now complete your scale drawing by drawing the width ... centimetres and completing the rectangle.
3. The rectangular door of this garden shed is 160 centimetres by by 60 centimetres.
Make a scale drawing of the door using a scale :1 cm represents 20 cm .

4. A rectangular plot of land 360 metres by 150 metres is used by a company to create a forest for wood production.

Make a scale drawing of the land using a scale of

$$
1 \mathrm{~cm}=30 \mathrm{~m} .
$$

5. An orienteering course is designed in the shape of a right angled triangle as shown.
a Make a neat scale drawing of the triangular course using a scale of :-

$$
1 \mathrm{~cm}=200 \text { metres. }
$$

b Measure the length of the 3rd leg of the course on your drawing and use the scale to calculate the real length of the third leg in metres.

1600 m
6.

This triangular flag measures 150 centimetres by 60 centimetres. Make a scale drawing of the flag. Scale :- $1 \mathrm{~cm}=10 \mathrm{~cm}$.
7. A warehouse has a large "L-Shaped" floor 23 metres long and 12 metres wide (as shown).
Make a neat scale drawing of the floor using a scale of :- $1 \mathrm{~cm}=2$ metres.

This sketch shows the side view of a house.
a Make a scale drawing of it using a scale of :1 cm represents 100 cm .
b Measure the length of the sloping roof in your drawing in centimetres and calculate the real length of the sloping roof.
9. Shown is the triangular side wall of an Egyptian Pyramid.

The base of the pyramid is 220 metres long and the "height" of the triangular face is 180 metres.
a Make a scale drawing of the pyramid wall face using a scale of $1 \mathrm{~cm}=20$ metres.

b Make 3 identical drawings and use sellotape to construct a 3 dimensional pyramid.
c Use your model to find the real vertical height of this Egyptian pyramid.

You will need a ruler and protractor to draw the figures in this exercise.

Example :-

The sketch shows a flagpole Y T supported by a wire.
The distance from X to Y is 6 metres and $\angle T X Y=55^{\circ}$.
a Follow the instructions below carefully in order to make an accurate scale drawing using a scale of :-

$$
1 \mathrm{~cm}=2 \text { metres. }
$$

b Then use your drawing to calculate the real height of the flagpole.
a Step 1 :-
Scale
$2 \mathrm{~m}=1 \mathrm{~cm}$
$6 \mathrm{~m}=(6 \div 2)=3 \mathrm{~cm} . \Rightarrow$ draw $X Y=3 \mathrm{~cm}$.

Step 2 :- Draw a (feint) line straight up from Y to show the flagpole

The length of the line $Y T$ is 4.3 cm . Therefore height of flagpole $(4.3 \times 2)=8.6 \mathrm{~m}$

Exercise 3

1. a Make a scale drawing to show the height of this flagpole viewed from point A.

$$
\text { scale :- } 1 \mathrm{~cm}=3 \text { metres. }
$$

start by drawing the line representing $A B$. draw a feint line straight up from B. use your protractor to show $\angle C A B=32^{\circ}$. complete the drawing.

b Measure, in centimetres, the height of the flagpole in your drawing.
c Calculate the height of the real flagpole.
2.

Ann takes part in a "zip slide" to raise money for charity.
The wire rope is attached from a cliff-top to a boat waiting in the sea below.

The angle of elevation of the top of the cliff from the boat is 48°.
a Make a scale drawing of the boat and the cliff.

```
Scale :- 1 cm = 10 metres.
```

b Calculate the real height of the cliff.
3. For each of the following :-
(i) Make a scale drawing using the given scale.
(ii) Calculate the real height of the given object.

b

d

4. The picture shows George Washington, as a boy, chopping down the famous cherry tree.
a Draw a triangle using the scale

$$
1 \mathrm{~cm}=40 \mathrm{~cm}
$$

b Measure the height of the tree in your figure and calculate the height of the real tree.

5.
scale :-
$1 \mathrm{~cm}=3 \mathrm{~m}$

Special lights which can be seen for miles are constructed at the end of a pier.
a Make a scale drawing to represent the height of the tallest light using a scale

$$
1 \mathrm{~cm}=3 \mathrm{~m} .
$$

b Measure the height of the tallest light in your scale drawing and calculate the real height of the light.
6. Two soldiers set off from Headquarters (HQ). One of them sets off on a course due West.

The sketch shows where they are after 4 hours.
One soldier is exactly North of the other one.
a Make a scale drawing showing the paths of both soldiers using the scale

$$
1 \mathrm{~cm}=2.5 \mathrm{~km} .
$$

b Calculate how far apart the 2 soldiers are at the end of the 4 hours.
c How many kilometres had Joe travelled?
7. The diagram shows the journey made by a small boat as it sailed to two islands.

The boat travelled from the mainland to Duff Island to Homer Isle then back to the mainland.

Find the total distance that the boat travelled.

Another way of describing a direction is to give it as a 3 figure bearing. A 3-figure bearing must ALWAYS :-

- be measured from the North
- be measured in a clockwise direction
- have 3 figures.

Examples :- East, as a 3-figure bearing would be written as 090°. (zero-nine-zero degrees).

West, as a 3-figure bearing would be written as 270°. (two-seven-zero degrees).

.

Exercise 4

1. Write each of the following compass directions as a 3 figure bearing :(Remember your three rules above).
a South
b South East
c North East
d West
e East
f South West
9 North West
h North.
2. Which compass point direction would I be heading on if I was travelling on a bearing of :-

a 135°
b 270°
c 315°
d 000°
e one-eight-zero degrees
f zero-four-five degrees
9 two-two-five degrees
h zero-nine-zero degrees?
3. For each of the following directions write down the 3 figure bearing :-
a

b

c

4.

e

f

4. (Harder). Write down the 3-figure bearing for each of the following :-
a

b

c

5. You should now be able to draw an 8 point compass $N, N E, E, S E$, etc.

You should now be able to state the 3-figure bearing of each of these directions.

A compass can also be split into 16 points (as shown).

Notice halfway between
North and North East is
North North East (or NNE).
a Investigate the other compass points.

b Draw or sketch this compass rose showing all the missing points.
c Write down the bearings for all 16 compass points.

When measuring an angle to find a 3-figure bearing, the protractor must be placed correctly.

Example :-

This shows a bearing of 080°.

Exercise 5

1. Write down the 3 -figure bearing for each of the following :-
a
e

b
f

9
N

N

N

2. Using a protractor, write down the 3-figure bearing for each of the following :-
a

b

N

2. e

f
N

h

If the direction you are dealing with is further round than south, you still have to measure it "clockwise" from the North.

Can you see that in this figure, the line is 40° further round than south?
\Rightarrow it is $\left(40^{\circ}+180^{\circ}\right)=220^{\circ}$ round from North.
\Rightarrow the 3-figure bearing shown is 220°

3. Write down the 3-figure bearing for each of the following :-
a

c

d

4. Using a protractor, write down the 3-figure bearing for each of the following :-

5. Using a protractor, draw each of the following as a 3-figure bearing :-
(Remember to draw a North line first).
a 090°
b 140°
c 010°
d 005°
e 175°
$f 200^{\circ}$
$g 345^{\circ}$
h 193°.

The 3 প's

Revisit - Review - Revise

1. The scale on a map is given as $1 \mathrm{~cm}=3 \mathrm{~km}$.

On this map two petrol stations are 6 cm apart.
Find the real distance between the two stations.

2.

This scale drawing shows a tiled rectangular swimming pool.
The scale is $1 \mathrm{~cm}=3.5 \mathrm{~m}$.
Calculate the real length and breadth of the tiled pool.
3. Make a scale drawing for each sketch below using the scales given :-
a $1 \mathrm{~cm}=2 \mathrm{~m}$
b $1 \mathrm{~cm}=25 \mathrm{~km}$.

4. How many degrees clockwise from :-
a NE and S
b SW and W?
5. a I face NW. I turn 90° anticlockwise. What direction am I now facing ?
b I face SE. I turn 225° clockwise. What direction am I now facing?
6. Measure and write down the bearing of both towns Adford and Byce from CENTRAL :-
a

b
Byce
7. a Make a scale drawing of the diagram shown using a scale of $1 \mathrm{~cm}=4 \mathrm{~m}$.
b Measure the height of the pole on your diagram and find its real height.

Consolidation of Money

1. Karen buys a new pair of shoes costing $£ 54 \cdot 75$.

She hands over three $£ 20$ notes.
a How much change should Karen get?
b Give an example of what notes and coins she might have in her change.

2. Work out the answers to these :-

$$
\text { a } £ 24.63+£ 5.97 \quad \text { b } £ 39.08-£ 17.19 \text { c } £ 5.39 \times 6 \quad \text { d } £ 24.96 \div 6 .
$$

3. Cookies can be bought in packs of 4 or packs of 6 .

The pack of 4 costs 56 p and the pack of 6 costs 78 p.
Which is the better buy?
(Explain your answer with working).

4.
"BugKill" spray comes in two bottle sizes.

- The 500 ml bottle sells for $£ 4.50$.
- The 300 ml bottle sells for $£ 2.82$.

Explain which of the two is the better buy.

You may use a calculator in the next two questions but must show your working.

5. Nine tickets to a premier screening costs £177.75.
a What was the cost for each person?
b Mr Paul paid for himself, his wife and his friends Julie and Guy Fawkes.

How much did this cost Mr Paul ?
6. Mrs Talia arranges to take her Primary 6 class of 24 pupils to the theatre for a Summer Concert.
a How much should it cost her to buy 1 adult and 24 childrens' tickets?

She then notices the "special offer" available.
b How much will it cost if she takes up the offer?

Money

Bank Cards - Debit Cards

Be able to recognise card details from a bank card

Many banks now issue a Bank Card or Debit Card when you open a bank account. Bank cards can be used in most places to pay for goods or services instead of money.

for Security

16 digit Card Number. Dates are given as month/year eg 08/14 is end of August 2014.

Account Number is the actual bank account number being used.

When using a card you need a secret Personal Identification Number (PIN) which ONLY you know.

Exercise 1

1. Look at the bank card above.
a Which bank has issued this card ?
b What is the name of the person who uses this card?
c Write down the expiry date (end date) in full.

2. Write down all the information shown on each of the following cards :-
a

b

3. Discuss each of the following :-
a Why does each bank need a (sort) code ?
b Why does each person need an account number?
c Why should the PIN be secret and known only to the card holder?
d Do you think using a card is better than money ?

4. Write a few sentences about each point in question 3.
5. Find out more about banks and banking terms such as ATM, overdraft, direct debit etc.....

Credit Cards are used in a very similar way to a bank card.
The main difference is that a credit card does not have money stored in an account.
When you use a credit card you are borrowing money (very much like a loan).
Scotia Banks's Electrik Viza card has an APR charge (Annual Percentage Rate) of 36\%.
This means every month there will be a $(36 \% \div 12)=3 \%$ interest charge.
Example :- Ms String uses $£ 200$ from her credit card. How much interest will she owe after one month?

$$
3 \% \text { of } £ 200=3 \div 100 \times 200=£ 6
$$

Ms String will owe £206 after one month.

Exercise 2

1. Ms String uses her card (see above) and pays for a new bicycle costing $£ 160$.

How much will she owe after one month ?
(Remember to use an APR of 36%).
Copy and complete :-

36% APR means one month is ... \%
$\ldots \%$ of $£ 160=\ldots . . . \div 100 \times 160=$
She owes $£$...... after 1 month.
2. How much would she owe after one month if she used $£ 480$ on her card?
3. Mrs Wilson has a Viza Card which has an APR of 24%.
a What is the APR for 1 month ?
b How much would she owe after one month if she had used each of the following amounts on her card :-
(i) $£ 780$
(ii) $£ 1800$
(iii) $£ 345 \cdot 50$?

4. Erin uses a SIMLA card offering a 30% APR.

How much would she owe after one month if she had used :-
a $£ 80$
b $£ 880$
c £2140?
5.

Card	APR
Zamex	40%
Vira	33%
Banco	35%

Paul considers 3 different credit cards as shown.
Which credit card should he choose?
(Explain why).
6. a Find the differences between a bank card, a credit card and a store card.
b Many people fall into a lot of debt by using cards. Discuss.

Most people have to budget their money so that they can decide whether budgeting or not they can afford to buy certain items.
Example :- Pete saves $£ 35$ a week so that he can buy a scooter which costs £840.
a Can he afford the scooter after 18 weeks ?
b How many more weeks will he need to save?

Answer :- a $35 \times 18=£ 630$.
No, he cannot afford it after 18 weeks.
b $840 \div 35=24$ weeks. He needs to save 6 more weeks.

Exercise 3

1. Ross is saving $£ 30$ a week to buy a ring costing $£ 595$ for his girlfriend. a Can he afford to buy the ring after 19 weeks ?
b For how many more weeks will he need to save?

2.

Josh saves $£ 12.00$ every week for 9 weeks to buy a pair of hiking boots costing $£ 129$. For how many more weeks will he need to save ?
3. Anne saves $£ 25$ a week saving for an outfit costing $£ 196$. Tommy saves $£ 40$ per week for a new $£ 275$ suit.
a Who will be able to buy their item first ?
b By how many weeks?

4.

George saves $£ 25$ every week, saving up for a new computer costing $£ 315$.
a How many weeks will he need to save to be able to afford the computer.
b After 8 weeks he notices a sale where the computer is only $£ 225$.

For how many more weeks will he have to save?
5. Barry works 5 days a week and has budgeted $£ 60$ per week from his pay. $£ 40$ is for his train fares to and from work and he wants to spend $£ 5$ a day on his lunch.
a What is wrong with his calculations?
b What should he do to correct this ?

Examples :- If you buy a mobile for $£ 240$ and sell it for $£ 140$, you have "made a Loss of $£ 100$ ".

If you buy a watch for $£ 70$ and sell it for $£ 90$, you have "made a Profit of $£ 20$ ".


```
Profit = selling price - buying price, (if selling price is bigger).
Loss = buying price - selling price, (if buying price is bigger).
```


Exercise 4

1. I bought a signed football top for $£ 250$ and sold it on ebay a year later for $£ 160$.

How much of a loss did I make?
2. I bought a pair of football boots for $£ 32.50$ and sold them to a friend for $£ 20$.

How much of a loss did I make?

3.

Barry the builder built a bungalow for $£ 142550$. He sold it for $£ 164850$.
How much of a profit did Barry make?
4. Ash bought a sculpture for $£ 11000$.

He sold it to a private collector for $£ 17500$.
How much of a profit did he make?
5. Claire bought a pair of shoes for $£ 120$ and a designer bag for $£ 195$. One year later she sold the shoes for $£ 75$ and the bag for $£ 256$.
Did she make a profit or loss and by how much ?

6.

Sari bought two paintings for a total of $£ 1050$. She sold one for $£ 830$ and the other for $£ 650$.

How much profit did Sari make altogether ?
7. Ira bought a second hand car for $£ 7150$.

When Ira sold it a year later, he made a loss of $£ 1750$.
For how much did Ira sell the car?

8.

I bought some film memorabilia for $£ 1375$.
I sold it 3 years later at a profit of $£ 1120$.
How much did I receive for the memorabilia?
9. Alan bought ten bottles of wine for $£ 177$.

He sold each bottle for $£ 29.50$.
How much profit did Alan make altogether ?
10. A shopkeeper bought a box of 10 large glasses for a total of $£ 32 \cdot 50$. He sold each glass for $£ 4.50$.

How much profit did he make altogether after selling all 10 glasses ?
11.

A shopkeeper buys 8 ornamental vases for a total of $£ 260$. Unfortunately one vase is broken in the shop. He sells the seven remaining vases for $£ 46$ each.

How much profit does the shop make from the vases?
12. A shop bought 50 sets of candy canes in November for a total cost of $£ 70$. They sold 30 of them before Christmas at $£ 2.50$ each.
The other 20 were sold after Christmas at 60p each.
a How much money was collected when all 50 were sold?
b How much profit did the shop make?

13.

I bought a box of 10 cupcakes for my shop at a total cost of $£ 6.20$.
After selling all the cupcakes, I found I had only made a profit of $£ 2 \cdot 30$ altogether.
What must I have charged for each cupcake?
14. A newsagent bought a box of 200 pencils for $£ 6 \cdot 50$.

He tied them into bundles of 10 and sold each bundle for 60p.
a How many bundles of 10 pencils did he make?
b How much money did he make when he sold all the pencils?
c How much profit did he make altogether ?
15.

Alexandria bought 300 blank DVD's for $£ 150$.
She packed them in envelopes holding 20 discs each and sold each pack for $£ 11.50$.
a How many packs of 20 DVD's did she sell?
b How much money did she make when she sold all the packs?
c How much profit did she make altogether?
16. Ed pays $£ 60$ for 18 identical teddy bears for his shop. If he wants to make a profit of $£ 30$, how much does he need to sell each teddy for?

DISCOUNT means money taken off the original value of an item.

Examples :-

a A discount of $£ 8$ is given on a $£ 26$ book.

How much will the book now cost?

Old price	$£ 26$
Discount	$£ 8$
New price	$£ 26-£ 8=$

b A toy costing $£ 30$ has a 10% discount. How much will the toy now cost?

Exercise 5

1. Find the cost of each item after the discount :-
a Cost £72
Discount £17

b Cost £175
Discount £55
c Cost $£ 265$
Discount £110

d Cost £2400

e Cost $£ 280$
Discount 50\%
f Cost £7.50
Discount 10%.
2. a Amy joins a Gym class which usually costs $£ 175$.

She is given an introductory discount of $£ 52$.
How much does Amy pay?
b Alice bought a $£ 225$ exercise bike but was given a $£ 70$ discount. How much did Alice pay for her exercise bike?

C
d

Alan bought a barbecue for $£ 160$. He was given a 10% discount. How much did he pay for his $B B Q$?

Pierre bought a chef's outfit costing $£ 76$ and got a 25% discount.
How much did he pay for his outfit?
3. a Sally bought a dress and paid $£ 45$, which included a discount of $£ 12$.

How much was the dress originally (before the discount)?
b Sally also bought a pair of shoes which had a 10\% discount.
If she saved $£ 15$ in the sale, how much were the shoes before the discount?

Imagine you wanted to buy a washing machine, but you did not have the cash to purchase it.
You can do a deal with the shop, whereby you leave a small deposit (say £40) and agree to pay up the balance each month over a year.
This is called a "Hire Purchase" (or HP) agreement.

To work out how much you pay for the washing machine using hire purchase (H.P.)

* Do you notice that this has worked out £30 dearer ($£ 340-£ 310$).

	Deposit -		£40
	+ 12 payments $\times £ 25$		£300
t	Total Cost		£340

This is the DOWN-SIDE of Hire Purchase - it costs you more !!
Discuss why many people use HP as a form of paying for goods.

Exercise 6 (Show all your working and set each question down as shown above).

1. A cooker costs $£ 750$ cash.

I can buy it using a Hire Purchase agreement by making

- a deposit of $£ 50$
- plus 12 monthly payments of $£ 65$.
a Copy this working and complete it.

Cash
Price
£750
H.P. - Deposit £50

+ 12 payments of $£ 65$
b How much did it cost altogether using Hire Purchase?
c How much would I have saved by paying cash ?

2.

Alan's Amazing Autos

Cash Price - £1800

Ian bought a second hand car using Hire Purchase. He paid a deposit of $£ 250$ and agreed to make 18 monthly payments of $£ 105$ each.
a Copy the working and complete it.

b How much extra had Ian paid for the car?
3. Jill bought a new computer from "CompuShop".

She paid a deposit of $£ 75$ and followed this with

4.

The Persian rug for my living room is priced $£ 4650$.
I couldn't afford to pay cash so I took out a Hire Purchase agreement. The deposit was $£ 400$ and the 15 monthly payments were $£ 320 \cdot 20$ each.
a How much did it cost me for the rug on H.P. ?
b How much more was this than the cash price?
5. When Sally and Nick had their first baby they bought a new pram from "Pram-Care" priced £295.
They bought it on Hire Purchase by making a deposit of $£ 20$ followed by 26 weekly payments of $£ 12 \cdot 50$.
a How much did they pay for the pram using H.P. ?
b How much more was this than the cash price?

6.

Cash price $£ 12500$

Farmer Gregson bought a tractor from "Farming Supplies". He took out a Hire Purchase agreement paying a deposit of $£ 2500$ followed by 24 payments of $£ 462 \cdot 50$.
a How much did the tractor cost altogether using H.P. ?
b How much more was this than the cash price?
7. Emma bought a TV from Electra-Save costing $£ 365$.

She paid a deposit of $£ 50$ and made 6 payments of $£ 52.50$ each.
a Calculate the total cost of the TV using Hire Purchase.
b Did it cost her any more using this method than if she had paid cash ?
c Why do you think some shops don't charge more when you take out a short term hire purchase agreement?
8. Sometimes a hire purchase agreement doesn't cost you any more money. David wanted to buy a new motorbike which was priced at $£ 1500$.
The salesman allowed him to make a deposit of $£ 300$ and pay the balance over 6 months at no extra cost.
a After making the $£ 300$ deposit, how much did David still owe ?

b If he paid this evenly over the 6 months, how much did he pay each month?
9.

Lucy bought her designer dress for $£ 650$.
She agreed to pay a deposit of $£ 80$ and pay the balance over 10 months at no extra charge.
a After paying the deposit, how much did she still have to pay for her dress?
b How much did this leave her to pay each month ?
10. Bill bought a BINDIX tumble drier for $£ 345$ from "Ed's Electrics".
a How much of a deposit did he pay?
b What was his monthly repayments?

Ed's Electrics

No deposit!
Pay back in 15 months
at NO extra cost
11.

Leo bought an RXT 1000 keyboard from "Keys Music" using their hire purchase agreement.
Keys Music offered the following :-

```
Cash Price - £650
HP terms - 10% deposit
    +9 monthly payments of £71.50.
```

How much would Leo have saved if he had paid cash?
12. Martin bought a JetSki.

He paid a deposit of 20% of the cash price and 30 monthly payments of $£ 145$.
a Calculate how much this H.P. agreement cost Martin altogether.
b How much more expensive was this than paying cash?
13. Three companies offer different rates of HP for a $£ 3000$ jeep.

Calculate the total price for each company and state which is the most expensive.

	Deposit	Equal payments
CheapJeep	$£ 400$	12 at $£ 265$ each
Jeeps-R-Us	10%	18 at $£ 185$ each
JeepCo	12.5%	16 at $£ 175$ each

14. The cash price of a holiday was $£ 4000$.

Karen paid a 20\% deposit and 36 equal monthly payments. She ended up paying 10% more than the cost price.

How much was each payment?

Up until 1st January, 2002, all the countries in Europe had their own type of money (currency).
The euro was introduced and the other currencies were no longer accepted.
Britain still uses the pound ($£$) and when you go to Europe on holiday you have to change your British pounds (GBP) into euros ($€$).

guilders

A euro is divided into 100 parts. Each part is called a cent.

Exchange Rate :-

this is simply the number of euros you get for $£ 1$.
Example :- If I change $£ 300$ to euros, I receive :-

Exercise 7

1. Pauline flew to France and changed $£ 240$ to euros.

How many euros did she receive?
2. James changed $£ 500$ to euros before going for a week to Rome. How many euros did he get?

4. Find the price of the following when changed to euros:-
a

b

c

d

e

f

Not every country uses the euro.
Shown are some of the world exchange rates :-
5. a If I changed $£ 300$ to American dollars how many would I receive?
b Jamie changed $£ 800$ to Yen before flying to Japan.
How many did he receive?
c The McPhersons changed $£ 150$ to Hong Kong Dollars for a stopover in Hong Kong.

How many dollars did they receive?
d During our two week stay in Mexico, we spent $£ 1200$ which we had changed to Pesos.

British Pound (October 2011)
£1 =

American Dollar (\$) 1.70
Australian Dollar $\quad 1.60$
Chinese Yuan Renminbi $\quad 10.5$
Danish Krone 8.50
Euro $\quad 1.15$
Hong Kong Dollar $\quad 12.50$
Indian Rupee 70
Japanese Yen 120
Mexican Peso 20
New Zealand Dollar 1.90
Norwegian Kroner 9.00
South African Rand 12
Swiss Franc $\quad 1.20$
6.

How much was this in Pesos?

Martin went backpacking around Australia for 3 months.
Before he went, he changed $£ 1500$ to Australian Dollars.
How many did Martin receive?
7. Laura bought a new Samsung Galaxy $\mathrm{S11}$ for $£ 250$. How much would this be in :-
a American Dollars
b Euros
c Indian Rupees
d Swiss Francs?

8. I saw the same mobile phone when I was in Australia priced 400 dollars.

Was this cheaper or dearer than I paid for it back home? (Show working).
9. Decide which is the cheaper :-
a Scotland - £250, Germany - 300 euros.

b

Britain - £1600.
America - \$2699.
imac (£1600)
c Car price in Britain - $£ 14500$.
Same car in Italy - 16000 euros.

Only
£14500
10. Make up some questions of your own involving currency exchange.
11. Find some currencies that your friends have never heard of and discuss.

In Exercise 7 you learned how to convert GBP, Great Britain Pounds, ($£$) to Euros ($€$) by multiplying.

If you want to change euros back to pounds => you simply DIVIDE.

\square

Example :- I returned from France with 230 euros and changed it back to pounds.
How much did I receive?

exchange rate (as of 1st Oct 2011)
$£ 1=1 \cdot 15$ euros
divide!
divide!
divide!
divide! divide!

Exercise 8

1. I returned from Paris with 345 euros.

If I changed it back to $£$'s, how much would I get?
2. Natalie came home from Spain with 92 euros.

How much did she receive when she took it to the bank and exchanged it for £'s ?

3. Change the following to pounds. (Give your answers to the nearest penny).
a $1700 €$
b $\quad 315 €$
d $234 €$
e $30 €$
c $\quad 1000 €$

When she was in Pisa, Lynsey bought a new dress in one of the fashion houses for 425 euros.

How much was this in pounds?

5. What are equivalent values of the following items in pounds (to the nearest penny)?
a

b

c

d

e

f

6. Mr and Mrs Gratton and their two children spend the day at a theme park in Zurich, Switzerland.
Entry to the theme park is :-

| adult - | 14.50 francs |
| ---: | ---: | ---: | ---: |
| child | 9.50 francs. |

How much change (in $£$) will they get from $£ 50$?
7. Gary bought a MickBurger at home costing £6.80.

It costs $\$ 9.90$ in America.
It costs $\$ 10.40$ in Australia.
It costs 299 Rupees in India.
It costs $€ 8.05$ in France.
It costs 63.95 Hong Kong Dollars.

In which country is a Mickburger the cheapest ?
8. Alice had $£ 500$ to spend on her holiday in Mexico.

