IMPORTANT

This is an Accessible Digital Copy of a printed book. The original digital file from which the Accessible Copy was made was kindly provided by the publishers. All rights to the Accessible digital copy are retained by the rightsholders of the printed books.

This Accessible Digital Copy is for the personal use of an "Authorised Person" who is defined as "a pupil who is visually impaired or otherwise disabled and by reason of such visual impairment or disability is unable to read or access the original printed book".

An Authorised Person is regarded as "visually impaired" in accordance with s.31F (9) of the Copyright, Designs and Patents Act 1988, or, as appropriate, as a "disabled person" in accordance with s. 1 of the Disability Discrimination Act 1995.

No other pupils can use the Copies.

The Accessible Copy may be stored on the students' personal computer or other electronic device, or on a secure password-protected intranet limiting access to the student(s) only.

The user(s) of the Accessible Digital Copy must have legal access to a hard copy of the book, bought either for personal use or as part of a class set.

If the pupil(s) cannot access the Accessible Digital Copy, it may be converted into another Alternative Format. The book may not be altered except as required for conversion to the Alternative Format, and conversion must retain the integrity of the text.

The student(s) may print the contents of the book for personal use only.
The Accessible Copy may not be further copied, nor may it be supplied to any other person, without permission. It may not be made available on the world wide web or copied or transferred to any third party.

The Accessible Digital Copy should be deleted once the pupil(s) have completed the course for which it was supplied.

Do not supply the Accessible Copy to other pupils. If you require another Accessible Copy of this book for more pupils, you must download another copy from the Books for All Scotland Database.

Please note that that usage of Accessible Digital Copies outwith these terms and conditions may result in legal action against you and/or your educational establishment.

P.O. Box 1375
Barrhead
Glasgow
G78 1JJ

Tel: 01418806839
Fax: 08701249189
e-mail: teejaypublishers@btinternet.com
web page: www.teejaypublishers.co.ok

© TeeJay Publishers 2012
 First Edition published by TeeJay Publishers - July 2012

All rights in this book are reserved. No part of this book may be copied or reproduced in any format, including electronic, without the express permission of the authors in accordance with the Copyright, Design and Patents Act of 1988.

Any person or organisation who makes unauthorised copies of any part of this book may be liable to prosecution and possible civil claims for damages.

$$
\begin{aligned}
& \text { Level 3' } \\
& \text { rexitooo!s }
\end{aligned}
$$

Produced by members of the TeeJay Writing Group
T Strang, J Geddes and J Cairns.

PUPIL BOOK $3 b$

Level 3b Textbook

The book, along with CfE Book 3a can be used in both upper Primary and Secondary $1 / 2$ with pupils who have successfully completed CfE Level 2 and who are likely to be following the National 5 course in S3 or earlier.

- Those pupils going onto a national 5 course should complete the contents of books $3 a$ and $3 b$ by the end of Secondary 2, some earlier and some later.
- As a guide, Book 3b might be started with most pupils at the beginning of, or part way through S2.
- There are no A and B exercises. The 2 books cover the entire Level 3 CfE course without the teacher having to pick and choose which questions to leave out and which exercises are important. They all are!
- Pupils who cope well with the contents of Level 3 may be able to begin work on National 5 during S2.
- The book contains a 7 page "Chapter Zero", which primarily revises all those strands from CfE Level 3 that have been covered in Book 3a.
- Topics which have been completed in Book 3a, are reintroduced as Review Exercises in Book 3b, to help consolidate and revise the topics in preparation for National 5.
- Each chapter will have a "Revisit - Review - Revise" exercise as a summary.
- Chapter 14 revises every strand of Level 3 in preparation for TeeJay's Level 3 Diagnostic Assessment.
- Teachers are encouraged, at the end of various chapters, to consider assessing the pupils using the corresponding TeeJay Outcome Assessment.
- Homework* is available as a photocopiable pack.
- TeeJay's Assessment Pack* for each Level, early to 3, is available and can be used topic by topic or combined to form a series of Level 3 cumulative Tests.