She paid 1200 pesos joining a water club and an additional 440 pesos for some water skiing lessons.

How many pounds does she have left to spend?

British Pound (OCT 2011)	$£ 1=$
	1.70
American Dollar (\$)	1.60
Australian Dollar	1.15
Euro	12.50
Hong Kong Dollar	70
Indian Rupee	120
Japanese Yen	20
Mexican Peso	1.90
New Zealand Dollar	1.20
Swiss Franc	

The 3 g's

Revisit - Review - Revise

1. Eddy gave the shopkeeper four $£ 20$ notes to pay for his computer case costing £64.75.
a How much change will Eddy receive ?
b Write down what notes and coins there could be in his change.

2. Find:-
a $£ 42.65+£ 17.85$ b $£ 173.40-£ 12.28$ c $£ 23.66 \times 7$ d $£ 155.95 \div 5$
3. Albert had $£ 136$ birthday money.

He bought a computer game for $£ 42 \cdot 75$, a camera for $£ 39.95$ and spent the rest on swimming lessons.

How much did he spend on swimming lessons?

4. a

Five girls hire a party bus for $£ 124 \cdot 60$.
How much should each girl pay?
b Eight boys each pay $£ 8.75$ for a football pitch hire. How much in total was the pitch hire?
5. Two boxes of Super Soap are shown.

Which box gives the better deal? (Explain).
6. Alex changes $£ 300$ into Euros at a rate of $£ 1=€ 1 \cdot 10$.

How many Euros did he receive?
7. Daria has to choose between two credit cards.

Emax offers 25\% APR and Vista offers 30\% APR.
Which should she choose? (Explain).

8. Jacob saves $£ 14 \cdot 50$ every week for 7 weeks to buy a computer chair costing $£ 170$.

How many more weeks will he have to save before he can afford the chair ?
9. Caitlin has saved $£ 85$. For her birthday her parents gave her $£ 80$, her gran $£ 45$ and her brother $£ 20$.

Can she afford to buy a new outfit costing a total of $£ 220$? (Explain).
10. a Carter bought a new car for $£ 8750$. He then sold it for $£ 8900$. What was his profit?
b Jules sold a case for $£ 86$. He bought it for $£ 110$. Comment on his profit or loss.

You may use a calculator for this page.
11. The bank gave Jason a loan. He received all $£ 20$ notes and the serial numbers on each note were in numerical order from 144440389 up to 144440413.
How much was Jason's loan from the bank?

12. Four Primary schools have collected loose change over the last year. They have 8114 one pence pieces, 975 two pence pieces, 1108 five pence pieces, 609 ten pence pieces and 1380 twenty pence pieces.

How much money have they collected in total ?

13. Erin changed $£ 450$ into Euros at a rate of $£ 1=€ 1 \cdot 15$. She spent $€ 375$ on her trip to Paris.
a How many Euros does she have left?
b If she changed the remaining Euros back into £'s at a rate of $£ 1=€ 1 \cdot 10$, how much would she receive?

14.

George saved $£ 23.50$ every week for 24 weeks.
How many more weeks will he need to save to be able to buy a bike costing $£ 850$?
15. Mr Thom bought 400 necklaces at $£ 8.72$ each. He gave away 50 of them for advertising and sold the rest at $£ 18.25$ each.
Calculate his profit.

16. A sweetshop owner buys 30 kg of Mint Imperials for $£ 125 \cdot 00$. He then packs the mints into 100 g bags.
a How many bags can be made from the 30 kg ?
b If he sells each bag for 80p, how much profit can be made?

17.

Ella bought a car for $£ 8600$.
A year later she sold it making a loss of 25%.
How much did she sell the car for?
18. Petra buys a painting for $£ 1400$.

A year later she sold the painting and made a 50% profit.
How much did she sell the painting for?

Integers

Be able to work with integers ...
An integer is simply a negative or a positive whole number or zero.

Examples :-

$-1,-64,6,42,0,-14,7000,-9876, \ldots$ are all integers.
$9 \cdot 5, \frac{1}{4}, 7 \frac{5}{8},-3 \cdot 9,1 \frac{1}{3},-432 \cdot 1, \ldots$ are not integers

Exercise 1

1. A thermometer is the most obvious place to see positive and negative numbers.

What temperatures are shown here?
a

b

c

d

e

9

h

2. Many people unfortunately come across negative numbers in their bank accounts.

When you have $£ 200$ in your bank account, the computer records this as $+£ 200 \cdot 00$. You could also be "overdrawn" by $£ 200$. This would show up as - $£ 200 \cdot 00$.

a You are overdrawn by $£ 50$! (You owe the bank $£ 50$). Write down how you think the computer shows this.
b Write down what these bank balances mean :-
(i)

(ii)

On the 3rd of I had in my bank account.
(iii)

(iv)

c Sandra's online banking account shows that she has ($£ 50$). She withdraws $£ 55$ from the account.
What will her balance show up as now?
d Jeff's bank balance is shown.
He paid $£ 48$ into the account. What was his new balance then?

e Melvin's bank balance was $£ 1$. He withdrew $£ 17$. What was his new balance?
f Last month Lucy's bank balance stood at (-£80.00). She withdrew a further $£ 25$.

What was her balance then?
9 If John's bank balance stands at (-£27), how much would he have to pay in to clear his overdraft?
h Moira's online banking account shows that she has ($£ 52 \cdot 20$). She buys a T-shirt with a cheque for $£ 7.50$ and pays $£ 46.50$
 for messages using her debit card.

When she next logs into her bank's website, what will her statement be showing ?
i Eddie's bank balance on 30/06/2011 was showing up as ($-£ 240$).
When his salary was paid in the next day the balance showed ($£ 2010$).
How much must Eddie have earned that month ?
j Julie's balance last week was (-£48). She used her debit card for $£ 60$ on the same day as her pay of $£ 300$ was paid into her bank. What was her new balance?

Exercise 2

1. Make a neat copy of this thermometer in your jotter.
2. Look at your thermometer.

What is the temperature that is :-

a	$2^{\circ} \mathrm{C}$ up from $17^{\circ} \mathrm{C}$	b	$12^{\circ} \mathrm{C}$ up from $0^{\circ} \mathrm{C}$
c	$18^{\circ} \mathrm{C}$ up from $3^{\circ} \mathrm{C}$	d	$7^{\circ} \mathrm{C}$ down from $13^{\circ} \mathrm{C}$
e	$12^{\circ} \mathrm{C}$ down from $22^{\circ} \mathrm{C}$	f	$3^{\circ} \mathrm{C}$ up from $-1^{\circ} \mathrm{C}$
g	$7^{\circ} \mathrm{C}$ down from $-3^{\circ} \mathrm{C}$	h	$11^{\circ} \mathrm{C}$ up from $-6^{\circ} \mathrm{C}$
i	$9^{\circ} \mathrm{C}$ down from $2^{\circ} \mathrm{C}$	j	$18^{\circ} \mathrm{C}$ down from $0^{\circ} \mathrm{C}$
k	$12^{\circ} \mathrm{C}$ down from $-7^{\circ} \mathrm{C}$	I	$16^{\circ} \mathrm{C}$ down from $-5^{\circ} \mathrm{C}$
m	$8^{\circ} \mathrm{C}$ up from $-11^{\circ} \mathrm{C}$	n	$28^{\circ} \mathrm{C}$ up from $-29^{\circ} \mathrm{C}$?

3. $6^{\circ} \mathrm{C}$ is $14^{\circ} \mathrm{C}$ up from $-8^{\circ} \mathrm{C}$.

Copy and complete these in the same way :-
(say whether it's .. up from or .. down from each time)

a	$7^{\circ} \mathrm{C}$ is ${ }^{\circ} \mathrm{C}$ up from $1^{\circ} \mathrm{C}$	b $12^{\circ} \mathrm{C}$ is from $17^{\circ} \mathrm{C}$	
c	$0^{\circ} \mathrm{C}$ is from $15^{\circ} \mathrm{C}$	d $8^{\circ} \mathrm{C}$ is from $-1^{\circ} \mathrm{C}$	
e $-9^{\circ} \mathrm{C}$ is from $0^{\circ} \mathrm{C}$	f $4^{\circ} \mathrm{C}$ is from $-11^{\circ} \mathrm{C}$		
g $-21^{\circ} \mathrm{C}$ is from $-14^{\circ} \mathrm{C}$	h $-3^{\circ} \mathrm{C}$ is from $10^{\circ} \mathrm{C}$		
i	$40^{\circ} \mathrm{C}$ is from $-40^{\circ} \mathrm{C}$	j	$-62^{\circ} \mathrm{C}$ is from $-50^{\circ} \mathrm{C}$.

4.

One winter's day in Dumfries, the temperature was $-8^{\circ} \mathrm{C}$.
In Aviemore it was 7° colder.
What was the temperature in Aviemore?
5. As I left my hotel room in Alaska the temperature was $21^{\circ} \mathrm{C}$.
When I stepped outside sixty seconds later,
the cold temperature of $-23^{\circ} \mathrm{C}$ hit me immediately!
What was the difference in temperatures
over those sixty seconds?

6. Whilst on safari in Kenya, I noticed the temperature rose from $-6^{\circ} \mathrm{C}$ at night to $43^{\circ} \mathrm{C}$ in late morning.

By how much had the temperature risen?

7.

Chris made a large batch of chilli con carne and put it in the freezer. Its temperature fell by a steady amount each hour. It started at $9^{\circ} \mathrm{C}$ and fell to $5^{\circ} \mathrm{C}$ in one hour.

What would the temperature be after :-
a 2 hours
b 3 hours
c 4 hours
d 10 hours?
8. Write each set of temperatures in order, coldest first :-
a $18^{\circ} \mathrm{C},-2^{\circ} \mathrm{C},-21^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 1^{\circ} \mathrm{C},-1^{\circ} \mathrm{C}$.
b $-36^{\circ} \mathrm{C},-9^{\circ} \mathrm{C},-17^{\circ} \mathrm{C},-58^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C},-2^{\circ} \mathrm{C}$.

Adding and Subtracting Negative Numbers

When adding or subtracting negative numbers, draw a thermometer, or at least imagine one!
Example 1 :-
Imagine the 3 on a thermometer.
Now do the " +9 " by going up 9 .
Example 2 :- $4+(-9)$
Imagine the 4 on a thermometer.
Now do the " $+(-9)$ " by going down $9.4+(-9)=-5$
Example 3:- 4-11
Imagine the 4 on a thermometer.
Now do the " -11 " by going down 11. $4-11=-7$

Exercise 3

Use the thermometer shown to help you with this exercise.

1. Write down each question first, then the answer :-
a $7+8$
e $9+(-2)$
i $0+(-16)$
b $4+12$
c $0+14$
d $7+(-5)$
m $(-9)+3$
f $13+(-13)$
$9 \quad 4+(-7)$
k $\quad(-6)+6$
h $2+(-8)$
$q(-9)+(-9)$
n $(-22)+14$

- $6+(-15)$
p $(-4)+(-18)$
r $(-5)+(-17)$
s $(-18)+7$
$+(-19)+13$.

2. Use your thermometer again to help here :-
(Remember :- 8-11 means "go to 8, then move down by 11").

a	$12-5$	b	$19-19$	c	$20-1$	d	$5-11$
e	$9-14$	f	$8-18$	g	$0-25$	h	$(-1)-7$
i	$(-2)-5$	j	$(-18)-6$	k	$(-1)-23$	।	$0-27$
m	$18-38$	n	$(-14)-27$	0	$150-450$	p	$(-159)-41$.

3. The rule is simple.

- Picture the first number on your thermometer.
- If you add a positive number move up.

If you add a negative number or subtract a number move down.

a	$4+9$	b	$6+(-10)$
e	$-5+(-7)$	f	$14-16$
i	$-21+36$	j	$0-46$
m	$17+(-8)$	n	$(-16)+15$

c 2-12 d $(-3)+13$
$g(-5)-9$
h $(-31)+(-21)$
k $0+(-17)$
$(-19)+(-4)$

- $(-48)+48$
p 63-87.

4. Calculate :-

a	$4+(-1)+2$	b	$5+(-6)+1$
c	$(-7)+4+5$	d	$9+(-8)+(-3)$
e	$(-12)-3-5$	f	$1+(-8)-7$
g	$(-3)+(-1)+8$	h	$(-5)+(-7)+11$
i	$(-6)+(-3)+(-9)$	j	$23+(-3)-21$
k	$5+(-25)-30$	i	$-100-300-500$

5. Try these :-
a $2+3+4+5$
b $\quad 6+7+8+(-4)$
c $3+6+(-5)+(-6)$
d $7+(-2)+(-3)+(-5)$
e $(-2)+(-4)+(-6)+(-8)$
$f \quad(-3)+(-5)+(-7)+18$
$g 20+(-21)+9+(-8)$
h $15-8-3-7$
i $(-10)-7+12-1$
j $100-(50+20+10)$
k $80+(10-20-30)$
l -100-300-500-100.
6. a Quickly!! What do you think the answer to 7-(-1) is ?

If you think the answer is 6 or -6 , you are wrong. The answer in fact is 8 !!
Look at the thermometer, find 7 and -1 and count from -1 up to 7 . The answer ??
Find:-
b 4-(-1)
c $8-(-3)$
d 2-(-2)
e 1-(-4)
f $0-(-3)$
$9 \quad-2-(-6)$
h $\quad-7-(-3)$.

Revisit - Review - Revise

1. State what temperatures are represented on these thermometers :-
a

b

2. George's bank balance last month was - $£ 350$ His monthly wage of $£ 1550$ was then paid in, but he also paid out his monthly gas bill of $£ 88$.
What is George's new bank balance?

3.

Pixie had $£ 280$ in her bank account before the weekend.
She withdrew $£ 150$ on Friday night and $£ 215$ while shopping on Saturday afternoon. She deposited $£ 90$ on Monday morning.
Write down her new bank balance.
4. Find:-

a	$6+(-2)$	b	$9+(-9)$	c	$(-1)+7$	d	$(-8)+11$
e	$(-14)+(-13)$	f	$(-3)+(-17)$	g	$(-26)+25$	h	$(-103)-104$
i	$(-5)-8$	j	$-15-20$	k	$(-23)+17$	।	$(-103)+104$.

5. The temperature at midday on a Spanish beach was $34^{\circ} \mathrm{C}$. At midnight it had fallen to $-6^{\circ} \mathrm{C}$.

By how many degrees had the temperature fallen?

6.

The coldest temperature ever recorded in Scotland was $-27^{\circ} \mathrm{C}$. (Altnaharra Dec. 1995).
The warmest recorded was $33^{\circ} \mathrm{C}$ (Greycrook Aug. 2003). Calculate the difference in temperature.
7. Calculate :-
a $6-8+1$
b $5-12+2$
c $(-1)+6-9$
d $(-4)+9-6$
e $0+(-5)+5$
f $(-6)+(-1)-3$
9
$(-48)+50+(-1)$ h $-50-30-20$.

Imagine you are walking at 4 km per hour and you do so for 3 hours.
Can you see that you will have walked $4 \mathrm{~km}+4 \mathrm{~km}+4 \mathrm{~km}=4 \mathrm{~km} \times 3=12 \mathrm{~km}$?

Given Speed \&
Time, be able
to calculate Distance travelled

- To calculate the distance travelled we simply multiply speed x time.

$$
D_{\text {istance }}=S_{\text {peed }} \times T_{\text {ime }}
$$

Example 1 :-

A car travelled at 45 km per hour for 3 hours.
What distance did it cover?

```
D =S NT
    = 45\times3
    = 135 km
```


Example 2 :-
A plane flies at a speed of 180 mph .
How far will it travel in 5 hours?

$$
\begin{aligned}
D & =S \times T \\
& =180 \times 5 \\
& =900 \text { miles }
\end{aligned}
$$

Exercise 1

1. Use the rule above (called a formula) to find the distance travelled by :-
a Avril, walking at 3 mph for 2 hours b Bert, walking at 4 mph for 3 hours
c Carol, driving at 50 mph for 4 hours d Dave, rowing at 1 mph for 6 hours
e Francis, cycling at 9 mph for 5 hours f Gerry, hopping at 0.5 mph for 2 hours.
2. Calculate the distance travelled by a :-
a lorry, going at 30 mph for 7 hours
c plane, doing 380 mph for 4 hours
e coach, moving at 55 mph for 6 hours
b train, travelling at 100 mph for 5 hours
d hot air balloon, floating at 2 mph for 15 hours
f fire engine, doing 80 mph for 2 hours.
3. What distances are covered by a:-
a speed boat, for 4 hours at $25 \mathrm{~km} / \mathrm{hr}$ b coach, for 9 hours at $40 \mathrm{~km} / \mathrm{hr}$
c police car, for 2 hours doing $85 \mathrm{~km} / \mathrm{hr}$ d person strolling, at $2 \mathrm{~km} / \mathrm{hr}$ for 3 hours
e bird, for 9 hours at $20 \mathrm{~km} / \mathrm{hr} f$
4. A plane left Benidorm at 1325 and arrived in Glasgow at 1625.

The plane flew at an average speed of 420 mph .

How long did the flight take and how many miles did the plane cover?
5. A tug boat left Kincardine at 2.50 pm and sailed at a steady speed of 15 mph along the River Forth. How far was the tug boat from Kincardine at 6.50 pm?

Since $6 \mathrm{~km}+6 \mathrm{~km}=12 \mathrm{~km}$, it must have taken you $12 \div 6=2$ hours.

- If you know your speed and the distance you have to travel, you can calculate the time taken by dividing distance by speed.

Example 1 :-

A motorbike travelled 150 miles at an average speed of 30 mph .
How long did the journey take?

Example 2 :-

Glasgow is 540 kilometres from London.
How long will it take me by coach, travelling at an average speed of $90 \mathrm{~km} / \mathrm{hr}$?

$$
\begin{aligned}
T & =\frac{D}{S} \\
& =150 \div 30 \\
& =5 \text { hours }
\end{aligned}
$$

$$
\begin{aligned}
T & =\frac{D}{S} \\
& =540 \div 90 \\
& =6 \text { hours }
\end{aligned}
$$

Exercise 2

1. Use the formula to calculate the time taken for each of these journeys :-
a walking, 8 km at $2 \mathrm{~km} / \mathrm{hr}$
b running, 24 km at $8 \mathrm{~km} / \mathrm{hr}$
c flying, 2000 km at $500 \mathrm{~km} / \mathrm{hr}$
d driving, 700 miles at 70 mph
e skating, at $4 \mathrm{~km} / \mathrm{hr}$ for 12 km
f crawling, 18 metres at 2 metres per second
9 speeding, at 80 mph for 240 miles
h eagle, flying at $11 \mathrm{~km} / \mathrm{hr}$ for 44 km .
2. When will these vehicles arrive :-
a Bus, leaves 9.30 am . Travels 200 miles at an average speed of 50 mph
b Van, leaves 4.55 pm . Travels 420 miles at an average speed of 60 mph
c Jet, leaves 2010. Travels 3000 km at an average speed of $500 \mathrm{~km} / \mathrm{hr}$?
3. Goodwin's Removals trucks usually average the speeds shown in the table opposite :-
For each journey, calculate the time taken.

60 mph on motorway journeys under 130 miles
65 mph on motorway journeys over 130 miles
50 mph on dual carriageways
30 mph on minor roads
a Glasgow to Stranraer - 50 miles on the dual carriageway.
b Stirling to Oban - 60 miles on the minor roads.
c Inverness to Stirling - 120 miles on the motorway.
d Glasgow to Norwich - 325 miles on the motorway.

This mileage chart shows the distances between several towns. Can you see that the distance from Tayport to Prestan is 93 miles ?
4. Use the chart to find the distance between the following :a Duns and Prestan b Suddick and Duns.
5. Use the mileage chart shown opposite to find the distance

 between these towns and find how long each journey should take.
a Duns to Tayport at 35 mph .
b Tayport to Suddick at 20 mph .
c Duns to Suddick at 43 mph .
6. An old steam train picks up passengers and leaves Gretna at 6.45 am . It travels the 246 km to Aberdeen at an average speed of $82 \mathrm{~km} / \mathrm{hr}$. a How long did the journey take?

b When did the train arrive in Aberdeen?
7.
 A large jet left London's Heathrow Airport at 2130 on a Sunday. Its destination was Mexico, 5580 miles away. If it travelled at a steady 620 mph :-
a How long did the journey take?
b At what time (our time) and on what day did the plane reach Mexico?
8. Calculate the time taken for these long haul flights :-
a Paphos - London. Distance 2040 miles. Average speed 408 mph .
b Tokyo - Honolulu. Distance 3815 miles. Average speed 545 mph .
c Paris - Havana. Distance 7755 km . Average speed $705 \mathrm{~km} / \mathrm{hr}$.

d Abu Dhabi-Sydney. Distance 12060 km. Average speed $804 \mathrm{~km} / \mathrm{hr}$.
9. List the cities in question 8 and find and write down which countries they are in.
10. A coach driver left Edinburgh at 1000 and drove the 360 miles to Dover to catch the ferry to Belgium.

- The ferry's departure time was 1730.
- The coach averaged a speed of 60 mph .
- He stopped for two half hour breaks.

Did he make it to Dover on time? (Explain).
11. Calculate the time in hours and minutes for the following journeys :-
a Drive the 100 miles from Airth to Bramley at a speed of 40 miles per hour.
b Walk for a distance of 21 km at a speed of 6 km per hour.
c Cycle at 12 km per hour to Baidmore, a distance of 27 km .

Imagine you walk 15 kilometres and it takes you 3 hours.
This means you walked 5 km the first hour, 5 km the 2nd hour and 5 km the 3 rd hour or $15 \div 3=5 \mathrm{~km}$ per hour.

- If you know the distance you have travelled and the time taken, you can find the speed by dividing distance by time.

Example 2 :-
A centipede covered 12 metres in 2 minutes.
What was the average speed of the insect?

What was the average speed of the scooter?

Example 1 :-

A scooter travelled 350 miles, taking a total of 7 hours to complete the journey.

$$
\begin{aligned}
S & =\frac{D}{T} \\
& =12 \div 2 \\
& =6 \text { metres } / \mathrm{min}
\end{aligned}
$$

$S=\frac{D}{T}$
$=350 \div 7$
$=50 \mathrm{mph}$

Exercise 3

1. Use the formula to find the average speed of these journeys :-
a 12 miles in 4 hours
b 60 miles in 6 hours
c 240 miles in 8 hours
d 1000 miles in 20 hours
e 375 kilometres in 5 hours
f 560 kilometres in 7 hours.
2. Calculate the average speed of the following journeys - careful with the units!
a 24 kilometres in 3 hours
b 320 kilometres in 4 hours
c 90 metres in 9 seconds
e 2800 kilometres in 14 hours
d 56 miles in 8 seconds
f 2400 metres in 40 minutes.
3. Calculate the average speed of these journeys in miles per hour (mph) :-
a A train travels 540 miles in 6 hours.
b A plane flies 1820 miles in 5 hours.
c A van travels 272 miles in 4 hours.
e A ship sails 91 miles in 7 hours.
d A woman jogs 12 miles in 3 hours.
9 A motorbike goes 225 miles in 3 hours.
f A ferry travels 135 miles in 9 hours.
i An athlete does 7 miles in 2 hours.
h A plane covers 4300 miles in 10 hours.

4. Work out these average speeds :-
a A ship travels 48 km in 3 hours. b A cyclist covers 64 km in 4 hours.
c A runner does 300 metres in 3 minutes.
d A worm crawls 2 metres in 1 minute.
e A girl hops 100 metres in 2 minutes.
f A fly covers 12 metres in 4 seconds.
9 A tricycle travels 5 miles in 10 minutes.
5. A hot air balloon left London at 1130.

By 1630 it had covered a distance of 65 miles.
Calculate the average speed of the balloon.
h A rocket flies 150 metres in 5 seconds.

6.

A plane left Glasgow at 7.45 pm and flew 1107 miles to Figo in Portugal, arriving at 10.45 pm .
a How long did the journey take?
b What was the plane's average speed?
7. The first ferry to Liverpool leaves Dublin at 0750 and arrives in Liverpool at 1550 .
Find the average speed of the ferry for the 144 mile trip.

8.

Henry decides to cycle to the coast.
His outward journey takes him two hours to get there, but the return journey takes one hour longer.

If Henry lives 30 miles from the coast, find his average speed for his round trip.
9. Calculate the average speed for each of these long haul flights :-
a Johannesburg - New York. Distance 7968 miles. Time taken 16 hours.
b Moscow - Los Angeles. Distance 6084 miles. Time taken 13 hours.
c Havana - Rome. Distance 8712 km. Time taken 11 hours.
d Toronto - Beijing. Distance 10584 km. Time taken 14 hours.
10. List the cities in Q9 and state which countries they are in.

11. Calculate the speed for each of these journeys :-
a I cycled a distance of 18 km and it took me $1 \frac{1}{2}$ hours.
b I walked to the shops 3 km from my house. It took me 30 minutes ($\frac{1}{2}$ hour).
c The distance from Glasgow to New York is 5200 km . A plane took $6 \frac{1}{2}$ hours to fly there.
d A lady typed 20 words in 15 seconds. What is her typing speed in words per minute?

It is difficult sometimes to remember which rule to use.
This diagram is called the time - distance - speed triangle.
It should help you remember.

- Given Speed and Time

$$
\Rightarrow D=S \times T
$$

- Given Distance and Time $\quad \Rightarrow S=\frac{D}{T}$
- Given Distance and Speed $\Rightarrow T=\frac{D}{S}$

Example 1 :-

Distance 90 miles. Speed 30 mph . How long did the journey take?

$$
\begin{aligned}
T & =\frac{D}{S} \\
& =90 \div 30 \\
& =3 \text { hours }
\end{aligned}
$$

Example 2 :-

Distance 150 km . Time 5 hrs .
What was the average speed?

$$
\begin{aligned}
S & =\frac{D}{T} \\
& =150 \div 5 \\
& =30 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Example 3 :-
Speed 70 mph . Time 4 hrs .
How far did the vehicle travel?

$$
\begin{aligned}
D & =S \times T \\
& =70 \times 4 \\
& =280 \text { miles }
\end{aligned}
$$

Exercise 4

1. Use the correct formula to answer these questions :-
a Distance 115 miles. Time 5 hours.
b Distance 180 km . Speed $45 \mathrm{~km} / \mathrm{hr}$.
c Speed 65 mph . Time 4 hours.
d Time 14 hours. Distance 280 miles.
e Speed $200 \mathrm{~km} / \mathrm{hr}$. Distance 4800 km .
f Time 7 hours. Speed 308 mph .
9 Distance 320 km . Speed $40 \mathrm{~km} / \mathrm{hr}$.

Find the average speed.
Find the time taken.
Find the distance travelled.
Find the average speed.
Find the time taken.
Find the distance covered.
Find the time taken.

2. A police car chased a stolen van for 2 hours, driving at an average speed of $78.5 \mathrm{~km} / \mathrm{hr}$. What distance had the police car covered?
3. A tall ship, sailing at a steady speed, took 3 hours to sail the 54 miles to the island of treasure.
What was that speed?

4. This poor chap travelled 144 metres at an average speed of 8 metres per minute after a gust of wind had blown him off his feet.

For how long was he in the air ?
5. A fighter jet took off from an airfield at 0355 and flew east to meet up with an aircraft carrier at 0755 .

If the jet flew for 2240 kilometres, what was its average speed?

6.

A cargo ship travelled through 36 miles of shallow water at a slow speed of 4 mph .

How long did it take the ship to go through this dangerous part of its journey?
7. A communications satellite orbits a planet at an average speed of 12800 mph . It takes 5 hours to complete its orbit.

Calculate the length of the orbit.

8. Postie lives 6 minutes away from the post office depot.

The distance from his house to the depot is 924 metres.
a Work out Postie's average speed, in metres per minute, when he walks to the depot.
b If he takes his bike to work he can get there three times quicker. How long does his bike journey take?

9.

A bird flies for 8 days when its migrates from Scotland in winter. If it keeps up a steady speed of 235 miles per day what distance will it fly in total?
10. A snail moves at a very slow speed - sometimes as slow as 5 centimetres per minute. At this speed, how long does it take a snail to cross a garden a metre wide?

11. Walter walked for 3 hours and covered a distance of 9000 metres.
a Calculate Walter's speed in metres per hour.
b How far will Walter walk in 1 minute?

12.

It took old Mrs Currie an hour to walk the half mile to the dairy to buy milk and bread.

Now, with the aid of her new electric chair, she can do it in 12 minutes.
a Calculate Mrs Currie's walking speed.
b How much faster does she travel in the chair?

13. a The 10th February 2001 (10 02 2001) was an 8 digit Palindromic Date. (It reads the same forwards and backwards).
Find the next 4 dates after this which were 8 digit palindromes.
b 2 minutes past 10 on the morning of Jan 10th 2001 (10 021001 2001) was a 12 digit palindrome. Find the next 4 after this.

1. Due to extra time and penalties, a football cup-tie which kicked off at 1945 did not finish until 2230.
How long did the cup-tie last?
2. a The wedding was to take place at 2.55 pm , but the bride arrived 27 minutes late!

At what time did she turn up?

b

The groom had left his home at ten to eleven that morning and had arrived for the ceremony exactly 28 minutes early.
How long had his journey taken him?
3. a A cruise liner was meant to dock at twenty five to two on Friday morning, but due to perfect sailing conditions it reached the harbour two hours and thirty five minutes early ! On which day and at what time did it actually dock ?
b At 9.30 am a maintenance check, which lasted 8 hours, was then started and carried out. After that, the liner set sail on its next voyage, scheduled to last 9 hours 15 minutes.

When was it due to arrive at its next port of call ?

4.

Singapore is 7 hours ahead of us. When it's 2 pm here, it's 9 pm there.
The Bennie family flew out to Singapore to visit relatives, leaving London Gatwick at 6.50 pm on Tuesday.
If the flight to Singapore took 12 hours 45 minutes, on what day and at what time (Singapore time) did they arrive there?
5. Greenland is 3 hours behind us. I left Edinburgh Airport to explore Greenland at five to four on a Saturday afternoon and arrived there 3 hours and 10 minutes later.

What time was it when I arrived?

6. a Given a distance and a journey time, write down the rule (formula) for finding the average speed.
b Given the average speed and a distance, write down the formula for finding the time for the journey.
c Given the average speed and the time taken, write down the formula for finding the distance travelled.
7. A van travelled 396 miles in 6 hours.

What was its average speed?

8.

Mary left her mum's home in Stirling and headed up the A9 dual carriageway, driving at a steady speed of $51 \mathrm{~km} / \mathrm{hr}$ to her own flat in Inverness, a distance of 153 km .
How long did it take her ?
9. A train left Dundee bound for Southampton. The journey took 7 hours, averaging a speed of 85 mph . How far is it by rail from Dundee to Southampton?

10.

George, a catering manager, drove for 280 miles at an average speed of 70 mph to organise a wedding breakfast.
If he left his kitchen at 3.30 am , when did he arrive at his destination?
11. At full speed, a tortoise took 6 minutes to cross a garden path, 3 metres wide. At what speed did he move, in centimetres per minute?

12.
 Murray can cycle to his friend's in 8 minutes. The distance from his house to his friend's is 2400 metres. a Calculate Murray's average speed, in metres per minute. If his dad takes him by car, Murray gets there 4 times faster.
b How long will it take him by car ?
13. The speed of sound is about 340 metres per second.

When Harry shouts to Hazel, it takes 3 seconds before she hears him? How far apart must they have been standing?

14.

A spider can cover 80 metres in half an hour.
Calculate the average speed of the spider in metres per hour.
15. It took a worm 300 minutes, sliding at $7 \mathrm{~cm} / \mathrm{min}$ to squirm along a patch of ground. How far had it travelled, in metres ?

Consolidation of 2-D work

1. Write down the names of each of these two polygons.
2.

Name all the mathematical shapes you can see in the figure shown opposite.
3. Describe each of these triangles by using an expression from this list.
scalene triangle
isosceles triangle equilateral triangle
a

b

c

4. Describe each of these triangles by using an expression from this list.
a

b

c

5. Name and describe these triangles fully.

6.
7. Use a pair of compasses to draw a circle with a radius of 4.5 cm .

2 Dimensions

What is meant by "Quadrilateral" ?
A "Quadrilateral" is a closed 4 sided linear shape. The shape is made up of 4 straight lines.

You have already met the square and the rectangle.

In this chapter we examine their properties and introduce 4 other special quadrilaterals
kite parallelogram

rhombus
paralelogram

trapezium

The Square

Exercise 1

1. Use a ruler to draw a neat square $A B C D$ with sides 5 centimetres.

Answer the following questions about the square :-
a Are all four sides the same length ?
b Are the opposite pairs of sides parallel ?
c Are all four angles the same size ?
d How many lines of symmetry has the square?

e Does it have :-
(i) $\frac{1}{2}$ turn symmetry
(ii) $\frac{1}{4}$ turn symmetry?
f If this square was cut out of the page, in how many ways could it fit back in the hole left in the page?

Now carefully draw in the two diagonals, $A C$ and $B D$ meeting in the middle at P.

9 Are the two diagonals the same length ?
h Does one diagonal bisect the other one (cut it in half)?
$i \quad$ Do the two diagonals cross each other at right angles (is $\angle A P B=90^{\circ}$)?

j Does each diagonal bisect the end angle (i.e. does BD cut $\angle A D C$ in half)?
(The above are called the properties of a square).
2. The square is the most perfect of all quadrilaterals.

Make a list of at least 10 properties starting with :-

1. All 4 sides are the same length.
2. Opposite sides are par \qquad
3. Look at square EFGH, shown opposite.
a Make a neat sketch of it.
b Fill in the sizes of all the other sides and angles.

4. a Draw a square, KLMN, with sides 7 centimetres.
b Draw in the 2 diagonals, KM and LN, and measure their lengths.
5. a Draw a square starting with its two diagonals 8 centimetres. (make sure they bisect each other at right angles)
b Measure the lengths of each of the sides of the square.
6. a Draw another square with its diagonals 11 centimetres.

b Measure the lengths of each of its sides.
7. a Draw a square which has a perimeter of 24 centimetres.
b Measure the lengths of its diagonals.
8. You discovered in Book 2(a) that the area of a square is given by the formula :-

$$
A=L \times B
$$

a Calculate the area of a square with sides 4 cm .

b Calculate the area of a square with sides 10 cm .
c Calculate the area of a square with sides 2.5 cm .
d Check that the square in Question 5, has an area of $32 \mathrm{~cm}^{2}$.
9. Working backwards. A square has an area of $49 \mathrm{~cm}^{2}$.
a What is the length of each of its sides?
b Calculate the perimeter of this square.
10. Shown are 2 identical squares, $P Q R S$ and RSTU, side by side.

Calculate the size of $\angle \mathrm{PSU}$.

Exercise 2

1. Use a ruler to draw rectangle $A B C D$ 7 centimetres by 4 centimetres.
Answer the following questions about this rectangle :-
a Are all four sides the same length ?

b Are opposite pairs of sides the same length ?
c Are opposite pairs of sides parallel ?
d Are all four angles the same size?
e How many lines of symmetry has the rectangle?
f Does it have :-
(i) $\frac{1}{2}$ turn symmetry
(ii) $\frac{1}{4}$ turn symmetry?

9 If the rectangle was cut out, in how many ways could it be fitted back into the page?

Now carefully draw the two diagonals, $A C$ and $B D$ meeting in the middle at E.
$h \quad$ Are the two diagonals the same length ?
i Does one diagonal bisect the other one (cut it in half) ?

j Do the two diagonals cross each other at right angles (is $\angle A E B=90^{\circ}$)?
$k \quad$ Does each diagonal bisect the end angle (is $\angle A D E=\angle E D C$)?
(The above are called the properties of the rectangle).
2. Make a list of 5 properties of a rectangle which make it different from a square.

Here's one to start you off :-

1. The rectangle does not have all its four sides the same length.
2. \qquad

3. a Neatly and accurately draw a rectangle measuring 8 cm by 6 cm . b Measure the lengths of its 2 diagonals.

4. Draw a rectangle with its diagonals 8 centimetres long.
(note 1: Start with one diagonal, find its midpoint, and draw the other diagonal through this midpoint).
(note 2: Your rectangle may look different from your neighbours).
5. Draw a rectangle with its diagonals 11 centimetres long.
6. a Draw a rectangle with a perimeter of 20 centimetres.
b Draw a different rectangle with a perimeter of 20 centimetres.
c Draw a third rectangle with a perimeter of 20 centimetres.
d If you start to draw a rectangle with perimeter 20 cm and you begin with one of its sides 5 cm long, what special type of rectangle will you end up with?
7. You learned in Book 2(a) that the area of a rectangle is given by the formula :-

$$
A=L \times B
$$

Calculate the area of a rectangle measuring 7 cm by 3 cm .
9. Calculate the area of these rectangles :-
a

10. Shown is a square ACEG and a rectangle CEJL. Calculate the area of the whole shape

11. Shown is a sketch of a rectangle with a perimeter of 24 cm .
a Sketch another which also has a perimeter of 24 cm .
b Sketch a further 4 rectangles with perimeter 24 cm .

c Calculate the areas of the 6 rectangles you have sketched.
d Which has the largest area?
e What special kind of rectangle was the one with the largest area? (Comment on this).

A rhombus has some of the properties of a square but not all of them.

Exercise 3

rhombus

1. With a ruler, draw a rhombus with diagonals 6 cm and 4 cm .

Use your figure to answer the following questions about the rhombus :-
a Are all four sides the same length ?
b Are the opposite pairs of sides parallel ?
c Are all four angles the same size ?
d Are opposite pairs of angles the same size ? ($\angle B A D$ and $\angle B C D$)
e How many lines of symmetry has the rhombus?

f Does it have :-
(i) $\frac{1}{2}$ turn symmetry
(ii) $\frac{1}{4}$ turn symmetry?

9 If the rhombus was cut out, in how many ways could it be fitted back in the page?
Now draw the two diagonals, $A C$ and $B D$, meeting in the middle at P.
$h \quad$ Are the two diagonals the same length ?
i Does one diagonal bisect the other diagonal ?

j Do the two diagonals cross each other at right angles (is $\angle B P A=90^{\circ}$)?
$k \quad$ Does each diagonal bisect the end angle (i.e. is $\angle B A P=\angle D A P$) ?
(The above are called the properties of a rhombus).
2. Make a list of 5 properties of a rhombus which make it different from a square.

To start you off :-

1. The rhombus does not have all its 4 angles the same size.
2. It only has lines of symmetry, whereas the square has four.
3. \qquad
4. Look at the rhombus $K L M N$ with $L M=13 \mathrm{~mm}, L O=12 \mathrm{~mm}$ and $O M=5 \mathrm{~mm}$.
a What are the lengths of the sides KL, KN and MN ?
b What are the lengths of the lines $O K$ and $O N$?

5. The easiest way to draw an accurate rhombus is :-

- not by drawing its four sides first.
- but by drawing its two diagonals first.

The diagram shows how to draw a rhombus PQRS with diagonals 10 cm and 6 cm .
Use the instructions to draw rhombus PQRS.
5. a Draw rhombus $A B C D$ with

- diagonal $A C=8 \mathrm{~cm}$
- diagonal $\mathrm{BD}=4 \mathrm{~cm}$.
b Measure the length of each of its 4 sides.

6. Draw a rhombus with diagonals 14 cm and 5 cm .
7. a Draw a rhombus with diagonals 8 cm and 8 cm .
b What special type of rhombus have you drawn?

Step 1 Draw diagonal $P R=10 \mathrm{~cm}$.

Step 2 Find its centre M.

Step 3 Draw diagonal QS $=6 \mathrm{~cm}$ passing through M (at 90°) to $P R$.

Step 4 Join $P \rightarrow Q \rightarrow$ $R \rightarrow S$

Start by drawing the 2 diagonals

i Does it have $\frac{1}{2}$ turn symmetry?
j If the kite was cut out, in how many ways could it be fitted back into the remaining hole?
2. Now carefully draw the two diagonals, $P R$ and $Q S$ meeting at the point X.
a Are the two diagonals the same length ?
b Does diagonal PR bisect QS ?
c Does diagonal QS bisect PR ?
d Do the two diagonals cross each other at right angles (is $\angle Q X P=90^{\circ}$)?
e Does diagonal PR cut the end angles in half (is $\angle Q R X=\angle S R X$) ?
f Does diagonal QS cut the end angles in half (is $\angle P Q X=\angle R Q X$)?
(The above are called the properties of a kite).

3. Make a list of the properties of a kite which make it different from a square.

To start you off :-

1. The kite does not have all its sides the same length.
2. Its opposite sides are not parallel.
3. \qquad
4. a Make a neat sketch of kite KLMN and mark in the 3 missing lengths.
b Copy and complete, using letters :-
(i) $\mathrm{KL}=$ \qquad (ii) $M N=\ldots .$.
(iii) $\mathrm{OL}=$.....
(iv) $\angle L K O=\angle \ldots \ldots$.
(v) $\angle \mathrm{KNO}=\angle \ldots \ldots$
(vi) $\angle \mathrm{LMO}=\angle \ldots \ldots$

5. Here is kite $A B C D$, with diagonals of length 12 cm and 8 cm .
a If you were asked to draw a kite like this, but with line $M C=9 \mathrm{~cm}$, you would end up with a "special" type of kite.
What is the name given to this special type of kite?
b If your kite had $M A=M B=M C=M D=9 \mathrm{~cm}$, what
 special type of kite would you have this time?
6. This shape consists of 4 identical kites surrounding a central point. The blue square surrounding the kites has its sides 30 cm long.
The smaller diagonal of the kite is 8 cm long.
Calculate the length of the red dotted line.

As the name suggests, a parallelogram is a quadrilateral with both pairs of opposite sides parallel.

Exercise 5

1. Use a ruler to make a neat sketch of a parallelogram like EFGH. Answer the following questions about the parallelogram :-

a "squashed" rectangle
a Are all four sides the same length ?
b Are opposite pairs of sides equal ?
c Are opposite pairs of sides parallel ?
d Are all four angles the same size ?
e Are opposite pairs of angles equal (i.e. $\angle \mathrm{HEF}=\angle \mathrm{FGH}$)?

f Does it have :-
(i) $\frac{1}{2}$ turn symmetry?
(ii) $\frac{1}{4}$ turn symmetry?

9 How many lines of symmetry does it have (check again) ?
h If the parallelogram was cut out of the page, in how many ways could it be fitted back into the page?

Now carefully draw the two diagonals, EG and FH meeting at K.
i Are the two diagonals the same length (Check by measuring) ?
j Does each diagonal bisect the other diagonal ?
k Do the diagonals meet at right angles (i.e. is $\angle E K F=90^{\circ}$) ?

1 Does each diagonal cut the end angle in half (i.e. is $\angle E F K=\angle G F K$) ?
(The above are called the properties of the parallelogram).
2. Write down some properties of a parallelogram which make it different from a rectangle.

1. The parallelogram does not have all its angles equal.
2.
3.

Make a neat sketch of this parallelogram and mark in the 4 missing lengths.
4. a A parallelogram has both its diagonals the same length. What kind of parallelogram is it ?
b The diagonals of a parallelogram meet at right angles. What kind of parallelogram is it ?
c The diagonals of a parallelogram meet at right angles and both diagonals are the same length. What kind of parallelogram is it this time?

Which Quadrilateral am I ?

Exercise 6

Choose your answers from :-
Square, Rectangle, Rhombus, Kite or Parallelogram.
(Some questions may have more than 1 answer).

1. I have 4 equal sides and my 4 angles are 90°.
2. I have 4 equal sides, but my 4 angles are not 90°.
3. My diagonals bisect each other, but not at 90°.
4. I only have 1 line of symmetry.
5. I have 4 equal sides and have only 2 lines of symmetry.
6. I have 4 lines of symmetry.
7. Only 1 pair of my opposite angles are equal.
8. I have 4 equal sides, but my diagonals are not the same length.
9. I fit into my outline in exactly 4 ways.

10. My diagonals meet at 90°, but only one bisects the other.
11. My diagonals are the same length and cross at 90°.
12. My opposite end angles are equal but not 90° and my opposite sides are parallel.

13. My diagonals bisect each other and bisect the end angles, but are not equal.
14. I don't have half turn symmetry.
15. My diagonals are equal and bisect my end angles.
16. My diagonals are equal, but don't meet at 90°.
17. I have quarter turn symmetry.
18. My 4 angles are equal, but I only fit into my outline in 2 ways.
19. I have 2 pairs of equal sides, but my opposite sides are not parallel.
20. I have 2 lines of symmetry, but they are not my diagonals.
21. I am often referred to as a "diamond".
22. Only 1 of my diagonals bisects the other.
23. I am sometimes referred to as a "squashed rectangle".
24. There is 6 th quadrilateral called a trapezium. Find out what it looks like, sketch one and make a list of any properties it has.

Be able to recognise Quadrílaterals from their properties

25. a Make a list of at least 4 real life objects that are in the shape of a square.
b Repeat for each of the other 5 quadrilaterals.

Revisit - Review - Revise

1. Write down the name of this polygon.
2.

Name all the mathematical shapes you can see in the figure on the left.
3. One of these triangles is isosceles, one is equilateral, the other one is scalene.

Which is which?
a
 b

c

4. Which of the triangles opposite is:-
a acute angled
b right angled
c obtuse angled?

5.

Name and describe this triangle fully.
6. The radius of a circle is 7.5 millimetres. Write down the length of its diameter.
7. Use a pair of compasses and a ruler to draw a semi-circle with a diameter of 10 cm .
8. This shape has three identical semicircles below a rectangle.
a Calculate the length of the diameter of one circle.
b What is its radius?

c Now calculate the height $(h \mathrm{~cm})$ of the shape.
9. What is the name given to these shapes ?

10. Draw a square with a perimeter of 30 centimetres.
11. A rectangle has sides 6.5 cm and 12 cm .
a Calculate its perimeter.
b Calculate its area in cm^{2}.

12. a Draw a rhombus with diagonals 12 cm and 5 cm .
b Measure and write down the length of a side.
13.

Look at kite RMVY.
a What is the length of :-
(i) TY
(ii) MV
(iii) RY?
b Write down an angle equal to :-
(i) $\angle M V T$
(ii) $\angle Y R T$.
14. a Make a neat sketch of this parallelogram and mark in the four missing lengths.
b On your diagram, draw in any line of symmetry.

15. Here is a list of properties belonging to quadrilaterals.

Write down which quadrilaterals have these properties. (There may be more than 1 answer).
a It has four equal sides.
c Its opposite sides are parallel.
e Its diagonals bisect the end angles.
b It fits its outline in 8 ways.
d Its diagonals bisect at right angles.
f It has half-turn symmetry.

9 Diagonals bisect each other, but not at 90°.
h It fits into its outline in only one way.
i Only one diagonal bisects the other.

Consolidation of Algebra

1. Copy the following and find what * stands for :-
a $8+$ * $=11$

* $=$....
b $15-*=7$
* $=$....
c $6 x^{*}=24$
* $=$....

2. What number does \square stand for each time here :-
a $6+\square=11$
d $\square-10=9$
9

b $\square \times 5=30$
c $\frac{\square}{3}=10$
e $\frac{42}{\square}=6$
h
f $17 \times$ \qquad $=0$
$+8 \cdot 5=13 \cdot 6$
i
\square $-55=0 ?$
3. In each of the following, the symbol \square stands for,,$+- x$ or \div. Decide which symbol is needed each time here :-
a $7 \square 2=5$
b 9 \square $2=18$
c 15
$3=5$
d $\quad 9 \square 5=14$
e 32 $4=8$
f $7 \square 2=14$
$9 \quad 4.5 \square 4.5=9$
h 9 \square $9=0$
i $7 \square 7=1$.
4. Solve the following equations (find the value of the letter) :-
a $x+3=17$
b $x-3=22$
c $4 \times w=36$
d $\frac{p}{7}=2$
e $\quad q-15=15$
f $55 \div g=5$.
5. Dave cycles 26 kilometres and Eric cycles * kilometres.

Their combined distance is 55 kilometres.
a Make up an equation using *.
b Solve it to find how far Eric cycled.

6.

Machine A

Machine B
a What number comes out when :-
(i) 7 is put into machine A
(ii) 23 is put into machine B ?
b What number has gone in when :-
(i) 32 comes out of machine A
(ii) 26 comes out of machine B ?

Algebra

Number Machines

Use a number machine to follow instructions involving two calculations
A number machine (or function machine) is the name for a mathematical rule which changes one number into another.

Sometimes this rule can involve two or more processes.

Example :- This number machine takes a number IN one side doubles it then adds 3 and pushes the answer OUT the other side.

19 comes OUT

Exercise 1

1. Look again at the function machine above.
a What comes out when you put in the number :-
(i) 1
(ii) 10
(iii) 25
(iv) $2 \cdot 3$
(v) 0 ?
b What number must have been put in to produce the answer :-
(i) 9
(ii) 27
(iii) 333
(iv) 9.6
(v) $21 \cdot 8$?
2. Here is a new function machine.

a What comes out of this machine when you put in the number :-
(i) 9
(ii) 12
(iii) 8.5
(iv) 40
(v) 0.8 ?
b What number must have been put in to produce the answer :-
(i) 16
(ii) 43
(iii) 34
(iv) 2.5
(v) 298?
3. Look at these number machines. Write down what number comes OUT :-
a

b

4. c

d

e

f

9

h

4. Here is another number machine.
(Read the question carefully).

What number must have been put IN to get the following numbers OUT :-
a 5 (the answer is NOT 9) b 17
c 29
d 20?
5. Look at the number machines below.

What number must have been put IN :-

6. Write down the missing number (or sign) in each machine below :-

7. Write down five different sets of signs and numbers to make this number machine produce the output 25 when 100 is put in.

Remember we can solve equations by cover up (using a finger).

$$
\begin{array}{r}
x+5=9 \\
x=4
\end{array}
$$

$$
\begin{array}{r}
y-7=1 \\
y=8
\end{array}
$$

We can also use our cover up method for these type of equations :-

$3 x=12$
$x=4$

There are various other ways of solving equations:-

- the "cover up" method
- the method of "equal addition"
- the "change side \longrightarrow change sign" rule.
$3 \times \mathrm{O}=12$

You may come across these alternative methods later.

Exercise 2

1. Copy and solve each equation by finding the value of the letter :-
a $x+3=7$
b $x+9=12$
c $x+1=17$
d $y+11=21$
e $y-3=6$
f $y-1=21$
g $p-10=0$
h $p-50=10$
j $k-18=0$
k $h+15=30$
m $5-q=1$
n $8+w=11$
i $p+6=6$
p $15+x=50$
q $\quad 17-r=14$
| $g-40=40$

- $9-z=0$
s $71+f=111$
$+145-x=77$
r $55+t=55$
u $515+y=761$.

2. Copy each equation and find the value of the letter :-

| a $3 x=6$ | b $4 m=20$ | c $5 p=30$ |
| :--- | :--- | :--- | :--- |
| d $7 q=28$ | e $6 t=36$ | f $6 a=60$ |
| g $3 b=36$ | h $8 d=48$ | i $2 x=24$ |
| j $2 p=22$ | k $4 p=56$ | l $6 m=54$ |
| m $10 x=110$ | n $8 t=64$ | o $14 p=42$ |
| p $2 b=5$ | q $2 c=9$ | r $2 n=19$ |
| s $4 x=10$ | t $8 x=12$ | u $10 x=55$ |
| v $4 x=21$ | w $10 x=34$ | x $5 x=24$. |

Harder Equations:-
Look at these equations which involve both addition/subtraction and multiplication.
Example 1 :-

$1=7$
Ask yourself - "what", add 1, gives 7 ?
The answer is $6=>$ this means $2 x=6$

Now ask yourself - 2 times "what", gives 6 ?
The answer is $3=>$ this means $x=3$
Can you see we can still use the cover up method? Examples:-
Discuss each of these examples with your teacher.

$$
\begin{aligned}
3 x-2 & =25 \\
3 x & =27 \\
x & =9
\end{aligned}
$$

$$
\begin{aligned}
4 x-6 & =6 \\
4 x & =12 \\
x & =3
\end{aligned}
$$

Exercise 3

1. Find the value of x by solving each equation below.

Copy and complete :-
a

b

C

$$
\begin{aligned}
4 x-5 & =15 \\
4 x & =\ldots \\
x & =\ldots
\end{aligned}
$$

2. Find the value of x by solving these equations :-

Set down your working carefully.
a $2 x+3=5$
b $\quad 3 x+6=21$
c $\quad 4 x+7=23$
d $5 x+2=42$
e $2 x-4=6$
f $3 x-3=24$
g $\quad 4 x-1=35$
h $3 x-6=0$
i $\quad 6 x-1=53$
j $7 x-2=68$
k $\quad 8 x+4=28$
| $9 x-2=61$
m $2 x-12=2$
n $4 x+10=22$

- $5 x+20=20$
p $\quad 3 x-5=55$
q $\quad 7 x-7=0$
r $2 x-5=0$
s $5 x-1=24$
$+2 x+5=12$
($6 x-3=12$.

3. Look at the picture showing 2 rods end to end.

a Write down an expression, in terms of x, for the total length of the 2 rods.
b Given that the total length of the rods is actually 21 centimetres :-
(i) make up an equation involving x.
(ii) solve it to find the value of x.
4.