We make no apologies for the multiplicity of colours used throughout the book, both for text and in diagrams - we feel it helps brighten up the pages !!

T Strang, J Geddes, J Cairns

(August 2012)

[^0]
Book 3(b)

Ch 0	Revision	Revision/Diagnosis of Book 3a	1-7
Ch 1	Powers \& Roots	Squares, Cubes and Powers (Indices)	8-9
	(MTH 3-06a)	Square* (and Cube) Roots - Extension	10
	(MTH 4-06a)	Revisit - Review - Revise!	11
		Attempt TeeJay's MTH 3-06a Diagnostic Assessment	
	(Review 1)	Money, (Ch 13) from Book 3a.	12
Ch 2	Money	Foreign Exchange	13-14
	(MNU 3-09a)	Best Buys	15-16
		Best Deal - plumber's service, call out charges etc.	17-20
		Credit and Debit Cards	21
		Revisit - Review - Revise!	22-23
		Attempt TeeJay's MNU 3-09a Diagnostic Assessment	
	(Review 2)	Rounding, (Ch 1) and Whole Numbers, (Ch 2) from Book 3a.	24-25
Ch 3	Multiples	Multiples and Lowest Common Multiple	26-27
	\& Factors	Factors and Highest Common Factor	28-29
	(MTH 3-05a)	Prime Numbers	30-31
	(MTH 3-05b)	Prime Decomposition	32
		Revisit - Review - Revise!	33
		Attempt TeeJay's MTH 3-05a and MTH 3-05b Diagnostic Assessment	
	(Review 3)	\%, Fractions and Decimals 1, (Ch 6) from Book 3a.	34-35
Ch 4	Patterns \&	Revise Sequences and Patterns	36-37
	Relationships	Simple Linear Patterns of the form $P=m D$ and Linear Graphs $y=m x$	38-40
	(MTH 3-13a)	Harder Linear Patterns of the form $P=m D+c$ and Linear Graphs $y=m x+c$	41-44
		Revisit - Review - Revise!	45
		Attempt TeeJay's MTH 3-13a Diagnostic Assessment	
	(Review 4)	Algebra, (Ch 7) and Integers, (Ch 4) from Book 3a.	46-47
Ch 5	Algebra 2	Revise Basic Equation Solving using various methods up to $3 x-4=11$	48-49
	(MTH 3-15a)	Harder Equations $6 x-2=4 x+10,2(3 x-1)=20,1 / 2 x-2=6 *$	49-52
	(MTH 4-15a)	Solving Inequalities like $3 x-5>10,1 / 3 x+3 \leq 12^{*}$	53
		Revisit - Review - Revise!	54
		Attempt TeeJay's MTH 3-15a Diagnostic Assessment	
	(Review 5)	Angles, (Ch 3) from Book 3a	55
Ch 6	Angles (MTH 3-17a)	Corresponding Angles (F - Angles)	56-58
		Alternate Angles (Z - Angles)	59-60
		Problems involving All Angles	61-62
		Revisit - Review - Revise!	63
		Attempt TeeJay's MTH 3-17a Diagnostic Assessment	
	(Review 6)	Perimeter \& Area, (Ch 8) and Volumes, (Ch 12) from Book 3a.	64-65
Ch 7	2 - Dimensions	Recognise and know the names of polygons up to dodecagons	66-67
	(MTH 3-16a)	Accurately draw triangles given appropriate 3 pieces of information	67-70
		Use Ruler and Protractor to draw accurate quadrilaterals	71-72
		Revisit - Review - Revise!	73
		Attempt TeeJay's MTH 3-16a Diagnostic Assessment	
	(Review 7)	Fractions, (Ch 9) from Book 3a.	74