Tony has $£ 8$ and David has $£ x$. Together they have $£ 17$.
a Make up an equation using this information.
b Now solve it to determine how much David has.
5. There were x marbles in a bag. 7 were removed. I then found that there were 14 left.
a Make up an equation about the marbles.
b Now solve it to determine how many there were to begin with.

6. For each of the following :-
(i) make an equation and
(ii) solve it.
a
Chad has x pencils in his case. Harry has 14 pencils.
Altogether they have 31 pencils.
b Eliose has to cycle $2 \cdot 3$ kilometres to school.
Franz has to walk y kilometres.
They travel a total of 3.1 kilometres.

c

Tom cycles from his house to the park then to the beach, a total of 34 kilometres.

From his house to the park is 20 km .
The park to the beach is p kilometres.
7. To find the area of a rectangle you multiply its length by its breadth.
a Write down an expression for the area of this rectangle in terms of x.
b If the actual area is $24 \mathrm{~cm}^{2}$,
(i) write down an equation involving x,
(ii) solve it to find the value of x.

8. Find the value of x in each case :-
a $\frac{1}{2} x=7$
b $\quad \frac{1}{3} x=9$
c $\quad \frac{1}{4} x=20$
d $\quad \frac{1}{5} x=10$
e $\frac{1}{10} x=5$
f $\quad \frac{1}{8} x=2$
g $\frac{1}{6} x=11$
h $\quad \frac{1}{5} x=20$
i $\quad \frac{1}{2} x=3 \frac{1}{2}$
j $\quad \frac{1}{2} x+1=6$
k $\quad \frac{1}{3} x-4=2$
| $\frac{1}{4} x-2=1$
m $\quad \frac{1}{2} x-2=1$
n $\quad \frac{1}{5} x+1=3$

- $\frac{1}{10} x-10=10$.

The equations you were solving were called equations because they each had the "=" sign in them.
There are 4 other mathematical signs, called inequalities and they are :-

$\geq \quad$ is greater than or equal to
\leq is less than or equal to

Examples:-

$5>3$ "five is greater than three"
-7 <-6 "negative seven is less than negative six"
$x \geq 2$ " x is greater than or equal to two" (x can be 2 or any number above 2)
$y \leq-5 \quad$ " y is less than or equal to negative five" (y can be -5 or any number below -5).

Have you noticed ?? - The arrow (<), (>) always points to the smaller number.

Exercise 4

1. COPY the following as shown and place a " $<$ " sign or a " $>"$ " sign between the numbers :-
a 8 ... 1
b $2 \ldots 5$
c $0 \ldots-5$
d $-4 \ldots-3$
e $6 \ldots-3$
f $-8 \ldots-17$
g $-117 \ldots-116$
h $-141 \ldots-140$
i $\quad 12 \ldots 11 \frac{1}{2}$.
2. Rewrite the following pairs of numbers to suit the given sign :-

$$
\text { Example :- write } 5 \text { and } 4 \text { using a "<" sign. } \Rightarrow>\text { answer is :- } 4<5 \text {. }
$$

a 8 and 3 , using " " "
d -8 and -5 , using " >"
$9-15$ and -14 , using " <"
b 8 and 3 , using " >"
e -2 and 2, using " >"
h -77 and -79, using " >"
c 17 and 11 , using " <"
f 5 and -1 using, " <"
i 9 and -10 using, " <".
3. In this question you must choose x only from the numbers $0,1,2,3$, or 4 .
Examples :-
(i) $x \geq 1$ gives $x=1,2,3,4$.
(ii) $x<3$ gives $x=0,1,2$.
a $x>2$
d $x \leq 1$
b $x<4$
c $x \geq 3$
$g x>4$
e $x>0$
f $x \leq 4$
h $x \geq 0$
i $x \leq 0$.
4. In this question you must choose y only from the numbers, $-3,-2,-1,0,1,2,3$.
a $y>1$
b $y<0$
c $y \geq-1$
d $y \leq 1$
e $y>-3$
f $y \leq-2$
$9 \quad y>-2$
h $y<1$
i $y \geq-3$.
5. For each of the following given statements, make up your own inequality :-

Example :- the maximum crowd (C) at Hampden Park is set at 52000.

$$
\Rightarrow \quad C \leq 52000
$$

a The maximum permitted crowd (C) at Fir Park is set at 14000.

$$
\Rightarrow \quad \text { C }
$$

b Voters have to be 18 years old or over.
(i) Brian is Y years old and can vote. $\Rightarrow Y \geq \ldots .$.
(ii) Paula is T years old and cannot vote. =>
c The maximum number of passengers on a bus is 51 . There were P people on the bus. =>
d The speed limit outside school buildings is now 20 mph . Cheryl was booked for speeding outside a school. She was travelling at $V \mathrm{mph}$. =>
e A child's pedal car race has a maximum speed limit of 12 mph . The car was travelling at S miles per hour. =>
f A group booking for a Paintball competition needs to be a minimum of 6 .
Andi is booking his group of y people. =>
9 The cost of a train season ticket is $£ 40$. Beryl has $£ M$. She has got enough money with her to buy one. =>
h To win a penalty competition Nick requires to score at least 6 penalties. He didn't win! He scored P penalties. =>

i In a Maths test out of 20, a mark of 16 or more was regarded as a GREAT pass. Charles got a GREAT pass. He scored M marks out of 20. =>
j To heat pies in an oven requires the oven to be set at $220^{\circ} \mathrm{C}$ for 30 minutes. Sally had put pies in the oven for 30 minutes but had totally burned them. The oven temperature for the 30 minutes was $T\left({ }^{\circ} \mathrm{C}\right)$. =>
k A computer game costs £40.
Mary has $£ x$. Sid has $£ y$. By putting their money together they find that they have more than enough to buy the game. =>

Solving Further Inequalities

To solve an inequality, you use the same technique used to solve an equation. Look at the this example :-

Comparing the equation $\begin{array}{r}x+5=9 \\ x=4\end{array}$ to the inequality $\left.\begin{array}{r}x+5<9 \\ x<4\end{array}\right]$
Here are 3 further examples:-

$$
x-5>6
$$

$$
\begin{aligned}
x+4 & >10 \\
x & >6
\end{aligned}
$$

$$
\begin{aligned}
x-2 & \geq 5 \\
x & \geq 7
\end{aligned}
$$

Exercise 5

1. Solve these inequalities, leaving your answers in the form :- $x>3, x<5, x \geq-1$, etc.
a $x+1>5$
b $x+2>11$
c $x+8 \leq 9$
d $x+7<15$
e $\quad x-1 \leq 8$
g $x-10>0$
h $x-20<50$
f $x-5 \geq 20$
g $x-10>0$
k $x+59<60$
i $x+7 \leq 7$
j $x-8 \geq 0$
| $x-40>40$
m $x+3.1<4.2$
n $x-111>99$

- $x+\frac{1}{2}<1$
p $11+x>13$
q $3+x \geq 10$
r $21+x<25$.

Inequalities like " $4 x<24$ " are tackled the same way as the equivalent equation.

Examples :-

$$
\begin{gathered}
7 x \geq 42 \\
x \geq 6
\end{gathered}
$$

2. Solve each inequality, leaving your answers in the form :- $x>3, x<5, x \geq-1$, etc.

| a $3 x<21$ | b $4 x>20$ | c $5 x<55$ |
| :--- | :--- | :--- | :--- |
| d $6 x \geq 54$ | e $7 x \leq 49$ | f $8 x>80$ |
| g $8 x<40$ | h $10 x \leq 100$ | i $3 x>0$ |
| j $11 x \geq 11$ | k $3 x<9$ | । $12 x>36$ |
| m $2 x>4.6$ | n $18 x \leq 180$ | o $14 x \geq 1400$ |
| p $3 x<2400$ | q $5 x>1250$ | r $5 x \leq 120$. |

3. For each of the following given statements, make up your own inequality and solve it to find x :-
a Gary has $£ x$ saved. Josh has $£ 120$.
Together they do not have enough money to buy a game station costing £190. => x
(hint:- $x+\ldots$ < 190)

b Vera and Sara are saving together for a holiday, total cost $£ 775$.
Vera has $£ x$ and Sara has $£ 400$. They have more than enough saved. =>
c

James has $£ x$ in his bank. He withdraws $£ 10$.
He still has more than enough in his account to pay for a bank charge of $£ 35$. => =>
d Sally has $£ x$. Brenda has twice as much as Sally.
Brenda has less than $£ 50$. =>
e The maximum speed limit in a village is $x \mathrm{mph}$.
Darren received a ticket for going at 2 times the speed limit.
Darren was travelling faster than 60 mph . =>

4. Find the value of x by solving these inequalities:- (Set down your working carefully).
a $3 x+2<14$
b $\quad 2 x+5>13$
c $5 x+1<1$
d $\quad 4 x+2 \geq 34$
e $\quad 6 x-1 \leq 23$
f $5 x-16>39$
g $8 x-8 \leq 0$
h $4 x-6<6$
i $9 x-2>52$
j $\quad 10 x-3 \geq 57$
k $\quad 7 x+10<45$
| $6 x-11 \leq 55$
m $5 x-12 \geq 3$
n $9 x+10<10$

- $2 x+7 \geq 12$
p $\quad \frac{1}{2} x-12 \geq 3$
q $\quad \frac{1}{2} x+10<10$
r $0 \cdot 1 x+7 \geq 12$.

5. Solve each inequality, by taking each value from the given list and checking to see if it works :-

Inequality Numbers chosen from Inequality Numbers chosen from
a $2 x>6$
$\{1,2,3,4,5\}$
b $4 x<20$
$\{1,2,3,4,5\}$
c $x+4<7$
$\{0,1,2,3,4\}$
d $x-5>0$
$\{2,3,4,5,6,7\}$
e $4 x+2 \geq 6$
$\{0,1,2,3\}$
f $3 x-1 \leq 8$
$\{-1,0,1,2,3,4\}$
g $\quad 15-x \geq 12$
$\{1,2,3,4,5,6\}$
h $15-2 x \leq 11$
$\{0,1,2,3,4,5,6\}$
i $3 x>3$
$\{-1,0,1,2,3\}$
j $\quad \frac{1}{2} x \leq 1$
$\{-2,-1,0,1,2,3,4,5\}$.

Revisit - Review - Revise

1. a What number must have gone into this number machine?
b What number should come out of this number machine?

2. Write the sign $(+,-, \div, x)$ that \square stands for each time here :-
a 9$3=6$
b 9$3=3$ c 9$3=12$
3. Solve these equations to find the value of x.
a $x+3=11$
b $\quad x-5=5$
c $x+15=25$
d $x-7=0$
e $\quad 2 x=22$
f $\quad \frac{1}{3} x=6$.
4. There were 30 people on a train. After x people got off there were 21 left on the train.
a Make up an equation about the people on the train.
b Solve the equation to find how many people must have got off.
5.

Last week, George earned £x as a barber.
This week he earned double that amount plus tips of $£ 40$.
In fact, George earned $£ 440$ this week.
Make an equation about using x and solve it to find out how much George must have earned last week.
6. Copy the following and place a " $<$ " sign or a " $>"$ " sign between the numbers as appropriate :a $21 \ldots 23$ b $13 \ldots . .-11$ c $-212 \ldots .-210$.
7. Make up an inequality for the statement below :-
"To drive the Dodgem Cars, you must be at least 130 cm tall". Laura, who is $x \mathrm{~cm}$ tall is not allowed to drive a Dodgem Car.

$$
\Rightarrow \quad x
$$

\qquad

8. In this question you can choose x only from the numbers

$$
\{-3,-2,-1,0,1,2,3\}
$$

Write down the solutions for :-
a $x>-1$
b $x<-2$
c $\quad x \leq 0$
d $\quad x>-\frac{1}{4}$.
9. Solve the following inequalities, leaving your answer in the form egg. $x>2, x \leq 3$, etc.
a $x+5>11$
b $\quad x-7<13$
c $6 x \leq 24$
d $2 x+5 \geq 21$.

Consolidation of Fractions/Decimals/Percentages

1. For each shape, say what fraction has been coloured :-
a

b

c

2. For each shape in question 1, write down the fraction not coloured.
3. Copy and complete :-
a $\frac{1}{4}=\frac{?}{20}$
b $\quad \frac{3}{7}=\frac{9}{?}$
c $\quad \frac{13}{?}=\frac{52}{60}$.
4. Write down two fractions equivalent to :-
a $\frac{1}{6}$
b $\frac{5}{8}$
c $\frac{3}{10}$.
5. Write each of these fractions in their simplest form :-
a $\frac{5}{15}$
b $\frac{18}{24}$
c $\frac{50}{75}$.
6. Find :-
a $\frac{1}{4}$ of $£ 36$
b $\frac{1}{10}$ of 500 m
c $\frac{1}{7}$ of $\$ 84$.
7. Billy had 24 silver coins in his pocket.

He found a quarter were 50p coins, a third were 20p coins, a sixth were 10 p coins and the rest were 5 p coins.
a How many 50p coins did Billy have?
b How many 10p coins?
c How much money did Billy have altogether?

8. Find:-
a $\frac{2}{3}$ of $£ 27$
b $\quad \frac{3}{7}$ of $\$ 280$
c $\quad \frac{7}{8}$ of $£ 2400$.
9. On an army base there were 150 new recruits.

After a week, $\frac{1}{5}$ of them came down with a sickness bug.
One week later, $\frac{2}{3}$ of the remaining recruits became sick.
How many of the original 150 recruits had not become sick?

10. Write down each colour as a percentage of the shape shown :-

11. Write each of the following as a fraction :-
a 21%
b 39%
c 11%
d 37%
e 1%
f 9%
g 19%
h 25%.
12. Write each of the following as a decimal :-
a 43%
b 13%
c 29%
d 9%
e 5%
f 50%
g 125\%
h 1%.
13. Write each of the following as a fraction and as a decimal :-
a 17%
b 69%
c 3%
d 30%
e 70%
f 50%
g 25%
h 10%.
14. Write each fraction or decimal as a percentage :-
a $\frac{79}{100}$
b $\quad 0.67$
c $\quad \frac{57}{100}$
d 0.01
e 0.09
f $\frac{3}{100}$
$9 \quad 0.9$
h 1.7 .
15. Find:-
a 50% of $30 p$
b
25% of 36 mm
c 50% of $£ 15$
d 10% of 7 m
e 25% of 1 kg
f 10% of $£ 11$
$g 50 \%$ of 5 km h 25% of 110 cm .

You may use a calculator for questions 7 \& 8, but you must show working.
16. Find:-
a 77% of $£ 800$
b 51% of 1200 km
19% of $£ 780$
d 3% of $£ 7$.

17 a A survey was conducted and 20000 pupils were asked how they travelled to school. 60\% walked 15% took a bus or train and the rest arrived by car.
How many pupils :-
(i) walked
(ii) took a bus
(iii) arrived by car ?
b

A glider was being flown at a height of 1500 feet. The glider's height dropped by 40%.
(i) By how many feet had the glider dropped?
(ii) At what height was the glider then flying?

Reducing a Percentage to a Fraction in its Simplest Form

Be able to reduce
a percentage
to a fraction
in simplest form

Remember $\quad 10 \%=\frac{10}{100}$.

Example :- Reduce each of these percentages to fractions (in simplest form).
a 20\%

$$
\begin{aligned}
20 \% & =\frac{20}{100} \\
& =\frac{1}{5}
\end{aligned}
$$

b 50\%

$$
\begin{aligned}
50 \% & =\frac{50}{100} \\
& =\frac{5}{10} \\
& =\frac{1}{2}
\end{aligned}
$$

c 22%

$$
\begin{aligned}
22 \% & =\frac{22}{100} \\
& =\frac{11}{50}
\end{aligned}
$$

Exercise 1

1. Reduce each percentage to a fraction in its simplest form (where possible) :-

a 25%	b 30%	c	15%	d	23%	
e 2%	f 9%	g 95%	h	75%		
i	5%	j 34%	k	66%	I	64%
m 40%	n 60%	o	80%	p	27%.	

2. Find out which percentages match up with which fractions :-

3. Make a copy of this table and complete it :-

percentage	100%	75%	50%	25%	20%	10%	5%	1%
fraction	$?$	$?$	$\frac{1}{2}$	$?$	$?$	$?$	$?$	$?$

It is now possible for you to do (some) percentage calculations without a calculator.
4. Remember:- 25% means $\frac{1}{4}$. Find, without a calculator :-
a 25% of $£ 48$ ($=\frac{1}{4}$ of $48=48 \div 4=£ \ldots$...)
b 25% of 200 kg
c 25% of $£ 1 \cdot 20$
d 25% of 5200 km .
5. Now try these (use your answers to question 3 to help you) :-
a 50% of $£ 16$
b 20% of $£ 45$
c 10% of $£ 82$
d 1% of 600 mm
e 5% of $\$ 600$
f 100% of $£ 2.50$
g 75% of $£ 40$
h 75% of $£ 1.60$
i 75% of $£ 800$.

It is easier to put fractions, decimals and percentages in order when you reduce each to a percentage.
Example :- Write this list of values in order (largest first) :- $42 \%, \frac{2}{5}, 0.45, \frac{3}{7}$.

$$
\begin{array}{rl}
\qquad \begin{array}{rl}
\frac{2}{5}=2 \div 5=0.4=40 \% & 42 \%
\end{array} \\
\qquad \frac{3}{7}=3 \div 7=0.43=43 \% & 0.45
\end{array} \quad 45 \%
$$

6. Write each of the lists below in order (largest first) :-
a $77 \%, \frac{79}{100}, 0.8,0.78$
b $22 \%, \frac{2}{5}, 0.3, \frac{8}{31}, 0.225$
c $\frac{3}{11}, 0.24,29 \%, \frac{2}{9}$
d $\frac{1}{3}, \frac{2}{7}, \frac{3}{10}, \frac{4}{11}, \frac{7}{26}$.
7. a Write down any five fractions of your own. Rearrange these in order (smallest first).
b Hand the fractions to a neighbour and time him/her to see how long it takes to arrange them.
8. Ralph sat four exams.

He scored $\frac{71}{100}$ in Maths, $\frac{7}{10}$ in English, $\frac{9}{12}$ in French and $\frac{22}{30}$ in Music.
What was Ralph's best and worst score?
9. In a special lottery prize Darren was offered one of the following :-

(i) 40% of $£ 9000$
(ii) $\frac{3}{5}$ of $£ 7000$
(iii) $0 \cdot 15$ of $£ 20000$.

Which should he choose? Explain why.

You now have some percentages that can be reduced into simple fractions for calculations without using a calculator.

But there are many percentages that can be calculated without a calculator.

Exercise 2

1. Make a copy of the list shown below and LEARN it :-

percentage	50%	25%	75%	$33 \frac{1}{3} \%$	$66 \frac{2}{3} \%$	20%	40%	60%	80%	10%	30%	70%	90%
fraction	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{1}{10}$	$\frac{3}{10}$	$\frac{7}{10}$	$\frac{9}{10}$
note note													

2. Do the following by using the fractional equivalents instead of the percentages :-

| a 10% of $£ 120$ | b $\quad 20 \%$ of $£ 120$ | c | 40% of $£ 120$ |
| :--- | :--- | :--- | :--- | :--- |
| d 10% of $£ 40$ | e 5% of $£ 40$ (half of 10%) | f | 75% of $£ 240$ |
| g $33 \frac{1}{3} \%$ of $£ 15$ | h $66 \frac{2}{3} \%$ of $£ 15$ | i | 25% of $£ 140$ |
| j 30% of $£ 14$ | k 20% of $£ 760$ | l | 60% of $£ 350$ |
| m $33 \frac{1}{3} \%$ of $£ 9 \cdot 30$ | n $66 \frac{2}{3} \%$ of $£ 9 \cdot 30$ | o | 50% of $£ 3$ |
| p 75% of $£ 36$ | q 10% of $£ 180$ | r | 5% of $£ 180$ |
| s 1% of $£ 700$ | t 2% of $£ 700$ | u | 3% of $£ 700$ |
| v 75% of $£ 480$ | w $33 \frac{1}{3} \%$ of $£ 3900$ | | |
| y $66 \frac{2}{3} \%$ of $£ 4.50$ | z 11% of $£ 30$. | | |

3. Harder !! (no calculator). Discuss how, without a calculator, you might find :-
a 15% of something
b $2 \frac{1}{2} \%$ of something
c $\quad 17 \frac{1}{2} \%$ of something?
c $2 \frac{1}{2} \%$ of 1400 km
d $2 \frac{1}{2} \%$ of $£ 4$
b 15% of 160 km
f $17 \frac{1}{2} \%$ of $£ 640$
$9 \quad 17 \frac{1}{2} \%$ of $£ 8$
h 17.5% of 1480 ml
i $22 \frac{1}{2} \%$ of 1600 mm
j 22.5% of 80 cm
k 7.5% of 1200 litres.
4. Find :-

Exercise 3 Do not use a calculator for questions 1-7.

1. A school has 420 pupils. 10% of the pupils are on a trip. How many pupils are there on the trip?

2.

Five hundred and twenty trees are planted in a town. 20% of them are planted in a park.
How many trees are planted in the park?
3. A recipe requires 680 g of flour.
25% of the flour is self-raising.
How much of the flour is self-raising ?

4.

The Cat and Dog home have 114 animals. $33 \frac{1}{3} \%$ are cats. How many cats are there ?
5. a Abbie had $£ 220$. She spent 25% on an weekend spa break. How much did Abbie pay for her break?
b Ellie weighed 85 kilograms.
She went to a health resort for a week and lost 20% of her weight.
(i) How many kilograms did she lose?

(ii) How much does she weigh after her visit to the health resort?

Dara paid a 75% deposit on a $£ 380$ mountain bike.
How much was his deposit?
d Arnie does 150 sit-ups every day.
He does 60% in the morning and the rest at night.
(i) How many sit-ups does he do in the morning?
(ii) What percentage of the sit-ups does he do at night?

e

75% of the animals in a farm yard are chickens.
If there are 96 animals in the yard, how many are not chickens?
6. a The price tag on a jacket reads $£ 60$. It also carries a $33 \frac{1}{3} \%$ discount label. How much will the jacket now cost?
b Gary received a 5% discount on his $£ 1800$ car. How much did Gary pay for his car?
7. Zeus Clothing is offering a $12 \frac{1}{2} \%$ discount on all items.
How much will it cost for :-
a a coat priced $£ 120$
b a watch costing £48?

You may use a calculator for questions 8－12．
8．a A bank charges 14% for a $£ 6400$ car loan． How much did the bank charge for the loan？

Only 55% of bugs are killed by a bug spray．
If there were 8600 bugs，how many were killed？
c Hayley＇s council tax last year was $£ 960$ ．This year there is a 7% increase． How much is the increase？
d Last month a house was valued at $£ 120000$ ． This month the house is valued at 3.5% less． How much less is the value of the house？

9.

The storm yesterday had winds of 60 mph ．
The wind speed is expected to increase by 15% today．
What is the expected wind speed today？
10．a A bus service is to increase its Zone Card price by 11% ．
How much will I pay for my $£ 28$ Zone Card after the increase？
b A bus driver gets a pay rise of 6% ．
How much will a bus driver earning $£ 325$ a week now earn ？

c Tyre pressure on a bus should be at 56 p．s．i．（pounds per square inch）．
If the pressure drops by 25% ，what would the p．s．i．be ？
11．a

Avia offers a 17.5% discount on their hire cars．
How much would it cost to hire a car originally costing £124？
A garage has a car priced $£ 12800$ for sale．
The Managers Special discount is 7.25% ．
How much will the car cost with the special discount？

12．a A pick－up truck was given a 10% discount and was sold for $£ 9000$ ． How much was the pick－up before the discount？（not £9900）！

TravelCo gave a 5\％discount and sold a week in Malta for $£ 190$. How much was the holiday before the discount？

After spending 75% of his savings on a trip，Ed still had $£ 1000$ left．
What was his original savings before the trip？
Ally had $£ 2000$ left of his lottery win after spending 80% of his money． How much did he win on the lottery？

The 3 9 's

Revisit - Review - Revise

1. What fraction of each shape is red?
a

c

2. Three fifths of the sweets in a packet are mints. What fraction are NOT mints ?
3. a
a Copy the rectangle shown (4 boxes by 25 boxes).
b Colour 15\% of your
 rectangle blue.
c Colour 0.2 of your rectangle red.
d Colour $\frac{2}{5}$ of your rectangle yellow.
e What is the total percentage coloured?
e What percentage is NOT coloured ?
4. Write down two equivalent fractions to :-
a $\frac{1}{3}$
b $\frac{3}{5}$.
5. Write these as fractions in simplest form :-
a $\frac{24}{36}$
b 35%.
6. Write each fraction or decimal as a percentage :-
a $\frac{20}{50}$
b $\quad 0.73$
C $\frac{1}{10}$
d 0.7 .
7. Find:-
a $\frac{2}{5}$ of $£ 24$
b $\quad \frac{4}{9}$ of 54 cm
c 20% of 35 litres d $66 \frac{2}{3} \%$ of 18 .
8. Put these in order starting with the smallest :- $22 \% \quad \frac{2}{5}$ 0.2.

You may use a calculator for questions 9-12.
9. Write these fractions as percentages :-
a $\frac{3}{4}$
b $\quad \frac{3}{20}$

10. Calculate :-
a 32% of $£ 8760$
b 87% of 1800 km
c 3.5% of $£ 6$.
11. Write these in order, largest first :- $\frac{5}{9}, 0.59,57 \%, 0.6$.
12. a Daphne scored 17 out 25 in a quiz. What percentage did she score?
b Sori is given a 37% discount on a $£ 12500$ car. How much did Sarri pay for his car ?
c Ina was given a 7.5% discount on a dress costing $£ 112$. How much did she pay?
d Grace spent 90% of this week's wage and had $£ 35$ left. How much was her wage?

Consolidation of Measurement

LENGTH

1. Use your ruler to measure the length of these lines, in millimetres.
a \qquad b
2. Write down the lengths of the following lines in :-
(i) millimetres
(ii) centimetres
(iii) centimetres and millimetres.

3. Draw a line 10.5 centimetres long.
4. Change :-
a 3 m to cm
b $\quad 12 \mathrm{~cm}$ to mm
c $\quad 1.8 \mathrm{~km}$ to m
d 6000 m to km
e 270 cm to m
h 2 m 95 cm to cm
k $\quad 11.7 \mathrm{~cm}$ to mm
g 4700 m to km
j $3 \frac{1}{2}$ metres to cm
f 120 mm to cm
i 20.2 metres to cm
I 605 cm to m .

5. A sheet of A4 paper is 29.7 cm long. A strip 30 mm is cut off. What is the length of the remaining piece of paper, in millimetres?
6. Calculate the perimeter of this shape :-

7.

The perimeter of this rectangle is 52 cm . Calculate the length of the shorter side.
8. A jeweller makes a pendant in the shape of an isosceles triangle. She wishes to surround the pendant with silver wire.
The silver wire costs $£ 4.00$ per centimetre.
How much will it cost the jeweller to do this?

AREA

9. Find the area of these shapes in cm^{2}.
a

b

10. a Draw a rectangle 6 cm long by 3 cm wide.
b Divide it into 1 cm squares, number the squares $1,2,3, \ldots$. and count to find the area of the rectangle.
c Now write down and use the formula to
 calculate its area.
11. Calculate the area of each of these shapes :-
a

b

12. This rectangular sloping roof has to be covered in felt.
a Calculate the area of the roof in m^{2}.
b If the felt costs $£ 4.00$ per square metre, calculate the cost of felting the roof.

13.

a Make an accurate drawing of this right angled triangle.
b Draw a surrounding rectangle and calculate its area.
c Now write down the area of the triangle.
14. Calculate the area of this right angled triangle in m^{2}.

VOLUME

15. Put these shapes in order, starting with the one which has the smallest volume.

16. 3 lidfuls of plant food has to be given to a houseplant 3 times a week.

The bottle holds enough plant food for 180 lidfuls.
Will the plant food last the 18 weeks the plant is expected to bloom? (Explain).
17. A bottle holds 700 ml of liquid, a cup holds 200 ml and a teaspoon holds only 5 ml .
a I need 30 ml of food colouring for a cake mix. How many spoonfuls is this ?
b How many spoonfuls does the cup hold?
c How many full cups does the bottle hold?
d I bought 4 bottles of lemonade. How many cups can I fill ?
18. Write down the volume of liquid, (in millilitres), in this jar of strawberry concentrate.
19. Write down the volume of each shape, in cm^{3}.

a

b

20. a Change to millilitres :-
(i) 6 litres
(ii) $13 \cdot 5$ litres
(iii) 0.8 litres.
b Change to litres:-
(i) 4500 ml
(ii) 25000 ml
(iii) 250 ml .
21. Find the volume of the concrete tower.

WEIGHT

22. List the following fruit in order, starting with the one that you think weighs least.
apple - pineapple - plum - watermelon - grape.
23. Change from kilograms to grams :-
a 3 kg
b $\quad \frac{1}{2} \mathrm{~kg}$
c $\quad 16.5 \mathrm{~kg}$
d 1 kg 200 g
e 5 kg 15 g
f $2 \frac{3}{4} \mathrm{~kg}$.
24. Change these weights to kilograms :-
a 3000 g
b $\quad 12500 \mathrm{~g}$
c $\quad 250 \mathrm{~g}$
d 6400 g
e 5030 g
f 1005 g .
25.

Fiona and Beth weigh their suitcases before flying with Ryanjet. Fiona's weighs $14 \frac{1}{4} \mathrm{~kg}$. Beth's suitcase weighs 13 kg 900 g .

How much more does Fiona's case weigh than Beth's (in grams)?
26. An artist creates this structure out of blocks of concrete.

Calculate the total weight of the concrete structure.

27.

28. Two jars are placed on the scales.

The scales are perfectly balanced.
What is the weight of the Plum jar ?

This truck is loaded with 6 identical, boxes.

The empty truck weighs 750 kg , The loaded truck weighs 888 kg . Calculate the weight of one box.
29.

A fly (8 g) is eaten by a large spider (55 g) which is eaten by a mouse (250 g) which is eaten by a cat (2 kg 400 g) which is eaten by a fox ($12 \frac{1}{2} \mathrm{~kg}$).

How much does the fox now weigh ?

Consolidation of Patterns

1. Look at these three drawings. Draw the 4th pattern in the sequence.

2. a Describe this pattern in words :-
$8,20,32,44,56, \ldots$.
b Write down the next four terms of the pattern.
3. a Here is another pattern. Describe this one :- $97,88,79,70,61, \ldots$.
b Write down the next four terms of this pattern.
4. Describe each of the following patterns and write down the next four terms each time :-
a $8,15,22,29,36, \ldots$.
b $5,23,41,59, \ldots$.
c $83,77,71,65, \ldots$.
d $1.8,4.3,6.8,9.3,11.8, \ldots$.
5. Write down the next three letters in these patterns :-
a
A, D, G, J, \ldots.
b Z, X, V, T, R, \ldots.
6. Here is a pattern made with tubs of pot noodles.

a Sketch the tubs for the 4th pattern.
b How many tubs do you need for a 4th pattern?
c Copy the pattern 7, 14, 21 and then write down the next five terms.
d Make up a rule for this pattern. e.g. "Start at \qquad and \qquad
7. Write down:-
a the first seven square numbers
b the 20th square number.

Partems

Simple Linear Patterns
Be able to spot a pattern from a table and make up a simple
It is fairly easy to spot a number pattern from a diagram or a table.

Example :-

Each chocolate sponge has 4 candles.

Drawing up a table helps you see the pattern :-

No. of Sponges (S)	1	2	3	4	5	6
No. of Candles (C)	4	8	12	$?$	$?$	$?$

Can you see that for every new sponge \Rightarrow t the number of candles rises by 4 ?
=> We can write, in words :-

$$
\text { Number of Candles }=4 \times \text { no. of Sponges }
$$

=> or in symbol form:-

$$
C=4 \times s
$$

* For 12 sponges, you would need $C=4 \times 12=48$ candles.

Exercise 1

1. In a school library, the tables are set out so that 3 children sit around each table.

1 table
3 children

2 tables
6 children

3 tables
9 children

a Draw the next pattern of children sitting around 4 tables.
b Copy the following table and complete it :-

No. of Tables (T)	1	2	3	4	5	6
No. of Children (C)	3	6	9	$?$	$?$	$?$
	$\underbrace{}_{?}$					

c For every extra table, how many extra children are seated ?
d Copy and complete the formula:- Number of children $=\ldots . \times$ Number of tables.
e Now write down the formula using symbols :- $C=\ldots . \times T$.
f Use your formula to decide how many children the library can take if there are 20 tables in it.

2. Look at the star shapes with circles at each end point.

1 star
5 circles

2 stars
10 circles

3 stars
15 circles
a Draw the next pattern of stars and circles.
b Copy the following table and complete it :-

No. of Stars (S)	1	2	3	4	5	6
No. of Circles (C)	5	10	$?$	$?$	$?$	$?$

c For every extra star, how many extra circles are needed ?
d Copy and complete the formula:- number of circles $=\ldots . \times$ number of stars.
e Write down the formula using symbols :- $C=\ldots . \times S$.
f Use your formula to decide how many circles are needed for 40 stars.
3. Here is a glass of strawberry juice which needs 6 strawberries per glass to make it.

a Copy and complete the table below listing the number of strawberries per 1 glass.

No. of Glasses (G)	1	2	3	4	5	6
No. of Strawberries (S)	6	$?$	$?$	$?$	$?$	$?$
$\underbrace{}_{?}$						

b How many strawberries are needed for 7 glasses?
c Copy and complete :- "the number of strawberries $=\ldots . x$ the number of glasses".
d Write the formula using symbols connecting S and G.
e Use your formula to say how many strawberries would be needed to make 10 glasses of the juice.
4. Look at the price DJ Sports are charging for World Cup footballs :-

1 ball

2 balls
£14

3 balls
£21
a Copy and complete the table below showing the cost of buying the footballs.

No. of Footballs (F)	1	2	3	4	5	6
Cost in £'s (C)	7	$?$	$?$	$?$	$?$	$?$

b Copy and complete:- Cost $=\ldots . . \times$ the number of footballs.
c Write the formula using symbols connecting C and F.
d Use your formula to find the cost to a football club wanting to buy 30 footballs.
5. Copy and complete this table which shows how many roses are expected to flower on each rose bush in early spring.

| No. of Bushes (B) | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of Roses (R) | 8 | 16 | $?$ | $?$ | $?$ | $?$ |

a Copy and complete :- number of roses $=\ldots . x$ the number of bushes.
b Write a formula using symbols connecting R and B.
c Use your formula to find how many roses should flower from 50 rose bushes.
6. Copy and complete the following table which shows the number of marigolds in a pot.

No. of Pots (P)	1	2	3	4	5	6
No. of Marigolds (M)	10	20	30	$?$	$?$	$?$

a Copy and complete :- number of marigolds $=\ldots . . x$ the number of pots.
b Write a formula using symbols connecting M and P.

c Use your formula to find the total number of marigolds in 15 pots.
7. This table shows the number of small cherries there are to 1 large one on a cherry cake.

No. of Large Cherries (L)	1	2	3	4	5	6
No. of Small Cherries (S)	14	$?$	$?$	$?$	$?$	$?$

a Copy and complete the table.
b Write a formula connecting S and L and use it to find how many small cherries there are to 20 large ones.
8. The table below indicates how many school minibuses, full of pupils, arrive at Belloch Academy each school day.

No. of Buses (B)	3	4	5	6	7	8
No. of Pupils (P)	60	80	100	$?$	$?$	$?$

a 3 school minibus can carry 60 pupils in total. How many pupils are allowed on one bus?
b Write a formula connecting the number of pupils (P) and the number of buses (B).
c 18 minibuses, similar to those used by Belloch Academy, arrive at Ainsley High School each school day. Use your formula to calculate how many pupils in total are on these buses.
9. For each of the tables below, find a formula (or rule) connecting the two letters :-
a

No. of Newspapers (N)	1	2	3	4	5	6
No. of Pages (P)	30	60	90	$?$	$?$	$?$

b

No. of Trees (T)	1	2	3	4	5	6
No. of Pineapples (P)	18	36	54	$?$	$?$	$?$

c

No. of Days (D)	1	2	3	4	5	6
No. of Hours (H)	24	48	72	$?$	$?$	$?$

$H=? \times D$

d

No. of Pounds (N)	2	3	4	5	6	7
No. of Pence (p)	200	300	400	$?$	$?$	$?$

e

No. of Muffins (M)	2	3	4	5	7	8
Cost in $£$'s (C)	2.50	3.75	5.00	$?$	$?$	$?$

f

No. of Jars (J)	3	4	5	6	7	8
No. of Jelly Beans (B)	450	600	750	$?$	$?$	$?$

9

No. of Tubes (T)	2	4	6	8	10	12
Cost in $£^{\prime} s(C)$	7	14	21	$?$	$?$	$?$

Here is a pattern, showing children sitting around tables in their school dining area.
a more complicated rute to extenal it

Drawing up a table will help you see a pattern.

No. of Tables (T)	1	2	3	4	5	6
No. of Children (C)	6	10	14	$?$	$?$	$?$

For each additional table => the number of children rises by 4.
... but No. of Children $=4 \times$ no. of Tables or $C=4 \times T$ doesn't work here!
Check:- $4 \times 1 \neq 6,4 \times 2 \neq 10,4 \times 3 \neq 14,4 \times 4 \neq 18,4 \times 5 \neq 22$
but

$$
4 \times 1+2=8 \quad 4 \times 2+2=10
$$

$$
4 \times 3+2=14
$$ etc. does work

A correction number is required to make the pattern work. In this example, that number is 2.

$$
\Rightarrow \quad C=4 \times T+2 .
$$

* With 10 tables, you can seat $C=4 \times 10+2=42$ children .

Exercise 2

1. Here is a pattern made with circles and squares.

1 square 3 circles

2 squares
5 circles

3 squares
7 circles
a Draw the next pattern of circles and squares.
b Copy the following table and complete it :-

No. of Squares (S)	1	2	3	4	5	6
No. of Circles (C)	3	5	7	$?$	$?$	$?$

c For every extra square, how many extra circles are needed ?
cont'd.......
d Write down the formula using symbols for calculating the number of circles needed if you know the number of squares.

```
C = ... > S +
\(=\ldots . \times S+\ldots\)
```

e Use your formula to decide how many circles are needed with 10 squares.
2. In another school, the dining area tables are set out differently :-

a Draw the next pattern, showing children sitting around 4 tables.
b Copy the following table and complete it :-

No. of Tables (T)	1	2	3	4	5	6
No. of Children (C)	8	12	16	$?$	$?$	$?$
$\underbrace{}_{?}$	$?$					

c For every extra table, how many extra children can be seated ?
d Write down the formula using symbols :- $C=\ldots \times T+\ldots$
e Use your formula to decide how many children can sit around 20 tables.
3. This table shows the cost of hiring a safety deposit box in a hotel :-

| No. of Days Hired (D) | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cost in £'s (C) | 8 | 11 | 14 | 17 | 20 | 23 |

a How much will it cost to hire the safe for :-
(i) 4 days
(ii) 5 days?

b How much extra does it cost for each additional day of hire?
c Write down the formula for determining the cost of hiring the safe

$$
C=\ldots \times D+\ldots
$$

d How much will it cost to hire the safe for 2 weeks ?
4. The weight of a truck carrying identical photocopying machines is given in the table.

No. of Photocopiers (P)	1	2	3	4
Total weight in kilograms (W)	1250	1300	1350	1400

a How much does each extra photocopier weigh ?
b What is the total weight of a truck carrying 5 photocopiers ?
c Find a formula for the total weight $W=\ldots . \times P+\ldots$
d What is the total weight of a truck with 10 photocopiers?

5. Look at the pattern of fence posts and support panels.

2 Posts
4 Panels

3 Posts
8 Panels

4 Posts
12 Panels
a Draw the next pattern of fence posts and support panels.
b Copy the table below and complete it :-

No. of Posts (P)	2	3	4	5	6	7
No. of Supports (S)	4	8	12	$?$	$?$	$?$

c For every extra post, how many extra support panels are needed ?
d Write down the formula using symbols $s=\ldots . \times P-\ldots$
e Use your formula to decide how many support panels are needed with 20 posts.
6. The designs below are made up of triangles and circles.

2 triangles
4 circles

3 triangles
7 circles

4 triangles
10 circles
a Draw the next pattern of triangles and squares.
b Copy the table below and complete it :-

No. of Triangles (T)	2	3	4	5	6	7
No. of Circles (C)	4	7	10	$?$	$?$	$?$
$\underbrace{}_{?}$	$?$					

c For every extra triangle, how many extra circles are needed ?
d Write down the formula using symbols $\quad C=\ldots \times T-\ldots$
e Use your formula to work out how many circles sit on 50 triangles.
f How many triangles are required if we have :-
(i) 22 circles
(ii) 34 circles
(iiii) 58 circles
(iv) 88 circles?
7. Shown below are some tables connecting pairs of values.

Determine a formula or rule connecting the second letter in the table to the first letter.
a Tubs of apples lying on a wagon.

Tub (T)	1	2	3	4
Weight $(W) \mathrm{kg}$	10	13	16	19
$W=\ldots \times T+\ldots$				

c Bees appear as flowers bloom.

e Circles round triangles.

d Time taken to grill chops on a barbecue.

No. Chops (C)	1	2	3	4
Grilling (G) min	7.5	8	8.5	9
$G=\ldots \times C$	\ldots	\ldots		

f Time taken to print pages.

No. Pages (P)	1	2	3	4
Time (T) seconds	30	36	42	48
$T=\ldots \times P$	\ldots.			

b Fares for boat trips.

No. $\mathrm{km}(K)$	1	2	3	4
Fare $£^{\prime} \mathrm{s}(F)$	2	7	12	17
$F=\ldots \times K-\ldots$				

9 Hiring a cement mixer.

Days hired (D)	1	2	3	4
Cost in £'s (C)	7	16	25	34

i Weight of plant pot and daffodil bulbs.

No. of bulbs (B)	1	2	3	4
Weight (W) g	240	300	360	420

$C=\ldots . \times I \ldots .$.

23

h Filling a paddling pool using a hose.

Time mins (T)	1	2	3	4
Depth (D) cm	1.3	2.1	2.9	3.7
$\mathbf{D}=\ldots . . . \times T . .$.	\ldots			

A stamp collection grows each year.

No. Years (y)	1	2	3	4
No. Stamps (S)	100	350	600	850

$S=\ldots . \times Y \ldots .$.
k The depth of water in a vase reduces as time goes on (evaporation).

No. of days (N)	1	2	3	4
Water depth (D)	20	17	14	11

Revisit - Review - Revise

1. Draw the next picture in this pattern.

2. Write down the next three numbers in each of these sequences :-
a
$4,10,16,22$, \qquad
\qquad b $99,87,75,63$,
c $1600,800,400,200$, \qquad d $7,9,12,16$,
\qquad
3. Write down all the square numbers between 51 and 101.
4. Jenny's rate of pay is shown in the table below.

No. of Hours (H)	1	2	3	4	5
Wage in $£^{\prime} s(W)$	8.20	16.40	24.60	$?$	$?$

a What is Jenny's wage for:- (i) 4 hours (ii) 5 hours?
b Write a formula connecting W and H using symbols.
c Use your formula to find Jenny's wage for working 10 hours.

d One week, Jenny's total pay was £246. How many hours had she worked?
5. A girl is building a pattern with rectangular wooden building bricks.

a Draw pattern number 5 and count the number of bricks.
b Copy and complete this table :-

Pattern no. (P)	1	2	3	4	5
Bricks needed (B)	3	\ldots	\ldots	\ldots	\ldots

c Write a formula connecting B and P using symbols.
d Use the formula to find how many bricks are needed for pattern 10.
e What pattern number has 51 bricks?
6. A joiner bills his customers with an initial call out charge plus an hourly rate. Examples of his charges are shown in the table :-

No. of Hours (H)	1	2	3	4	5	6
Charge in $£ ' s(C)$	42	52	62	$?$	$?$	$?$

a How much will it cost to call out the joiner for 4 hours?
b How much extra does he charge for each additional hour?
c Write down the formula for determining the cost of calling him out :-

$$
C=\ldots \times H+\ldots .
$$

d What is his call out fee ?
e What does he charge for a job lasting 7 hours?

f One job had to be done over 2 days, the total bill coming to £132.
How many hours did this job take?
7. The table below shows the price of junior golf clubs in a sale.

You must buy more than 1 club to get the sale price.

No. of Golf Clubs (G)	2	3	4	5	6	7
Price in $£^{\prime} s(P)$	19	29	39	$?$	$?$	$?$

a What's the price of 7 golf clubs ?
b How much extra is charged for each additional club ?
c Write down the formula for determining the cost of clubs :-

$$
P=\ldots . \times G \ldots . \ldots
$$

d What is the price of 12 clubs?
e Mr Montgomery paid $£ 99$ for clubs for his two daughters to share equally. How many clubs did each girl get?
8. Shown below are two tables of values connecting pairs of letters.

Write down a formula connecting the second letter to the first letter.
a

P	1	2	3	4
M	50	55	60	65

b

W	1	2	3	4
\boldsymbol{Z}	9	13	17	21

Consolidation of Coordinates

1. a Which point has coordinates :-
(i) $(10,3)$
(ii) $(8,0)$
(iii) $(3,9)$
(iv) $(1,10)$?
b Write down the coordinates of :-
(i) Q
(ii) U
(iii) W
(iv) Z .
c When 4 of the points are joined a parallelogram is formed.
(i) Which 4 points?
(ii) Write down their coordinates.
d Which point lies on the x-axis ?

e Which point lies on the y-axis?
$f \quad$ Name the point which has its x-coordinate 1 larger than its y-coordinate.
9 Write the coordinates of the point which has its y-coordinate 1 larger than its x-coordinate.
$h \quad$ Which 3 points have their x-coordinates the same as their y-coordinates?
2. Draw a 10 by 10 coordinate grid as shown below.

a Plot the points $A(3,6), B(5,2)$ and $C(7,6)$.
b D is a point to be put on the grid so that figure $A B C D$ is a kite with one diagonal measuring 6 boxes.
On your diagram plot the point D and write down its coordinates.
c Join A to C and join B to D.
You now have both diagonals of this kite.
Put a cross where the two diagonals meet, call the point K and write down its coordinates.

You should already know what a Coordinate (or Cartesian) Diagram looks like.
The x-axis is horizontal.
The y-axis is vertical.
O is the Origin.
M is the point 1 right and 3 up from the origin.

It has x coordinate 1 and y coordinate 3. $M(1,3)$.

Both axes can also be extended backwards and downwards.
Look at the numbers on the new x-axis and y-axis.
They now include negative values.
A is 4 right and 2 up from the origin. $\quad A(4,2)$
B is 5 right and 2 down from the origin. $B(5,-2)$
C is 2 left and 3 down from the origin. $\quad C(-2,-3)$
D is 3 left and 4 up from the origin. $\quad D(-3,4)$

Exercise 1

1. The coordinates of E in this diagram are $E(-2,3)$ Write down the coordinates of the other 8 points.
2. Draw a large set of axes (-10 to 10 on both scales).

Plot each set of points, join them up and say what shape is formed :-
a $A(3,2) B(5,-3) C(3,-4) \quad D(1,-3) \quad A(3,2)$.
b $E(-4,4) \quad F(-2,-7) \quad G(-6,-7) E(-4,4)$.
c $H(-3,7) I(3,5) J(3,-4) K(-3,-2) H(-3,7)$.

d $L(-5,1) M(-4,-4) N(1,-5) O(0,0) L(-5,1)$.
e $P(-10,2) \quad Q(-8,3) R(-6,2) S(-6,-1) T(-8,-2) U(-10,-1) P(-10,2)$.
f $V(-3,-3) W(1,-3) X(3,-5) Y(-1,-9) Z(-5,-5) V(-3,-3)$.
3. a Copy this diagram and plot the two points $A(1,4)$ and $B(4,-2)$.
b Find a 3rd point, (call it C), such that $A B C$ is an isosceles triangle.

Show C on your diagram, and write down its coordinates.

4.

a Write down the coordinates of the 4 points, P, Q, R and S of square PQRS.
b Copy the diagram and flip PQRS over the x-axis.

Write down the new coordinates of the corners of the square.
c Now flip your new square across the y-axis and write down the coordinates of the 3rd square.
5. a Draw a set of axes, $(-5$ to 5 on both scales) and plot the four points

$$
K(-2,2), L(-3,-1), M(3,-1), N(4,2) .
$$

b Join the four points and state what type of shape is formed.
c Flip each of the four points over the x-axis to form a new four-sided shape. (This is called reflecting the shape).
d Write down the coordinates of the four corners of this new reflected shape.
6. Draw a new set of axes from -8 to 8 on both scales.
a Plot the 5 points $E(6,1), F(7,4), G(2,6), H(-3,4)$ and $I(-2,1)$. Join them up.
b Reflect your shape over the y-axis and write down the coordinates of your new shape.
c Reflect the original shape over the x-axis and write down the coordinates of your new shape.
7. Draw another set of axes from -6 to 6 on both scales.
a Plot the points $T(-3,4), U(-1,6)$ and $V(6,-1)$ and join T to U to V.
b Plot and write the coordinates of a fourth point, call it W, so that TUVW is a rectangle.
c Reflect TUVW in the y-axis and write down the coordinates of this new rectangle.

Revisit - Review - Revise

1. a Which point has coordinates :-
(i) $(7,1)$
(ii) $(0,-5)$
(iii) $(-3,-4)$
(iv) $(-4,2)$?

b Write down the coordinates of :-
(i) E
(ii) F
(iii) G
(iv) H .
c When E and 3 other points are joined a kite is formed.
(i) Which 3 points?
(ii) Write down their coordinates.
d Which point lies :-
(i) on the x-axis?
(ii) on the y-axis?
e Name any 2 points
(i) with the same x-coordinate
(ii) the same y-coordinate.
$f \quad$ Which 2 points have their x-coordinates the same as their y-coordinates?
2. Draw up a coordinate grid like the grid in question 1.
a Plot the points $A(1,4), B(-4,1)$ and $C(1,-2)$.
b D is a point to be put on the grid so that figure $A B C D$ is a rhombus (diamond).
On your diagram plot the point D and write down its coordinates.
c Join A to C and join B to D.
You now have the two diagonals of the rhombus.
Write down the coordinates of the point where the two diagonals meet.
d Reflect rhombus ABCD in the x-axis and write down the coordinates of the corners (vertices) of your new rhombus.

Consolidation of 3 Dimensions

1. What 3-dimensional mathematical shape is each of the following :-
a

b

c

d

e

f

h

2. State what 3-D shapes have been used to make up these figures :-
a

b

3. How many :-
a edges does a cuboid have
c vertices does a cube have
e faces does a square based pyramid have
9 edges does a cone have
i vertices does a cone have
b faces does a cylinder have d edges does a triangular prism have f vertices does a hemisphere have h faces does a triangular prism have j faces does a sphere have?
4. Which 3-dimensional figure would you get if you cut out each shape and folded it ?
a

b

3 Dimensions

What is meant by "Net"?
The net of a Cube is the shape you obtain when the solid shape, made of e.g. cardboard, is "opened up and laid it out flat".

- A cube consists of 6 faces.
- All 6 faces are congruent (the same).
- Each face is a square.

You will need squared paper and a ruler for this exercise.

1. Draw a full size net for a cube with sides 3 centimetres.
2. Draw a net of a cube with sides 1.5 centimetres.
3. Shown below are shapes made up of 6 congruent squares.
 For each one, decide if it is the net of a cube or not. (Drawing/tracing and cutting out may help).
a

b

c

d

f

4. Design a further two nets of a cube, different from any of those found in question 3.
5. Let us look at a special family of nets of cubes. Each starts with four squares in a row.
a Decide on a simple rule where to put the other 2 squares so that you will always get the net of a cube.

b Say where you would not put the 2 squares if you wanted a cube net.

The net of a Cuboid is the shape you obtain when the solid shape, made of e.g. cardboard, is "opened up and laid it out flat".

- a cuboid consists of 6 faces that are not all the same, but also are not all different
- the front is the same as the back.
- the top is the same as the the bottom.
- the right side is the same as the left side.

Net of a Cuboid
A simple way of drawing the net of a cuboid :Step 1 Start with the front and the top.
Step 2 Complete a chain of 4 rectangles by adding on the back then the bottom.
Step 3 Now add on the right and left rectangles, one on each side

The full size net might look like this :-

1. Here is part of a net of a cuboid measuring 8 by 2 by 3 (boxes).
a Copy this carefully onto squared paper and add the back and front.
b Now add the left and right faces.

2. Part of the net of this cuboid is shown opposite.

a Make a neat full size copy of this net.

b Complete the net showing all the faces.
3. Neatly, draw nets of the following cuboids:-

6
b

c

4. Make sketches of the boxes corresponding to these nets and fill in their dimensions :-
a

b
*note - units are cm, not boxes!

5. a Draw a possible net of this cube and this cuboid on cardboard.
b Cut your nets out and fold them to form solid shapes.

The Triangular Prism

- The Triangular Prism shown has 5 faces, but they are not all the same.
- The front is the same as the back. (Equilateral Triangles)
- The three "wrap-around" faces are the same. (Rectangles)

A simply way of drawing the net :-
Step 1 Start with a strip of 3 rectangles each 4 cm by 7 cm .
Step 2 Use compasses to draw the 2 equilateral triangles.

Net of a
Triangular Prism 7 cm ,
5. a

Name each of these 3-dimensional shapes.

(i)

(v)

(iii)

(iv)

(viii)
b Which 3-D figures do you get when you cut out the following shapes and fold them up ?

6. Calculate the total surface area (3 rectangles +2 triangles) of the triangular prism in Q 4 .

The skeleton of a 3-D Shape consists of the "bones" of the shape.
It is the "wire frame" that shows the outline of a shape.

Can you see that, to make the skeleton of this cuboid, we would need 12 straws?

Four pieces measuring 15 cm .
Four pieces measuring 12 cm .
Four pieces measuring 6 cm .
Total length of straw $=(4 \times 15)+(4 \times 12)+(4 \times 6)$

$$
\begin{aligned}
& =60+48+24 \\
& =132 \mathrm{~cm} .
\end{aligned}
$$

skeleton of a cuboid

Exercise 4

For this exercise, you are going to need straws or lots of pieces of A4 plain paper rolled into tubes, scissors and sellotape. (You may wish to work in groups).

1. a Roll up some of your paper, sellotape them and cut them so you have :-

- four pieces of 20 cm
- four pieces of 15 cm
- four pieces each 10 cm .
b Use sellotape or blue tack to join the corners.
Display the best skeleton.

Cuboid
2. Make skeleton models of each of the following shapes as neatly as possible. (You may wish to work in groups - see your teacher).
a

Cube
b

Square Based Pyramid
2. c

3. a Look at your cube in Question 2a. What is the total length of straw needed to make this cube ?
b What is the total length of straw needed to make the square based pyramid in Question $2 b$?
c What is the total length of straw needed to make the triangular prism in Question 2c ?
4. a Use your straws to make this model house.
b What is the total length of straw needed to make it?

5.

Make a model of this tower.

Revisit - Review - Revise

1. Name the 2-dimensional and the 3-dimensional mathematical shapes shown below :-
a

d

e

9

h

2. How many sides has :-
a a hexagon
b an octagon
c a decagon ?
3. Make a sketch of each shape below and indicate which sides/angles are equal. State also how many lines of symmetry it has.
a square
b rhombus
c parallelogram.
4. Copy and complete the table to show the number of edges, faces and vertices which some 3-dimensional shapes have.

3-D Shape	No. Edges	No. Faces	No. Vertices
cube		6	
cuboid			
cone			
cylinder			
Dprism			5
Sq. pyramid			

5. What 3-D shape is made up of :-
a 6 squares
b 3 rectangles and 2 triangles
c 4 triangles and 1 square
d 2 circles and 1 rectangle?
6. Which well known 2-D quadrilateral shape am I describing?
a I have 4 equal sides but my end angles are not right angles.
b I have only 1 axis of symmetry.
c My opposite sides are equal and parallel, but I don't have any axes of symmetry.
d I have 4 lines of symmetry.
7. List 3 statements that are true about the 3-D shape, "hemisphere".
8. Write down the 3-D shape that each net below could make :-
a

b

c

9. Make a neat sketch of a net for each of these 3-D shapes :-
a

b

10. Make an accurate drawing of the net of these shapes:-
a

b

11. On squared paper, make a neat sketch of a :-
a square
b rectangle
c rhombus
d kite
e parallelogram
f equilateral triangle.
12. On plain paper, make a neat sketch of a :-
a cube
d cylinder
b cuboid
e square based pyramid
c cone
f right angled triangular prism.
13. On square dotty paper AND triangular dotty paper, make sketches of :-
a cubes
b cuboids
c triangular prisms
d square based pyramids.

Consolidation of Statistics

1. This pictograph shows the number of people waiting at a railway station one morning.
a How many people were at the station at :-
(i) 7 am
(ii) 7.30 am
(iii) 8.30 am
(iv) 9 am ?
b How many more people were there at 8 am than 7 am ?
c Suggest a reason why 8 am was the busiest time at the station.
d Give a reason why 7 am was not so busy.

Key: // stands for 25 people.

e Why do you think the station was quieter at 9 am ?
Mim
2. The owner of an Indian Restaurant carried out a survey into which types of chicken dishes his diners preferred.

The results are shown in the bar graph.
a How many diners chose :-
(i) salsa
(ii) tikka
(iii) jalfrezi
(iv) jaipuri?
b What dish was liked by the fewest and how many chose it?
c 100 diners chose the all time favourite dish, chicken
 curry. It is not shown in the graph.
Why would it be difficult to show this statistic? Explain!
3. A survey was carried out at Blairgowrie Nursery School as to which cartoons the children enjoy. The results are shown below.

SpongeBob	Tom \& Jerry	Bugs Bunny	Scooby Doo	Mickey Mouse	Yogi Bear
60	70	75	90	10	15

Use the given scale to draw a bar chart illustrating them.

4. In a survey carried out outside Gordon's the Bakers last Saturday, people were asked to name their favourite pastry.

donuts	buns	eclairs	apple pie	muffins
buns	eclairs	muffins	donuts	donuts
donuts	buns	buns	buns	donuts
buns	muffins	donuts	buns	apple pie
buns	donuts	buns	muffins	eclairs
donuts	buns	apple pie	buns	muffins

a Draw a frequency table to show this information with the use of tally marks.
b Draw and label a neat bar graph to represent this information.
5. The diagram below shows the numbers of birthday cakes sold in Gordon's the Bakers the following week.
a How many cakes were sold on Tuesday?
b On which two days were the same number of cakes sold?
c How many more birthday cakes were sold on Friday than on Wednesday?

6.

This line graph shows the number of pay per view films bought from a TV company during one week.
a How many films were bought on :-
(i) Wednesday
(ii) Friday?
b Which is the most popular day to buy films?
c How many more films were bought on a Friday than on a Tuesday?
d Between which 2 days was there the largest rise in film sales?
e Give a possible reason for the Sunday figure that week.
7. The driving range "Golf World" of Milngavie kept a record of the number of golf balls they rented out (in thousands) over a nine month period.

Month	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
No. Balls (1000)	4	7	12	20	18	22	15	8	1

a Draw a neat labelled line graph to show the renting figures.
b Why are the numbers for March, April, October and November lower than the others?
8.

A survey of fried supper sales from a fish \& chip van was made and the results are shown on the pie chart.
The pie chart is divided into 8 sectors.
Each sector is one eighth of the whole pie.
If the survey represented 400 people, how many of the 400 chose :-
a fish supper
b sausage supper
c hamburger supper
d pudding supper?
9. This pie chart shows the number of pupils who attended the school christmas dance.

It has been divided into 20 equal sectors.
a What fraction does each sector stand for this time?
b What fraction of those present were :-
(i) boys
(ii) girls?
c There were 200 pupils at the dance. How many of them were :-

(i) boys
(ii) girls?
10.

Of the workmen in a councils' parks department :-

- 15% are tree specialists
- 45% are plant gardeners
- 30% are grass cutters

a The rest of the workmen are landscape gardeners. What percentage is that?
b Copy (or trace) the blank pie chart, and complete it showing the above information.

11. Shown are the prices for 2 different airlines flying first-class from London to Dubai.
a How much will it cost to travel to Dubai with Fly Dubai in May?
b If you want the cheaper flight in July - which airline should you choose?

c Talisa Sarwar travelled to Dubai from London for $£ 982$.
(i) Which airline did she fly with?
(ii) In which month did she travel?
12. Here is a part of a calendar for the month of February 2011.
a On what day of the week was February 14th (Valentine's day)?
b On what day of the week was the last day in February?
c (i) What was the date 2 weeks after February 8th ?
(ii) What day was it?

d (i) What was the date 13 days before February 12th?
(ii) What day was it?
e It was February the 18th. My anniversary was in two weeks time. On what day and what date was my anniversary?
$f \quad$ Three weeks before February the 7th I bought a piano. On what day and date was that?
9 What day of the week was March 6th ?

h On what day was All Fool's Day, April 1st?
13. State three things that are wrong with this graph, which was produced by Lodl to show how their prices compare with the other two supermarkets for a certain brand of goods.

Revisit - Review - Revise

1. Write a list of 3 things that might happen at school or at home next week.

Use the words :- certain, likely, even chance, unlikely, impossible.
2. A hospital has records showing that boys and girls are born in equal numbers.

What is the chance that the next new baby born will be a boy?
3.

4. What is the probability of rolling a :-
a 4 on a six-sided die
b 1 or a 2 on a six-sided die?

In a box of ice lollies there are 5 orange and 1 green ice lolly.

What is the probability of taking out the green one if you can't see inside the box?

5. Tom has 3 coins in his pocket totalling £2.05. If he takes out one coin from his pocket, what is the probability that it is a 5 pence coin?
6.

There are 7 classes in a school.
The head teacher decides to select one class each week to have a pizza party.
In the first week, what is the probability that Lucy's class is the one chosen to have the party?
7. In a pack of cards there are 26 red and 26 black cards. What is the probability of choosing a red card ? ($\mathrm{P}($ red) .

8.

There are 9 children in a race. They are all fast runners. What is the probability for each child to be in the first 3 ?
9. 4 girls and 8 boys write their names on a piece of paper and put them in a hat.

What is the probability that the first time :-
a a girl's name will be pulled out b a boy's name will be pulled out?

Probability

Chance - Probability

Understand chance (Probability) and predict the likelinood of a simple event happening

What is meant by "Probability" ?
When we talk about the probability of an event happening, we mean the chance or likelihood of the event taking place.

Example :- \quad What is the probability or chance that everyone in the class likes the same flavour of ice cream?

Do you think this is possible, impossible or certain?
Predict the outcome, and then ask other people in your class what they think about ice cream in a survey.

Were your thoughts close to what you found ?

Exercise 1

Use these words to answer the following questions :-

```
(certain - likely - an even chance - unlikely - impossible)
```

1. Willis places cards numbered 1-8 face down on the table.

If he picks one card at random how likely is it that :-
a he will choose the card with 3 on it
b he will choose a card with a number from 1 to 6 on it

c he will choose a card marked 15 ?
2. Sarah is rolling a six sided die, (singular of dice).

If she rolls a 5 or a 6 she wins the game.
If she rolls any other number she loses.
Should she have more wins or losses?

3. Lucy was asked to choose a number from 1 to 10.

What is the chance she chooses :-
a the number 5
b an even number
c the number 12
d any number from 2 to 9 ?
4. Charlie's goal shooting average in basketball is 80 out of 100 .

What is Charlie's chance of getting a basket the next time he shoots?

the number of times that it can happen, in relation to the total number of possible outcomes.

Example :- \quad A die is marked 1 to 6.

We say there is a one in six chance of rolling your number.

If you choose a number from the die then roll it, there is an equal chance of rolling each number.

We also say the probability of rolling your number is 1 in 6 or $P(6)=1$ in 6 .

Exercise 2

1. Sarah tosses a $£ 2$ coin in the air.

What is the probability that it will land showing a tail?

2.

Willis is playing the game Rock, Scissors, Paper.
What is the probability that he will choose Rock on his next turn? (i.e. what is $P($ Rock) ?)
3. Ben finds that he doesn't know whether to go left or right at the corner when he is going to the hospital.
What is the probability that he is correct if he guesses the way?

4.

In a group of boys, 4 are right handed and 1 is left-handed.
What is the probability of correctly guessing which child is left-handed?
5. There are 8 fish in a bowl. One is silver and the rest are gold.

What is the probability of the silver fish being fastest?

6.

There are 3 pink marbles and 1 blue marble in a jar.
What is the probability that on your first pick you will choose the blue marble? (i.e. what is P (blue) ?)

Simplifying Probabilities

Miss Lee's pencil case contains 10 green biros and 2 red biros.
She takes one out without looking to see what colour it is.
The probability that she will take a green biro is 10 out of 12 .
We can simplify this to 5 out of 6 (we divide both numbers by 2).
The probability that she will take a red biro is 2 out of 12 .
We can simplify this to 1 out of 6 (divide both numbers by 2).

Always simplify a probability if it is possible to do so.

Example :-

A probability of 6 out of 15 simplifies to

```
2 out of 5.
```

7.

In a paddock there are 12 sheep. Six are brown and six are white.
What is the chance that a white sheep will come out first when the gate is opened?
8. The names of each of the 6 states and the 3 mainland territories of Australia are written on separate pieces of paper and placed in a hat. James pulls a piece of paper out of the hat. What is the probability he will choose one with a state written on it?

9.

A fruit bowl contains 4 apples, 6 oranges and 2 bananas.
If Jenna asks her mum to pass her a piece of fruit, what is the probability she will be handed :-
a an apple
b an orange
c a banana
d a pear?
10. Dave is asked to write down what month he was born.

What is the probability he was born in a month beginning with the letter J ? $(P(J))$.

11.

In a horse race there are 8 runners with equal ability. The first and second horses past the post win a prize. What is the chance for each horse to win a prize?
12. A boy tosses two coins at the same time.

What is the probability that they both show heads?

13. Two dice are thrown and the 2 numbers showing are added together. What is the probability that the total of the two dice comes to :-

a 2
b 9
c less than 5
d 13 ?

Revisit - Review - Revise

1. Write a list of 3 things that might happen at school or at home next week.

Use the words :- certain, likely, even chance, unlikely, impossible.
2. A hospital has records showing that boys and girls are born in equal numbers.

What is the chance that the next new baby born will be a boy?
3.

In a box of ice lollies there are 5 orange and 1 green ice lolly.

What is the probability of taking out the green one if you can't see inside the box?
4. What is the probability of rolling a :-
a 4 on a six-sided die
b 1 or a 2 on a six-sided die?

5. Tom has 3 coins in his pocket totalling £2.05. If he takes out one coin from his pocket, what is the probability that it is a 5 pence coin?
6.

There are 7 classes in a school.
The head teacher decides to select one class each week to have a pizza party.
In the first week, what is the probability that Lucy's class is the one chosen to have the party?
7. In a pack of cards there are 26 red and 26 black cards. What is the probability of choosing a red card? $(P(r e d)$.

8.

There are 9 children in a race. They are all fast runners. What is the probability for each child to be in the first 3 ?
9. 4 girls and 8 boys write their names on a piece of paper and put them in a hat.

What is the probability that the first time :-
a a girl's name will be pulled out b a boy's name will be pulled out?

Do NOT use a calculator except where you see the
sign.

1. Round to the nearest 1000 :- a 12098 b 35501.
2. Copy and complete :- The answer to $4728+1876$ is about $4700+$ \qquad which equals
3. Write the number that comes :- a 300 after 9900 b 500 before 17200.
4. Write in words :-
a 20806
b 3207080 .
5. Find the following :-
a 2680
$+530$
b $\quad 22708+9550$
c 12000
d 16300-8762.
6. Find the following :-
a 2617
b $\quad 12070 \times 9$
c $5 \longdiv { 7 1 6 5 }$
d $\quad 90336 \div 8$.

$$
\begin{array}{r}
6 \\
\hline
\end{array}
$$

7. a Eight identical wooden blocks weigh 3576 grams. What is the weight of 1 block?
b A bottle holds 750 ml of wine. How much wine is there in half a dozen bottles?
c Alex earns $£ 2355$ per month and Jane earns $£ 1987$. How much do they earn altogether ?
d I have flown 1695 km of my 3070 km journey. How much further have I still to travel ?
8. To what numbers do these arrows point?
a

9. Write down the answers to the following :-
a 5017×1000
b $330800 \div 100$
c 321×300
d $6400000 \div 4000$.
10. What number must have gone INTO this number machine?

11. Round:-
a 29.663 to the nearest whole number
c 5.097 to 2 decimal places
b $\quad 12 \cdot 109$ to 1 decimal place
d 199.96 to 1 decimal place.
12. Do the following :-
a $19.8+2.77$
b
121.83-35.9
c $\quad 8.07 \times 6$
d $31.27 \div 2$
e $55+6.7+0.69$
f $31-8.76$
g $19.75 \div 5$
h $\quad 13.16 \times 8$.
13. Find:-
a 6.0301×10
b $\quad 236 \div 1000$
c 0.234×1000
d $6.8 \div 100$.
14. Find:-
a $10-2 \times 3$
b $\quad 3+7 \times 5$
c $20 \div(4+6)$
d $28+12 \div 4-7$.
15. What is the temperature on this thermometer?

16. Find:-
a 5-11
b $\quad-2+8$
c $6+(-10)$
d $(-21)-9$.
17. Write down the next two numbers in these patterns :-
a $16,20,24,28, \ldots$
b $81,74,67,60, \ldots$
c
$9,7,5,3, \ldots$
d $1,2,4,8, \ldots$
18. Write down the first ten multiples of
a 3
b $\quad 13$.
19. Write down all the factors of
a 12
b 50 .
20. Write down all the prime numbers less than 50.
21. What fraction of this triangle is coloured red ?
22. What fraction of these dominoes contain a six?

23. What percentage of this circular lattice has been coloured yellow?
24. At a birthday party, 25% present were men, 35% were women, 30% were girls and the rest were boys.
What percentage were boys?

. Write down any fraction equivalent to
a $\frac{3}{5}$
b $\quad \frac{7}{11}$.
25. Simplify as far as possible :-
a $\frac{21}{28}$
b $\quad \frac{12}{18}$.
26. What is :-
a $\frac{2}{3}$ of $£ 2.40$
b $\quad \frac{3}{7}$ of 350 metres?
27. Rewrite these numbers in order, puting the smallest first :- $0.45, \frac{2}{5}, 35 \%$.
28. Express as a fraction, simplifying it as far as possible. a 55% b 24%.
29. Find:-
a 10% of $£ 80.00$
b 25% of $£ 1.60$
c 50% of 65 p.
30. 16 out of 20 people said their dog ate Cham dog food. What percentage is this ?
31. I picked up 2 shirts at $£ 9.50$ each, a top at $£ 17.50$ and a tie costing $£ 6.75$.

I checked my wallet and discovered a $£ 20$ note, two $£ 10$ notes and two $£ 5$ notes.
Will I then have enough left over for my $£ 1.50$ train fare home? (Explain your answer).
33. Which of these chocolate bars gives the better deal? (Explain your answer showing working).

- £1•10

34. I changed $£ 200$ into dollars when the rate was $£ 1=\$ 1 \cdot 60$.

$$
£ 1=\$ 1 \cdot 60
$$

How many dollars did I receive?
35.

A butcher bought 8 kilograms of frying steak for $£ 37.50$. He sold the steak to his customers at $£ 6.50$ per kilogram. How much profit did he make altogether?
36. Write in 12 hour form, using am or pm :- a 1550 b 0010.
37. Change:
a 125 seconds into mins and secs.
b 5 hours 25 mins to mins.
38. Find:-
a 2 mins 35 secs +5 mins 45 secs
b 5 mins 20 secs -1 min 55 secs.
39. The stopwatches show the times for the winner and the runner up in an 800 metre race.
Who won and by how much ?

40. On the 11th December 2011, the sun rose at 8.33 am and set at 3.44 pm .

How long was it between sunrise and sunset?
41. a A car travelled the 560 kilometres from Glasgow to London. It took exactly 8 hours. Calculate the car's average speed.
b I walked in the countryside for 4 hours. My average walking speed was $6 \mathrm{~km} / \mathrm{hr}$. How far did I manage to walk?
c I cycled the 60 kilometres from my house to the coast. My average speed was $20 \mathrm{~km} / \mathrm{hr}$. How long did it take me?
42. Estimate the height of the classroom door in centimetres.
43. Estimate the area of this shape in cm^{2}.

44. Measure the lengths of these lines and express your the answer to each in 3 different ways.
a

b

45. Change to centimetres:-
46. Change to kilograms :-
a
2 kg 345 g
b $\quad 5 \mathrm{~kg} 50 \mathrm{~g}$.
47. How many millilitres are in :-
a 3 litres 200 ml
b $4 \frac{3}{4}$ litres?
48. It is $4 \frac{1}{2}$ kilometres to the cinema. I walked 850 metres to the bus stop where I caught the bus. How far is it from the bus stop to the cinema?
49. Write down the areas of these two shapes :-
a

50. The perimeter of this shape is 60 cm . Calculate the length of the smallest side.
b

51.

a Calculate the volume of this container in cm^{3}.
b How many litres will the container hold when full?
52. This table shows the connection between the number of hexagonal shaped tables in a school dining room and the number of metal legs.

Number of hexagonal tables (H)	1	2	3	4	5
Number of legs (L)	6	12	18	24	30

Find the formula connecting L and H.

$L=$ \qquad
53. This table shows the combined weight (W) in kg of a wooden tray loaded with various numbers (N) of metal cubes. Find the formula connecting them.

Number of cubes (N)	1	2	3	4	5
Total weight $(W) \mathrm{kg}$	8	11	14	17	20

$$
W=\ldots \times \ldots+\ldots . .
$$

54. Solve these equations for x :-
a $x+5=12$
b $\quad 3 x=24$
c $2 x-1=9$.
55. Write down all the solutions for $p>-2$ from this set of possibilities :- $\{-3,-2,-1,0,1,2,3\}$.
56. Write down three ways in which a rectangle and a parallelogram are different.
57. How many edges has a square based pyramid?
58. Which solid 3-D shapes are made up from these nets?

59. What type of angles are shown?

60. Measure these angles and write down their sizes :-
a

61. On a compass, what direction is directly opposite South East?
62. Measure and write down the 3 figure bearing of Brassaw from Aisley.

63.

64. a Write down the coordinates of point A.
b Write down the coordinates of a 4th point, (call it B), so that $A B C D$ is a rhombus.

This spear has been drawn to a scale of $1 \mathrm{~cm}=12 \mathrm{~cm}$.
What is the length of the real spear?

65.

This piechart has 20 sectors.
It shows what a group of men thought their best golf shots were.
What percentage of the men felt "driving" was the strongest part of their game?

300 men from the golf club took part in this survey.
How many of them believed driving was their strongest?
66. A 12 sided die numbered 1 to 12 is rolled. A game is won if a multiple of 3 shows.

What is the probability of winning the game?

67. If the probability it will rain today is $\frac{7}{10}$, what is the probability it will NOT rain today ?
68. Copy both shapes and complete so that the dotted line is a line of symmetry each time.
a

b

answers to

Answers to CHAPTER 1 (Page 1)

Consolidation of Whole Numbers

1. a twenty thousand and sixty
b seven hundred and two thousand and five
2. a 20830 b 65004
3. 28889, 28982, 29028, 29208, 30002, 30010
4. a $A=360, B=520, C=4250, D=4380$
b 56°
5. a 3000 b 71000
6. a 91 b 306 c 7700 d 64 e 1620 f 2700 g 22399 h 8987
7. $£ 1.04$
8. a 6901 b 3684 c 7383 d 4518
9. a 70 b 580 c 4000
10. a 1200 b 7000 c 56900
11. a 170 b 600 c 9000 d 10000
12. a 318 b 57519 c 4856 d 10715
13. a 56 b 1783 c 1387 d 539
14. a 470 b 23100 c 50400 d 60000
e 970 f 800 g 490 h 16
15. a 5243 b 1458 c $£ 417$
d 753 l e 2515 kg
16. a 5684 b 54
17. For whole numbers simply add on 6 zeros

Chapter 1 - Exercise 1 (page 3)

eighty thousand
a 7 hundred b seventy
7 thousand e 7 million
3. a four thousand and eighty
twenty one thousand nine hundred
seventy one thousand three hundred
two hundred and thirty five thousand and eighty
seven hundred and three thousand four hundred and sixty thousand
four million ninety three thousand and
twenty seven million fifty thousand and

f 1000007

912060040
b 90887-98999-99924-100076-100086 100870
e $273001 f 598500 \mathrm{~g} 983700 \mathrm{~h} 3100000$
7. A 480 B 7900 C 9100 D 1660 E 1840 F 1500 G 2200 H 13900 I 14700 J 30000 K 45000 L 125000 M 250000 N 650000 O 780000 P 25500 Q 26800 R 28300 S 200000 T 460000 U 720000
8. a 975 b 3450 c 44350 d 850000 e 780500 f 1070000
9. a 1000000 b 500000
c 250000 d 750000
10. a $£ 161653000$
b One hundred and sixty one million, six hundred and fifty three thousand
11. Four million four hundred thousand
12. a 14000000000 b various

Chapter 1 - Exercise 2 (page 5)

1 a 340 b 1260 c 1140
d 1650 e 8920 f 14280
g 12200 h 13600 i 69000
j 169600 k 48000 । 1170000
2. a 13080 b 24680 c 10450
d 193080 e 68600 f 98480
g 585630 h 65520 i 274140
j 246900
3. a 43200 b 105600 c 228000
d 125300 e 151600 f 183000
292500 h 325600 i 738900
j 1464000 k 4236000 | 1808000
m 2202000 n 952000 o 14301000
p 47880000
4. a 1200 b 7200 c 28000
d 45000 e 350000 f 48000
g 180000 h 450000 i 2100000
j 5400000 k 28000000 । 48000000
5. a 70 b 70 c 700
d 60 e 60 f 3000
$g 7000$ h 51000 i 7000
j 520 k 3100 । 630
6 a 760000 miles b 125
c £1390 d 72000
$\begin{array}{llllll}7 & \text { a } & 192 & \text { b } 2893 & \text { c } & 5888896\end{array}$
Chapter 1 - Exercise 3 (page 7)

1	a 60	b 40	c 70	d	40
	e 20	f 180	g 380	h	290
	10	j 410	k 590	I	330
	m 2770	n 9800	- 7100		
2	a 300	b 900	c 800	d	800
	e 300	f 800	g 4700	h	4100
	9500	j 7200	k 26300	1	29900
	m 16100	n 7900	- 20500		

```
3 a 9000 b 23000 c 49000
49000
    d 38000 e 57000 f 92000
    g 20000 h 77000 i 84000
    j 74000 k 17000 | 358000
    m 436000n 369000 o 800000
4 a 489950 b 489900 c 490000
5 a £24360000 b £24000000
    c £20000000
Chapter 1 - Exercise 4 (page 8)
1 62\times78=60\times80=4800-close to 4836
2 a 2379 b 3204 c 34998
    d 33988 e 536
3 a 2100 b 2000 c 7200
    d 24000 e 24000 f 160000
    g 40 h 100 i 30
    j 200 k 100 | 50
4 a 16000 grams b £500
    c 8000000 miles
```


Chapter 1 - Exercise 6 (page 11)							
1	a	24	b 17	c	12		16
	e	55	f 7				
2	a	0	b 1	c	0	d	2
	e	15	f 12	9	20	0 h	
	i	10					
3	a	11	b 2	c	45	5 d	10
	e	30	f 33				
4	a	35	b 5	c	54	4	34
	e	26	f 44	9	50	0	2
5	a	(5+3)	$2=16$	b		-(5x2)+8	
	c	(20+4)	$\div 6=4$	d		+(6*2) $\times 5$	=25
		10+20	$\div(5-1)=15$	f		+2x(8-6)	$2=7$

Consolidation of Symmetry (page 14)

1. If you can fold a shape over a line and the two halves fit exactly then the line is a line of symmetry.

Chapter 2 - Exercise 1 (page 15)
1.

2. a

3. a

4. a

j

5. a

6. various
7. various
8. See Fonts

Answers to CHAPTER 3 (Page 20)
Consolidation of Time (page 20)

Chapter 3 - Exercise 1 (page 21)

1. a 0830 b 2050 c 1300 d 2000
e 0100 f 2125
90320 Sat h 0205 Wed
i 0340 Tue j 0410 Sun
2. a 8.50 pm b 11.32 am
c 12.30 pm d 11.25 pm
e $6.00 \mathrm{pm} \quad \mathrm{f} 2.00 \mathrm{am}$ Tue
93.50 pm h 12.30 am Fri
5.10 am Sat j 6.10 am Thu
3. a 2230 b 7.32 pm
c 0110 d 1555
e $3.10 \mathrm{am} \quad f \quad 2300$ Sat
$\begin{array}{ll}\text { g } & 10.40 \mathrm{pm} \text { Mon } \\ \text { i } & \text { h } 1325 \text { Mon } \\ & \text { j } 11.30 \mathrm{pm} \text { Tue } \\ \text { ari }\end{array}$
4. a 6 hr
c $2 \mathrm{hr} 35 \mathrm{~min} \quad \mathrm{~d} 3 \mathrm{hr} 55 \mathrm{~min}$
e $7 \mathrm{hr} 50 \mathrm{~min} \quad f \quad 11 \mathrm{hr} 10 \mathrm{~min}$
$94 \mathrm{hr} 50 \mathrm{~min} \quad \mathrm{~h} 4 \mathrm{hr} 30 \mathrm{~min}$
i 3 hr 45 min
j 36 hrs
5. $\quad 11 \mathrm{hrs} 35 \mathrm{~min}$
6. No. Was 3 minutes late
7. Yes. With 5 minutes spare
8. 2.12 am
9. a 10 hr 10 mins b 2105 Mon
10. a 2 days 10 mins
b 3 days 5 mins
c 1 day 2 hr 40 mins

Chapter 3 - Exercise 2 (page 23)

1. a $12.57 \mathrm{am} \quad$ b 12.32 am
c 5.31 pm and 3.54 am
d 2 minutes e 11 mins
f 11 mins $\quad g 3 \mathrm{hr} 57 \mathrm{mins}$
h 4 hr 23 mins i 9 hrs 59 mins
j Just-by 6 mins
k the 2115 London to Perth train
2. a The holiday is to Orlando Florida on Monday at 10.05 am for 14 days and the flight number is TAX328. The holiday is available between the 27th June and the 18th July.
b Naples for 7 or 14 days.
c at 4.30 am with Direct Breaks
d The holiday is to Majorca Spain on Saturday at 9.45 pm for 10 days and the flight number is $D B X 1139$. The holiday is available only on the 15th October.
e Sunday at 1.15 pm with Direct Breaks
f Naples with Flight number FCX1544
g (i) Same date
(ii) different time, number of days, Flight number and Company
h Number of days and Company
i The holiday is to Malaga Spain on Sunday at 1.15 pm for 7 days and the flight number is DBX4534. The holiday is available from the 8th May to the 16th October.
3. Project

Chapter 3 - Exercise 3 (page 25)

1. 2 mins 35 seconds
2. a 1 min 20 secs
$\begin{array}{ll}\text { c } 3 \text { mins } 30 \text { secs } & \text { d } 5 \text { mins } \\ \text { e } 15 \text { mins } 30 \text { secs } & \text { f } 10 \mathrm{mins}\end{array}$
3. a $1 \mathrm{hr} 35 \mathrm{mins} \quad b \quad 2 \mathrm{hrs} 15 \mathrm{mins}$
c $4 \mathrm{hrs} 15 \mathrm{mins} \quad \mathrm{d} 8 \mathrm{hrs}$
e 20 hrs 10 mins f 100 hrs
4. a 8 mins 55 secs b 9 mins 20 secs
c 12 hrs 20 mins d 3 mins 15 secs
e 5 mins 15 secs f 40 mins
5. 10 mins 35 secs
6. 1 day 1 hr and 30 mins
7. a 2592000 seconds
b 315360000 approx not taking into account leap years. If you take it there are 365 and a quarter days in a year it is 315576000 seconds

Chapter 3 - Exercise 4 (page 26)

1. a (i) 33 (ii) 3 min 15 sec (iii) 8 min 8 sec
b (i) 1 min 24 secs (ii) 3 mins 7 secs
(iii) 8 mins 30 secs
c (i) $1 \mathrm{hr} 13 \mathrm{mins} \quad$ (ii) 2 hrs 25 mins
(iii) 5 hrs 48 mins
d (i) 6 min 15 secs (ii) 9 hrs 30 mins

(iii) 2 mins 50 secs		
	a 3.9 secs	b 5.0 secs
	c 12.6 secs	d 18.6 secs
	e 24.2 secs	f 8.0 secs
	95.4 secs	h 19.8 secs
	i 0.4 secs	
	McGovern, Goodwin, Samson, Van Zanten, Thomson, Murray	
4.	2 mins 54.61 secs	
5.	2 mins 55.14 secs. USA won by 0.53 secs.	
	0.25 of a second	
	14 mins 27.42 secs	
	a 1 min 23.02 secs	b 4 mins 16.25 secs
	c 7 mins 6.08 secs	d 3 mins 0.04 secs
	e 58.93 secs	
	a 4 hrs 13 mins 25.08 secs	
	b 8 hrs 49 mins 10.84 secs	
	c 11 hrs 59 mins 0.02 secs	
10. 1 min 13.2 secs		
	a Pete	b 3.06 seconds
12.	a 2.08 secs	b 3 mins 2 secs
	a Selleck	b 2.72 secs
c 3 mins 43.41 secs		
	a 4 mins 13.1 secs	b 6 hrs 53 mins
	Can't be done witho	e-crossing 1 bridge

Answers to CHAPTER 4 (Page 31)

Consolidation of Decimals (page 31)

q 12.78 r 206.54 s 2.916 f 1010.139
21. a 14 cm b 3.68 m c 54.1 cm
22. a 16.32 kg b 2.87 km
c (i) $£ 39.45$ (ii) $£ 15.55$
d Drew 3.3 km , Tara 3.78 km Tara 0.48 km
e Ally 34.88 m , Chere 34.68 m Chere 20 cm
23. a 95.2 b 999.11 c 1036.8 d 4871.4
24. a 61.6 b 110 c 198.575 d 24077.04
25. a 25.6 kg b £269.36
c 1408 g d Alex-£2.35 more
26. a 12.69 b 15.83 c 15.94 d 5.64
27. a 3.8 b 8.9 c 4.03 d 29.07
28. a $48.2 \mathrm{~kg} \quad$ b $£ 19.33$ c 14.63 km
29. a 86 b 18 c 10.1 d 0.2
e 323.87 f 51.01 g 0.07 h 0.102
30. a 532 b 944 c 203 d 550
e 1112.3 f 15.5 g 1.76 h 0.94
31. a 1147 b 6060 c 1340 d 56100
e 789 f 65.4 g $1010 \cdot 1$ h $700 \cdot 7$
32. a 44 lb b 440 lb c 4400 lb
33. a 8435 b 91700 c 100 d 1
34. a 4.31 b 8.88 c 2.305 d 1.5
e 0.9 f 0.054 g 0.06 h 0.0011
35. a 1.595 b 7.5332 c 0.451 d 0.8704
e 8.8 f $0.95 \quad 9 \quad 0.011$ h 0.005
36. a 3.5982 b 325.876 c 4.56 d 0.8341
e 0.12 f $0.4 \quad g \quad 0.0343$ h 0.011
37. a 1.21 g b $£ 17.58$ c $£ 33200$
38. a 2.6 b 19.0 c 0.8
d 9.17 e 0.08 f 99.77 g 0.01
39. a 9.91 b 3.7 c 135.6 d 1.15
e 34.8 f 0.089 g 2583 h 19.76
i 176.4 j 1910 k 234.66 । 123.227
m 356.28 n $0.16 \quad 0 \quad 0.04 \quad$ p 100
40. a 1.03 m b 26.96 cm c 12.5 m
d 15.6 kge 5.13 m
41. a 14 b 2 c 8
d 6 e 16 f 55
$\begin{array}{llllll}9 & 0 & h & 1 & i & 0 \\ j & 2 & k & 15 & i & 12\end{array}$
$\begin{array}{llllll}j & 2 & k & 15 & \text { I } & 12 \\ m & 6 & n & 2 & 0 & 45\end{array}$
Chapter 4 - Exercise 1 (page 38)

1.	a	6	b	100,8	c	1000,9	d	10,7
2.	a	$26 \cdot 4$	b	$3663 \cdot 9$	c	$2246 \cdot 8$	d	$652 \cdot 4$
3.	a	$529 \cdot 2$	b	$847 \cdot 2$	c	$355 \cdot 59$		
	d	21880	e	4626	f	171710	9	$943 \cdot 2$
	h	$60 \cdot 8$	i	146	j	54850	k	$70 \cdot 2$

Chapter 4 - Exercise 2 (page 39)

1.	a	9	b	100,7	c	1000,5		
2.	a	4.23	b	0.412				
3.	a	1.61	b	3.47	c	1.039	d	10.94
	e	0.0191	f	0.3505	g	0.1002	h	0.026
	i	0.0442	j	0.024	k	0.00016	l	0.142
4.	a	0.68	b	$485 \cdot 6$	c	0.649	d	0.109
	e	0.0285	f	16800	g	0.038	h	0.016
	i	1239	j	0.0033	k	0.02	l	495

5. Check all answers

Answers to CHAPTER 5 (Page 41)

Consolidation of Decimals (page 41)

1. a obtuse b acute c straight
d right e reflex f obtuse
2. a $53^{\circ}, 2^{\circ}, 39^{\circ}, 63^{\circ}$ b $127^{\circ}, 178^{\circ}, 126^{\circ}, 97$
c 90° d 180° e $184^{\circ}, 300^{\circ}$
3. a $\angle P E C$ b $\angle U N T$ c $\angle B O A$
4. a 30° b 157°
5. See diagrams
6. a 90° b 135° c 225° d 315°

Chapter 5 - Exercise 1 (page 43)

1. See drawings
2. See drawings
$a / b / c \quad$ See drawings
3. $a / b / c / d / e$ See drawings

Chapter 5 - Exercise 2 (page 45)

1. See drawings
2. See drawings
$a / b / c \quad$ See drawings
3. $a / b / c / d$ See drawings

Chapter 5 - Exercise 3 (page 47)

1. See drawings

See drawings
$a / b / c \quad$ See drawings
$a / b / c / d$ See drawings
5. Cannot be done because the length of WG is bigger than the combined lengths of the two smaller sides GR and WR.

Chapter 5 - Exercise 4 (page 48)

1.	a	20°	b	15°	c	65°	d	47°
	e	150°	f	130°	g	55°	h	145°
2.	a	110°	b	130°	c	195°	d	35°

Answers to CHAPTER 6 (Page 51)

Consolidation of Compass Points (page 51) 1.

2. a 90° b 180° c 225°
d 225° e 315° f 135°
3. a SE b N c SE
d (i) 135° (ii) 315°
4. $a / b / c$ See drawings

Chapter 6 - Exercise 1 (page 52)

1. a $7 \mathrm{~cm}, 3.5 \mathrm{~cm}$ b $42 \mathrm{~m}, 21 \mathrm{~m}$
2. $a \operatorname{cm}$ b 3 m c 9 m
3. a 120 cm b 240 cm c USA
4. a 8.10 m b 4.05 m
5. a 5 cm b 15 m
6. a 6 cm by 4.5 cm b 240 m by 180 m
c 840 m
7. \quad a 6.5 cm b 1.95 m c 1.05 m
8. a 16 cm b 1.92 m
9. a 320 m by 240 m b 1120 m
10. a 5 cm b 50 km c (i) 62 km
c (ii) $66 \mathrm{~km} \quad \mathrm{~d} 52 \mathrm{~km}$
11. a 6.3 cm b 126 miles
c (i) 96 miles (ii) 150 miles (iii) 98 miles d $410-420$ miles
12. $2 \cdot 2-2.3 \mathrm{~km}$

Chapter 6 - Exercise 2 (page 55)

1. Rectangle measuring 6 cm by 4 cm
2. Rectangle measuring 12 cm by 7 cm
3. Rectangle measuring 3 cm by 8 cm
4. Rectangle measuring 5 cm by 12 cm
5. a Triangle 8 cm long by 5 cm high

$$
\text { b } 6.4 \mathrm{~cm} \rightarrow 1280 \mathrm{~m} \text { long }
$$

6. Isosceles triangle 6 cm tall by 15 cm long
7.

8.

9. a Triangle 11 cm long and 9 cm high c About 140 metres

Chapter 6 - Exercise 3 (page 58)

| 1. a See drawing | b 4.4 cm c | 13.2 m | |
| :--- | :--- | :--- | :--- | :--- |
| 2. a See drawing | b 15.5 cm c | 155 m | |
| 3. a (i) See drawing | (ii) 10.6 m | | |
| | b (i) See drawing | (ii) 250 m | |
| | c (i) See drawing | (ii) 92 m | |
| | d (i) See drawing | (ii) 1300 m | |
| 4. a See drawing | b 4.95 m | | |
| 5. a See drawing | b 45 m | | |
| 6. a See drawing | b 11.5 km c | 25.3 km | |
| 7. About 31 km | | | |

Chapter 6 - Exercise 4 (page 60)

1.	a	180°	b	135°	c	045°	d	270°
	e	090°	f	225°	g	315°	h	000°
2.	a	$S E$	b	W	c	$N W$	d	N
	e	S	f	$N E$	g	$S W$	h	E
3.	a	010°	b	085°	c	150°		
	d	255°	e	187°	f	300°		
4.	$a \quad 310^{\circ}$	b	195°	c	352°			
5.	a / b							

c $000^{\circ}, 022 \cdot 5^{\circ}, 045^{\circ}, 067 \cdot 5^{\circ}, 090^{\circ}$, etc
Chapter 6 - Exercise 5 (page 62)

1.	a	050°	b	150°	c	090°	d	165°
	e	025°	f	005°	g	065°	h	100°
2.	a	035°	b	060°	c	110°	d	085°
	e	155°	f	125°	g	095°	h	020°
3.	a	315°	b	260°	c	205°	d	290°
4.	a	250°	b	300°	c	200°	340°	
5. See drawings								

Answers to CHAPTER 7 (Page 65)
Consolidation of Money (page 65)

1. a $£ 5.25$ b $£ 5$ note +20 p and 5 p coins
2. a $£ 30.60 \mathrm{~b} £ 21.89 \mathrm{c} £ 32.34 \mathrm{~d} £ 4.16$
3. Pack of 4-14p each, Pack of $6-13 p$ V
4. $300 \mathrm{ml}-94 \mathrm{p} / 100 \mathrm{ml}, 500 \mathrm{ml}-90 \mathrm{p} / 100 \mathrm{ml}$ J
5. a £19.75 b £79.00
6. a $£ 73.70$ b $£ 62.50$

Chapter 7 - Exercise 1 (page 66)

1. a Scotia b Ms Ann E String
c end of Apr 2011 to end of Aug 2014
2. a Card no. 2311323458980041 Mrs Ruth Wilson Feb 2013 to Jan 2015 Sort code 200347 Account 00176502
b Card no. 18174000389880032 Mr Alex Dunbeath Dec 2012 to Nov 2016 Sort code 314502 Account 00453198
3. a To identify the bank branch
b To differentiate between customers
c In case you lose your card or it is stolen
d Faster and safer at times
4. Various
5. Discussion

Chapter 7 - Exercise 2 (page 67)

1. $£ 4 \cdot 80+£ 160=£ 164 \cdot 80$
2. $£ 14 \cdot 40+£ 480=£ 494 \cdot 40$
3. a 2%
b (i) $£ 795.60$ (ii) $£ 1836$ (iii) $£ 352.41$
4. a £82 b £902 c £2193.50
5. Vira is cheapest (33%)
6. a Discussion b discuss

Chapter 7 - Exercise 3 (page 68)

1. a No-£570-£25 short b 1 week

$$
2 \text { more weeks }
$$

a A-8 weeks, T-7 weeks $\sqrt{ } 1$ week
. a 13 weeks b 1 weeks
5. a $£ 40+5 \times £ 5=£ 65$ £5 over budget
b Budget for $£ 65$ or diet more
Chapter 7 - Exercise 4 (page 69)

1. £90
2. $£ 12 \cdot 50$
3. $£ 22300$
4. $£ 6500$
5. $£ 331-£ 315=$ profit of $£ 16$
6. Profit of $£ 430$
7. $£ 5400$
8. £2495
9. £118
10. $£ 12 \cdot 50$
11. £62
12. a £87 b $£ 17$
13. $85 p$
14. a 20 b $£ 12$ c $£ 550$
15. a 15 b $£ 172.50$ c $£ 22.50$
16. £5 each

Chapter 7 - Exercise 5 (page 71)

1.	a	$£ 55$	b	$£ 120$	c	$£ 155$		
	d	$£ 1800$	e	$£ 140$	f	$£ 6 \cdot 75$		
2.	a	$£ 123$	b	$£ 155$	c	$£ 144$	d	$£ 57$
3.	a	$£ 57$	b	$£ 150$				

Chapter 7 - Exercise 6 (page 72)

1. $+£ 780=£ 830 \quad b \quad £ 830$ c $£ 80$
2. $£ 250+£ 1890=£ 2140 \quad$ b $£ 340$

Chapter 7 - Exercise 7 (page 75)

1. €276
2. $€ 575$
3. a €115 b €414 c €943
d $€ 3220$ e $€ 28.75$ f $€ 10.98$
4. $a € \in 26.45$ b $€ 138$ c $€ 15.64$
d $€ 253$ e € $£ 52$ f $€ 1667.50$
5. a $\$ 510$ b 96000 Yen
c 1875 HK dollars d 24000 pesos
6. a $\$ 2400$
7. a $\$ 425$ b $€ 287.50$ c 17500 d 300
8. Same price $£ 250=400$ Australian dollars
9. a Cheaper in Scotland - $€ 287.50$
b Cheaper in USA - Britain $\$ 2750$
c Cheaper in Italy - Britain $€ 16675$
10. Various
11. Various

Chapter 7 - Exercise 8 (page 77)

1. $£$ 2. $£ 800$
2. a $£ 1478.26$ b $£ 273.91$
c $£ 869.57$ d $£ 203.48$
e £26.09 f £51.74
3. $£ 369.57$
4. a $£ 4.00$ b $£ 10.00$
c £3.20 d $£ 413.04$
e £126.09 f £69565.22
5. $£ 10 \cdot 00$ (12 francs)
6. America- $£ 5.82$ Australia - $£ 6.50$

India - £4.27 France - £5.91
Hong Kong - £5.12 Cheapest in India
8. £418
9. Not quite - about $£ 1.09$ short
10. $€ 1 \cdot 13$ to the $£ 1$
11. $41 \cdot 18$ Rupees
12. a 6086.96 Rupees b 32869.57 Yen
c $€ 10.35$ d $\$ 3120$ Australian
e 1117647.06 Dollars f \$3187
13. Varies dependent of exchange rates
a Kuna-Croatia
b SEK-Sweden
c Ruble-Russia
d Baht - Thailand

Answers to CHAPTER 8 (Page 81)

Chapter 8 - Exercise 1 (page 81)

| 1. | a | $3^{\circ} \mathrm{C}$ | b | $-3^{\circ} \mathrm{C}$ | c | $-6{ }^{\circ} \mathrm{C}$ | d |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$-8.85^{\circ} \mathrm{C}$

2. a -£50
b (i) balance of $£ 72$
(ii) overdrawn by $£ 55$
(iii) nothing in bank - owe nothing
(iv) overdrawn by $£ 225 \cdot 75$
c -£5 d -£14 e -£16 f -£105
$g £ 27 \mathrm{~h}-£ 1.80$ i $£ 2250 \mathrm{j}$ £192
Chapter 8 - Exercise 2 (page 83)
3. See drawing
4. a $19^{\circ} \mathrm{C}$ b $12^{\circ} \mathrm{C}$ c $21^{\circ} \mathrm{C}$ d $6^{\circ} \mathrm{C}$ e $10^{\circ} \mathrm{C}$ f $2^{\circ} \mathrm{C}$ g $-10^{\circ} \mathrm{C}$ h $5^{\circ} \mathrm{C}$
i $-7^{\circ} \mathrm{C}$ j $-18^{\circ} \mathrm{C}$ k $-19^{\circ} \mathrm{C}$ । $-21^{\circ} \mathrm{C}$
$m-3^{\circ} \mathrm{C} \quad \mathrm{n}-1^{\circ} \mathrm{C}$
5. a $6^{\circ} \mathrm{Cup} \quad$ b $5^{\circ} \mathrm{C}$ down
c $15^{\circ} \mathrm{C}$ down \quad d $9^{\circ} \mathrm{C}$ up
e $9^{\circ} \mathrm{C}$ down $\quad f 15^{\circ} \mathrm{C}$ up
$g 7^{\circ} \mathrm{C}$ down $\quad \mathrm{h} 13^{\circ} \mathrm{C}$ down
i $80^{\circ} \mathrm{C}$ up \quad j $12^{\circ} \mathrm{C}$ down
6. $-15^{\circ} \mathrm{C}$
7. $44^{\circ} \mathrm{C}$
8. $49^{\circ} \mathrm{C}$
9. a $1^{\circ} \mathrm{C}$ b $-3^{\circ} \mathrm{C}$ c $-7^{\circ} \mathrm{C} \quad \mathrm{d}-31^{\circ} \mathrm{C}$
10. a $-21^{\circ} \mathrm{C},-2^{\circ} \mathrm{C},-1^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 1^{\circ} \mathrm{C}, 18^{\circ} \mathrm{C}$
b $-58^{\circ} \mathrm{C},-36^{\circ} \mathrm{C},-17^{\circ} \mathrm{C},-9^{\circ} \mathrm{C},-2^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C}$,
Chapter 8 - Exercise 3 (page 84)

1.	a	15		16	c	14	d	2
	e	7	f	0	9	-3	h	-6
	i	-16	j	8	k	0	1	17
	m	-6	n	-8	\bigcirc	-9	p	-22
	q	-18	r	-22	s	-11	\dagger	-6
2.	a	7	b	0	c	19	d	-6
	e	-5	f	-10	9	-25	h	-8
	i	-7	j	-24	k	-24	I	-27
	m	-20	n	-41	0	-300	p	-200
3.	a	13	b	-4	c	-10	d	10
	e	-12	f	-2	9	-14	h	-52
	i	15	j	-46	k	-17	1	-23
	m	9	n	-1	-	0	p	-24
4.	a	5	b	0	c	2	d	-2
	e	-20	f	-14	9	4	h	-1
	i	-18		-1	k	-50	1	-900
5.	a	14	b		c	-2	d	-3
	e	-20	f	3	9	0	h	-3
	i	-6		20	k	40	I	-1000
6.	a	8	b	5	c	11	d	4
	e	5		3		4	h	-4

Answers to CHAPTER 9 (Page 87)

Chapter 9 - Exercise 1 (page 87)

1. a 6 miles	b 12 miles	
c 200 miles	d 6 miles	
e 45 miles	f 1 mile	
2. \quad a 210 miles	b 500 miles	
c 1520 miles	d 30 miles	
e 330 miles	f 160 miles	
3. \quad a 100 km	b 360 km	
	c 170 km	d 6 km
	$e 180 \mathrm{~km}$	f 5000 km
4. 1260 km		
5. 60 miles		

Chapter 9 - Exercise 2 (page 88)

1.		4 hr 3 hr	b	3 hr 9 secs	c		d	10 hr 4 hr
	a	1.30 pm						
	b 11.55 pm							
	0210 next morning							
3.	a	1 hr	b	2 hr	c	2 hr	d	5 hr
4.	a	135	miles		b	172		
5.	a	3 hr	b	3 hr	d	4 hr		
6.	a	3 hr	b	9.45 am				
7.	a	9 hr	b	0630 N	,	day		
8.	a	5 hr		7 hr		11 hr	d	

e 3 hr f 9 secs 93 hr h 4 hr
a 1.30 pm
b 11.55 pm
c 0210 next morning
4. a 135 miles b 172 miles
6. $a 3 h r \quad b 9.45 \mathrm{am}$
8. a 5 hr b 7 hr c 11 hr d 15 hr
9. Cyprus, England, Japan, Hawaii, France, Cuba, United Arab Emirates, Australia.
10. Yes with 30 mins to spare
11. a two and a half hours
b three and a half hours
c two and a quarter hours

Chapter 9 - Exercise 3 (page 90)

1. a 3 mph b 10 mph c 30 mph
d 50 mph e 75 kph f 80 kph
2. a 8 kph b 80 kph c 10 metres per sec
d 7 mps e $200 \mathrm{mph} f 60$ metres per min
3. a 90 mph b 364 mph c 68 mph
d 4 mph e 13 mph f 15 mph
g 75 mphh 430 mph i 3.5 mph
4. a 16 kph b 16 kph c 100 mph d 2 mph e $50 \mathrm{mph} f 3 \mathrm{mps} \quad 90.5 \mathrm{mph} h 30 \mathrm{mps}$
5. 13 mph
6. a 3 hrs b 369 mph
7. 18 mph
8. $(30+30) \div(2+3)=12 \mathrm{mph}$
9. a 498 mph b 468 mph c $792 \mathrm{~km} / \mathrm{hr} \quad$ d $756 \mathrm{~km} / \mathrm{hr}$
10. South Africa, USA, Russia, USA, Cuba, Italy, Canada, China
11. a $12 \mathrm{~km} / \mathrm{hr}$ b $6 \mathrm{~km} / \mathrm{hr}$ c $800 \mathrm{~km} / \mathrm{hr}$ d 80 words $/ \mathrm{min}$

Chapter 9 - Exercise 4 (page 92)

1. a 23 mph b 4 hr
c 260 miles d 20 mph
e $24 \mathrm{hr} \quad f 2156$ miles
98 hr
2. 157 km
3. 18 mph
4. 18 minutes
5. $560 \mathrm{~km} / \mathrm{hr}$
6. 9 hours
7. 64000 miles
8. a 154 metres per minute b 2 mins
9. 1880 miles
10. 20 minutes
11. a 3000 metres per hr
b
b 50 m
12. a half a mile per hour
b two and a half mph - 5 times as fast
13. a (20 02 2002) (01 02 2010), (11 02 2011) ...
b (10 022002 2001) $(10023003$ 2001) (10 021111 2001),

Answers to CHAPTER 10 (Page 96)
Consolidation of 2-D Work (page 96)

1. a hexagon b decagon

2 rectangle, isosceles triangle, equilateral triangle, pentagon, square, semi-circle
3. a scalene b equilateral
c isosceles
4. a acute b right c obtuse
5. a obtuse angle isosceles triangle
b right angle scalene triangle
c acute angles isosceles triangle
6. 13 cm
7. see drawing

Chapter 10 - Exercise 1 (page 97)

1. a yes b yes c yes $d 4$
e (i) yes (ii) yes $f 8 \quad 9$ yes
h yes i yes j yes
2. a various

4. $\mathrm{a} / \mathrm{b} 9.9 \mathrm{~cm}$
5. $\mathrm{a} / \mathrm{b} \quad 5.7 \mathrm{~cm}$
6. $a / b \quad 7.8 \mathrm{~cm}$

7 a sides are $6 \mathrm{~cm} \quad$ b diags are 8.5 cm
8. a $16 \mathrm{~cm}^{2}$ b $100 \mathrm{~cm}^{2}$
c $6.25 \mathrm{~cm}^{2} \quad \mathrm{~d}$ about $32 \mathrm{~cm}^{2}$
9. a 7 cm b 28 cm
10. 135°

Chapter 10 - Exercise 2 (page 99)

1. a no b yes c yes d yes
e 2 f (i) yes (ii) no
$94 \quad h$ yes i yes
j no k no
2. various
3.

4. $\mathrm{a} / \mathrm{b} \quad 10 \mathrm{~cm}$
5. various
6. various
7. a possibly 8 cm by 2 cm
b possibly 7 cm by 3 cm
c possibly 6 cm by 4 cm
d a square
8. $21 \mathrm{~cm}^{2}$
9. a $120 \mathrm{~cm}^{2}$ b $84 \mathrm{~cm}^{2}$
c $70 \mathrm{~cm}^{2}$
10. $90 \mathrm{~cm}^{2}$
11. a possibly 9 cm by 3 cm
b 11 by 1,10 by 2,7 by 5,6 by 6
c $11 \mathrm{~cm}^{2}, 20 \mathrm{~cm}^{2}, 27 \mathrm{~cm}^{2}, 32 \mathrm{~cm}^{2}$, $35 \mathrm{~cm}^{2}, 36 \mathrm{~cm}^{2}$
d the one measuring 6 cm by 6 cm
e a square-possibly always the square.
Chapter 10 - Exercise 3 (page 101)

1. a yes b yes c no d yes
e 2 f (i) yes (ii) no 94
h no i yes j yes k yes
2. various
3. a 13 mm b 5 mm and 12 mm
4. see drawing
5. $a / b \quad 4.5 \mathrm{~cm}$
6. see drawing
7. a see drawing
b a square
Chapter 10 - Exercise 4 (page 102)

| 1. a no | b no | c yes | d | no | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | e no | f no | g yes | h 1 | |
| i no | j 2 | | | | |
| 2. a no | b no | c yes | | | |
| d yes | e no | f yes | | | |

4. a

b (i) KN
(ii) ML
(iii) ON
(iv) NKO
(v) KLO
(vi) NMO
5. a Rhombus
b Square
6. 11 cm

Chapter 10 - Exercise 5 (page 104)

1. a no b yes c yes d no
e yes f (i) yes (ii) no $g 0$
h 2 i no j yes
k no l no
2. various
3.

4. a rectangle (or square or rhombus) b rhombus (or square)
c square
Chapter 10 - Exercise 6 (page 105)

1.	square	2. rhombus
3. parallelogram	4.	kite
5. rhombus	6. square	
7.	kite	8. rhombus
9. rectangle or parallelogram		
10. kite	11. square	
12. rhombus or parallelogram		
13. rhombus 14. kite 15. square 16. rectangle 17. square 18. rectangle 19. kite 20. rectangle 21. rhombus 22. kite 23. parallelogram 24. it has 1 pair of parallel sides		

25. various

Answers to CHAPTER 11 (Page 108)
Consolidation of Algebra Work (page 108)

	a	3		b	8	c	4
	a	5		b	6	c	30
	d	19		e	7	f	0
	9	9		h	$5 \cdot 1$	i	55
3.	a	-		b	\times	c	\div
	d	+		e	\div	f	x
	9	+		h	-	1	\div
	a	14		b	25	c	9
	d	14		e	30	f	11
5.	a	*	$+26=55$	b	29		
			(i) 56 (ii)				

Chapter 11 - Exercise 1 (page 109)

1. a (i) 5
(ii) 23
(iii) 53
(iv) 7.6
(v) 9.4
2. a (i) 25 (ii) 34 (iii) 23.5 (iv) 118 (v) $0 \cdot 4$ b (i) 6 (ii) 15 (iii) 12 (iv) 1.5 (v) 100 $\begin{array}{ll}c & 21 \\ f & 0\end{array}$
3. $\begin{array}{llll}9 & 41 & \text { h } & 12 \\ & \text { a } & \text { b } & 8\end{array}$
c 14 d 9.5
4. a 16 b 8 c 8
$\begin{array}{llll}d & \text { e } 12 \quad f & 48\end{array}$
5. a 6 b x
c $18 \quad \mathrm{~d} \div$
6. various e.g. $100 \div 5+5=25,100-95 \times 5=25$

Chapter 11 - Exercise 2 (page 111)
1.

Chapter 11 - Exercise 3 (page 112)

Chapter 11 - Exercise 4 (page 114)

1.	a	>	b	<	c	>
	d	<	e	>	f	>
	9	く	h	<	i	>
2.	a	$3<8$	b	$8>3$	c	11 < 17
	d	-5 >-8	e	2>-2	f	$-1<5$
	9	$-15<-14$	h	-77 >-79	i	$-10<9$
3.	a	3,4	b	0,1,2,3	c	3,4
	d	0,1	e	1,2,3,4	f	0,1,2,3,4
	9	--	h	0,1,2,3,4	i	0
4.	a	2,3	b	-3,-2,-1	c	-1,0,1,2,3
	d	-3,-2,-1,0,1	e	-2,-1,0,1,2,3	f	-3,-2
	9	$-1,0,1,2,3$	h	-3,-2,-1,0	i	all
5.	a	$C \leq 14000$	b	(i) $y \geq 18$	(ii)	$T<18$
	c	$P \leq 51$	d	$V>20$	e	$S \leq 12$
	f	$y \geq 6$	9	$M \geq 40$	h	$p<6$
	i	$M \geq 16$	j	$T>220$	k	$x+y \geq 40$

Chapter 11 - Exercise 5 (page 116)

1. $a \quad x>4$
b $x>9$
c $x \leq 1$

	d	$x<8$		$x \leq 9$	f	$x \geq 25$
	9	$x>10$		$x<70$	i	$x \leq 0$
	j	$x \geq 8$	k	$x<1$	1	$x>80$
	m	$x<1 \cdot 1$	n	$x>210$	0	$x<1 / 2$
	p	$x>2$		$x \geq 7$	r	$x<4$
2.	a	$x<7$	b	$x>5$	c	$x<11$
	d	$x \geq 9$	e	$x \leq 7$	f	$x>10$
	9	$x<5$	h	$x \leq 10$	i	$x>0$
	j	$x \geq 1$	k	$x<3$	1	$x>3$
	m	$x>2 \cdot 3$	n	$x \leq 10$	0	$x \geq 100$
	p	$x<800$	q	$x>250$	r	$x \leq 24$
3.	a	$x+120<$,	$x<70$		
	b	$x+400>$	5,	$x>375$		
	c	$x-10>3$		$x>45$		
	d	$2 x<50$,		$x<25$		
	e	$2 x>60$,		$x>30$		
4.	a	$x<4$	b	$x>4$	c	$x<0$
	d	$x \geq 8$	e	$x \leq 24$	f	$x>11$
	9	$x \leq 1$	h	$x<3$	i	$x>6$
	j	$x \geq 6$	k	$x<5$	1	$x \leq 11$
	m	$x \geq 3$	n	$x<0$	0	$x \geq 2.5$
	P	$x \geq 30$	q	$x<0$	r	$x \geq 50$
5.	a	4,5	b	1,2,3,4	c	0,1,2
	d	6,7	e	1,2,3	f	-1,0,1,2,3
	9	1,2,3	h	2,3,4,5,6		
	i	2,3	j	-2,-1,0,1,		

Answers to CHAPTER 12 (Page 119)

Consolidation of Fractions/Decimals and Percentages (page 119)

1. a $3 / 7$	b 7/10	c	5/8
2. a ${ }^{4 / 7}$	b $3 / 10$	c	3/8
3. a $5 / 20$	b 9/21	c	13/15
4. a $2 / 12,3 / 18$	b 10/16, 15/24	c	6/20, 9/30
5. $a^{1 / 3}$	b $3 / 4$	c	$2 / 3$
6. a £9	b 50 m	c	\$12
7. a 6	b 4	c	£5.30
8. a £18	b \$120	c	£2100
9. 40			
10. red 34%, blu	30\%, green 14\%		low 22\%

11. a 21/100 b 39/100 c 11/100 d 37/100
e $1 / 100$ f $9 / 100 \quad g^{19 / 100}$ h $25 / 100$
12. a 0.43 b 0.13 c 0.29 d 0.09
e 0.05 f 0.50 g 1.25 h 0.01
13. a $17 / 100,0.17$ b 69/100, 0.69
c $3 / 100,0.03$ d 30/100, 0.30
e 70/100, 0.70 f 50/100, 0.50
g 25/100, 0.25 h 10/100, 0.10
14. a 79% b 67% c 57% d 1%
e 9% f 3% g 90% h 170%
15. a 15 p b 9 mm c $£ 7.50 \mathrm{~d} 70 \mathrm{~cm}$
e $250 \mathrm{~g} \mathrm{f} £ 1 \cdot 10 \mathrm{~g} 2.5 \mathrm{~km}$ h 27.5 cm
16. a £616 b 612 km
c £148.20 d 21p
17. a (i) 12000 (ii) 3000 (iii) 5000
b (i) 600 ft (ii) 900 ft

Chapter 12 - Exercise 1 (page 121)

1. a $1 / 4$ b $3 / 10 \quad c^{3 / 20} \quad d^{23 / 100}$
e $\begin{array}{llll}1 / 50 & f & 9 / 100 & g^{19 / 20} \quad \text { h } 3 / 4\end{array}$
i $1 / 20$ j ${ }^{17 / 50}$ k $\quad 33 / 50$ | $16 / 25$
$\mathrm{m}^{2 / 5} \quad \mathrm{n}^{3 / 5} \quad 0^{4 / 5} \quad \mathrm{P}^{27 / 100}$
2. $40 \%=2 / 5,50 \%=1 / 2,5 \%=1 / 20,75 \%=3 / 4$,
$10 \%=1 / 10,1 \%=1 / 100,100 \%=1,25 \%=1 / 4$
3. $1,3 / 4,1 / 2,1 / 4,1 / 5,1 / 10,1 / 20,1 / 100$

Chapter 12 - Exercise 2 (page 123)

Chapter 12 - Exercise 3 (page 124)

1. 42 pupils		
2. 104 trees		
3. 170 g		
4. 38 cats		
5. a £55	b (i) 17 kg	(ii) 68 kg
c £285	d (i) 90	(ii) 40%
e 24		
6. a £ 40	b £1710	
7. a £105	b £42	
8. a £896	b 4730	
c $£ 67.20$	d £4200	
9. 69 mph		
10. a £ 31.08	b £344-50	c 42 psi
11. a £102.30	b $£ 11872$	
12. a £10000	b £200	
c $£ 4000$	d $£ 10000$	

Answers to CHAPTER 13 (Page 127)

Consolidation of Measurement (page 127)

a 67 mm	49 mm	
2. a (i) 85 mm	(ii) 8.5 cm	(iii) 8 cm 5 mm
b (i) 37 mm	(ii) 3.7 cm	(iii) 3 cm 7 mm
3. See drawing		
4. a 300 cm	b 120 mm	c 1800 m
d 6 km	e 2.7 m	f 12 cm
g 4.7 km	h 295 cm	i 2020 cm
j 350 cm	k 117 mm	I 6.05 m
5. 267 mm		
6. 21.5 m		
7. 7 cm		
8. $£ 38.00$		
9. a $28 \mathrm{~cm}^{2}$	b $24 \mathrm{~cm}^{2}$	
10. a see drawing	b 18 boxes	c $18 \mathrm{~cm}^{2}$
11. a $40 \mathrm{~cm}^{2}$	b $49 \mathrm{~m}^{2}$	
12. a $21 \mathrm{~m}^{2}$	b $£ 84.00$	
13. see drawing	b $15 \mathrm{~cm}^{2}$	c $7.5 \mathrm{~cm}^{2}$
14. $24 \mathrm{~m}^{2}$		

15. teacup, jug, bucket, (barrel/bath)
16. lasts 20 weeks - ok
17. a 6 b 40
c $3 \quad d \quad 14$
18. a 650 ml
19. a $15 \mathrm{~cm}^{3}$
b $28 \mathrm{~cm}^{3}$
20. a (i) 6000 ml (ii) 13500 ml (iii) 800 ml
b (i) 4.5 litres
(ii) 25 litres
(iii) 0.25 litre
21. $42 \mathrm{~m}^{3}$
22. grape, plum, apple, pineapple, watermelon
23. a 3000 g b 500 g c 16500 g
d 1200 g e 5015 g g 2750 g
24. a 3 kg b 12.5 kg c 0.25 kg
d 6.4 kg
25. a 350 g
26. 30 kg 600 g
27. 23 kg
28. 850 grams
29. $15 \mathrm{~kg} 213 \mathrm{~g}(15 \cdot 213 \mathrm{~kg})$

Answers to CHAPTER 14 (Page 131)

Consolidation of Patterns (page 131)

1. a

2. a start at 8 and rise by 12 each time b $68,80,92,104$
3. a start at 97 and go down by 9 each time b $52,43,34,25$
4. a start at 8 and rise by $7-43,50,57,64$ b start at 5 and rise by $18-77,95,113,131$
c start at 83 and fall by $6-59,53,47,41$
d start $1 \cdot 8$, rise by $2 \cdot 5-14 \cdot 3,16 \cdot 8,19 \cdot 3,21 \cdot 8$
5. a M, P, S b P, N, L
6. a 4 rows of 4 topped by 4 rows of 3
b 28 c 28, 35, 42, 49, 56
d start at 7 and go up by 7 each time
7. a $1,4,9,16,25,36,49$ b 400

Chapter 14 - Exercise 1 (page 132)

1. a

b $3,6,9,12,15,18$
c 3
d no. of children $=3 \times$ no. of tables
e $C=3 \times T$
d 60
2. a

b $5,10,15,20,25,30$
c 5
d no. of circles $=5 \times$ no. of stars
e $C=5 \times S \quad f \quad 200$
3. a $6,12,18,24,30,36$ b 42
c no. of strawberries $=6 \times$ no. of glasses
d $S=6 \times G$ e 60
4. a $7,14,21,28,35,42$
b cost $=7 \times$ no. of footballs
c $C=7 \times F$ d $£ 210$
5. a no. of roses $=8 \times$ no. of bushes

$$
\text { b } R=8 \times B \quad \text { c } 400
$$

6. a no. of marigolds $=10 \times$ no. of pots
b $M=10 \times P$
c 150
7. a $14,28,42,56,70,84$
b $S=14 \times L, 280$
8. a 20 b $P=20 \times B$ c 360
9. a $P=30 \times N$ b $P=18 \times T$
c $H=24 \times N$ d $P=100 \times N$
e $C=1.25 \times N$ f $B=150 \times J$
g $C=3.5 \times T$
Chapter 14 - Exercise 2 (page 136)
10. a

b $3,5,7,9,11,13$
d $C=2 \times S+1$
c 2
a

a

b $4,8,12,16,20,24$
c 4
d $S=4 \times P-4$
e 76
11. a

b $4,7,10,13,16,19$
c 3
d $C=3 \times T-2$ e 148
f (i) 8 (ii) 12 (iii) 20 (iv) 30
12. a $W=3 \times T+7$ b $F=5 \times K-3$
c $B=10 \times F+5$ d $G=0.5 \times C+7$
e $C=4 \times T+8$ f $T=6 \times P+24$
$g C=9 \times D-2 \quad$ h $D=0.8 \times T+0.5$
i $W=60 \times I+180$ j $S=250 \times Y-150$
k $R=23-3 \times N$

Answers to CHAPTER 15 (Page 142)

Consolidation of Coordinates (page 142)

1. a (i) P
(ii) S
(iii) V
(iv) J
b (i) $(2,3)$ (ii) $(0,5)$ (iii) $(5,4)$ (iv) $(7,7)$
c (i) RYTV (ii) $(2,6),(8,6),(9,9),(3,9)$
d S e U f W
$g \quad Q(2,3) \quad h \quad K, Z$ and T
2. a See drawing b $D(5,8)$ $\quad K(5,6)$

Chapter 15 - Exercise 1 (page 143)

1. $F(4,4), G(5,1), H(5,-2), I(6,-3)$,
$J(0,-2), K(-4,-3), L(-3,0), M(-4,2)$
2. a kite $\quad b$ isosceles triangle
c parallelogram d rhombus
e hexagon f pentagon
3. $a / b \quad C(-2,-2)$ or $C(7,4)$
4. a $P(-2,4), Q(-4,2), R(-2,0), S(0,2)$
b $P^{\prime}(-2,-4), Q^{\prime}(-4,-2), R^{\prime}(-2,0), S^{\prime}(0,-2)$
c $P^{\prime \prime}(2,-4), Q^{\prime \prime}(4,-2), R^{\prime \prime}(2,0), S^{\prime \prime}(0,-2)$
5. a / b parallelogram
c/d K'(-2, -2), $L^{\prime}(-3,1), M^{\prime}(3,1), N^{\prime}(4,-2)$
6. a / b Pentagon
c $E^{\prime}(-6,1), F^{\prime}(-7,4), G^{\prime}(-2,6), H^{\prime}(3,4), I^{\prime}(2,1)$
d $E^{\prime \prime}(6,-1), F^{\prime \prime}(7,-4), G^{\prime \prime}(2,-6), H^{\prime \prime}(-3,-4)$,

$$
I^{\prime}(-2,-1)
$$

7. a see diagram b $W(4,-3)$
c $\mathrm{T}^{\prime}(3,4), \mathrm{U}^{\prime}(1,6), \mathrm{V}(-6,-1), W^{\prime}(-4,-3)$

Answers to CHAPTER 16 (Page 146)

Consolidation of 2-D Work (page 146)

| 1. a cylinder | b cone |
| :--- | :--- | :--- |
| c cube d hemisphere
 e sphere f cuboid | |
| g pyramid | h triangular prism |

Chapter 16 - Exercise 1 (page 147)

1. Possible answer

2. Possible answer

3. a yes b no c yes d no \quad yes f yes
4. various
5. a one above and 1 below the line of 4 b never put both squares above or below.

Chapter 16 - Exercise 2 (page 149)

1. a / b

2. a / b

3. $a / b / c$ see nets
4. a

5. a see nets and figures

Chapter 16 - Exercise 3 (page 150)
1.

2.

3. a 3 rectangles -8 by 5,8 by 5 and 8 by 3 b

4.

5. (i) cube
(ii) cuboid
(iii) sphere
(iv) cone
(v) cylinder
(vi) square pyramid
(vii) triangular prism (viii) hemisphere

b $A=$ cuboid	$B=$ square pyramid		
C	$=$ cylinder	$D=$ triangular prism	
E	$=$ cone	F	$=$ square prism

6. $336 \mathrm{~cm}^{2}$

Chapter 16 - Exercise 4 (page 152)

1. a / b see model
2. $a / b / c$ see models
3. a 192 cm b 140 cm c 155 cm
4. a see model b 206 cm
5. a / b see model

Answers to CHAPTER 17 (Page 156)

Consolidation of Statistics (page 156)

1. a (i) 50
(ii) 115
(iii) 80
(iv) 35
b 75 c going to work or school
d few people start work at that time
e people have already left for work.
2. a (i)
b balti (2)
c nearly 4 times higher than tallest column
3. a see bar graph
4. a donuts - 8 , buns -11 , eclairs - 3
apple pie-3, muffins - 5
b see graph
5. a 48 b Mon,Fric 9
6. a (i) 125 (ii) 150
b Sat c 75
d Thursday to Friday e various
7. a see graph
b bad weather possibly
8. a 200 b 100 c 50 d 50
9. $a 1 / 20$ b (i) $6 / 20$ (ii) $14 / 20$
c (i) 60 (ii) 140
10. a 10% b see drawing
11. a $£ 850$ b Fly Dubai
c (i) Ryanjet (ii) June
12. a Mon b Mon
c (i) Feb 22nd (ii) Tue
d (i) Jan 31st
(ii) Mon
e Frid 4th March f Mon 17th January
9 Sunday $\quad h$ Friday
13. a vertical scale does not start at zero
b no indication of the name of the brand
c the columns have varying widths

Answers to CHAPTER 18 (Page 160)

Chapter 18 - Exercise 1 (page 160)

1. a unlikely b likely cimpossible
2. more losses
3. a unlikely b an even chance
c impossible d likely
4. likely

Chapter 18 - Exercise 2 (page 161)

1. a 1 in 2 (evens)
2. 1 in 3
3. 1 in 2 (evens)
4. 1 in 5
5. 1 in 8
6. 1 in 4
7. 6 in 12 or 1 in 2 (evens)
8. 6 in 9 or 2 in 3
9. a 1 in 3 b 1 in 2
c 1 in $6 \quad d \quad 0$
10. 3 in 12 or 1 in 4
11. 1 in 4
12. 1 in 4 - $(H, H),(H, T),(T, H),(T, T)$
13. a 1 in 36 b 1 in 9
c 1 in 6 d 0

Answers to CHAPTER 19 (Page 164)

1. a 12000 b 36000
2. a $4700+1900$ about 6600
3. a 10200 b 16700
4. a twenty thousand eight hundred and six
b three million two hundred and seven thousand and eighty
5. a 3210 b 32258 c 10164 d 7538
6. a 15720 b 108630 c 1433 d 11292
7. a 447 g b 4500 ml c £ 4342 d 1375 mi
8. a 258 b 3.92 c 0.74
9. $a 5017000 b 3308$ c 96300 d 1600
10. 35
11. a 30 b 12.1 c 5.10 d 200.0
12. a 22.57 b 85.93 c 48.42 d 15.635
e 62.39 f 22.24 g 3.95 h 105.28
13. a 60.301 b 0.236 c 234 d 0.068
14. a 4 b 38 c $2 \quad d \quad 24$
15. $-16^{\circ} \mathrm{C}$
16. a -6 b 6 c $-4 \quad d \quad-30$
17. a 32,36 b 53,46 c $1,-1$ d 16,32
18. a $3,6,9,12,15,18,21,24,27,30$
b $13,26,39,52,65,78,91,104,117,130$
19. a $1,2,3,4,6,12$ b $1,2,5,10,25,50$
20. $2,3,5,7,11,13,17,19,23,29,31,37,41$,

43, 47
21. $1 / 9$ 22. $7 / 22 \quad$ 23. 36% 24. 10%

25 a 6/10 b 14/22
26. a $3 / 4$ b $2 / 3$
27. a $£ 1.60$ b 150 m
28. $35 \%, 2 / 5,0.45$
29. a $11 / 20$ b $6 / 25$
30. a £8 b 40p c 32.5p

31 80\%
32. Yes since items come to $£ 43.25$

I have $£ 45$, Left with $£ 1.75$
33. first is 12 p per square, 2 nd is 11 p per square
34. $\$ 320$
35. £14.50
36. a 3.50 pm
b 12.10 am
37. a 2 min 5 secs b 325 mins
38. a 8 min 20 sec b 3 min 25 sec
39. Owens by $3 \cdot 70$ secs

407 hr 11 mins
41. a $70 \mathrm{~km} / \mathrm{hr}$ b 24 km c 3 hr
42. about 1.8 to 2 metres
43. $19 \mathrm{~cm}^{2}$
44. a $52 \mathrm{~mm}, 5.2 \mathrm{~cm}, 5 \mathrm{~cm} 2 \mathrm{~mm}$
b $97 \mathrm{~mm}, 9.7 \mathrm{~cm}, 9 \mathrm{~cm} 7 \mathrm{~mm}$
45. a 536 cm b 1004 cm
46. a 2.345 kg b 5.050 kg
47. a 3200 ml b 4750 ml
48. 3.65 km
49. a $15 \mathrm{~m}^{2} \quad$ b $6 \mathrm{~cm}^{2}$
50. 8 cm
51. a $6000 \mathrm{~cm}^{3}$ b 6 litres
52. $L=6 \times H$
53. $W=3 \times N+5$
54. a 7 b $8 \quad c 5$
55. $-1,0,1,2,3$
56. various
57. 8
58. $A=$ triangular prism,$B=$ square pyramid

$$
C=\text { cylinder } \quad D=\text { cone }
$$

59. a acute b reflex
60. a 55°
b 140°
61. North West
62. 070°
63. 84 cm
64. a $A(9,4) \quad b \quad B(5,7)$
65. a 30%
b 90
66. 1 in 3
67. $3 / 10$
68. a
b

Timeline of teaching 2 to 10 times tables and division by 2 to 10
 + multiplication and division of 2 (or 3) digit numbers by a single digit

$\begin{array}{lll}\text { From New CfE } \\ \text { (MNU 1-O3a) }\end{array} \quad$ Level $\left.1 \quad \begin{array}{l}\text { Mult } n / \text { Divn of up to } 3 \text { digits by a single digit }^{\text {Mult/Div by } 10 .} \\ \\ \\ \text { Solve simple money and other word problems involving above. }\end{array}\right)$ All will appear in TeeJay Books $1 a$ and 1 b

Start of						art of						art of					
Aug	Oct	Dec	Feb	Apr	Jun	Aug	Oct	Dec	Feb	Apr	Jun	Aug	Oct	Dec	Feb	Apr	Jun

Assuming this is Level 1 (Approximately P2 to P4) and pupils have just completed Early Level, where would you see the teaching of multiplication by 2 to 10, division by 2 to 10, then multiplication and division of 2 or 3 digit numbers by a single digit including remainders being taught. Could you indicate when each of these might be introduced, and in what order, relevant boxes please?

Thanks
Tom and John Strang (TeeJay)

[^0]: * Available for purchase separately.