Ch 8 Fractions Multiplying Fractions including Mixed Numbers 75-76
Dividing Fractions including Mixed Numbers 77-78
Mixed problems including all 4 operations 79
Revisit - Review - Revise! 80
(Review 8) Coordinates, (Ch 5) from Book 3a. 81
Ch 9 Scale Drawings and Bearings
(MTH 3-17b)
Using Scale Drawings to Calculate Lengths 84-85
Making Basic Scale Drawings 86-87
Scale Drawings involving use of a Protractor 88-90
Drawing and Interpreting Scale drawings involving bearings 91-92
Revisit - Review - Revise! 93-94
Attempt TeeJay's MTH 3-17b and MTH 3-17c Diagnostic Assessment
(Review 9) Ratio, (Ch 11) from Book 3a. 95
Ch 10 Proportion (MNU 3-08a)

Proportional Division (Sharing) 96-97
Proportion - Basic Unitary Proportion 98
Direct Proportion - Knowing the cost of x, find the cost of y 99-100
The Linear Graph of Direct Proportion 101-102
Revisit - Review - Revise! 103
Attempt TeeJay's MNU 3-08a Diagnostic Assessment
(Review 10) \%, Fractions and Decimals 2 with a Calculator, (Ch 6) from Book 3a. 104
Ch 11 Symmetry Revision of Line Symmetry 105-106
(MTH 3-19a)
Rotational Symmetry incl. Half Turn - Order of rotational Symmetry*
107-109
(MTH 4-19a) Be able to rotate a shape by 180° around a point* 110-111
Translational Symmetry and Tiling 112-114
Revisit - Review - Revise ! 115-116
Attempt TeeJay MTH 3-19a Diagnostic Assessment
(Review 11) Circles 1, (Ch 10) and Circles 2, (Ch 14) from Book 3a. 117
Ch 12 Statistics Bar Graphs and Line Graphs
118-120
(MNU 3-20a)
Spreadsheets
121-123
(MTH 3-21a)
Interpreting Pie-chart
124-125
(MTH 3-20b)
Drawing Pie-chart from Raw Data or Percentages 126-127
(MTH 4-20b)
Averages - Mean and Range of a data set
128-129
Averages - Median and Mode of a data set
130-131
Stem-and-Leaf Diagrams
132-134
Problems when collecting/using data - Conducting a survey 135
Revisit - Review - Revise! 136-138
Attempt TeeJay's MTH 3-21a and MTH 3-20b Diagnostic Assessment
(Review 12)
Ch 13 Probability
(MTH 3-22a)
Time, (Ch 15) from Book 3a.
Revision of simple Probability 140-141
Harder Probability - Prob of total of 7 when rolling 2 die, Prob of 3 head etc 141-142
Probability as a Fraction
Extension to Probability - Independent and Dependent Events 146-147
Revisit - Review - Revise !
Attempt TeeJay's MNU 3-22a Diagnostic Assessment
Ch 14 Revision - Level 3 Revision of Level 3 work for Diagnostic Assessment - CfE Level 3

* Topics listed with a star have been brought forward from Level 4 - We believe they lie better in Level 3.

The brown (Review) exercises provide revision of the topics met in Book 3(a)

Before continuing the CfE Level 3 course using Book 3b, this chapter will give you a chance to revise those topics at Level 3, already covered in Book 3a.

Each topic will also be covered in depth in one of the interspersed Review Exercises.

Calculators should NOT be used unless the symbol

goom
-อ.

Rounding

1. Round each of the following to 1 significant figure :- a 3501 b 247800.
2. Round each of the following to 2 significant figures :- a 67845 b 0.9875 .
3. Round each of the following to 3 significant figures :- a 126903 b 0.06218 .
4. How many significant figures have each of the following numbers been rounded to ?
a 0.0507
b 0.0090
c 20003
5. Round each number to one significant figure then give an approximate answer to each :-
a 412×38
b 2137×384
c 0.229×296
d $5824 \div 19$
e $879300 \div 3115$
$f \quad 0.3732 \div 1.83$.
6. Rounded to 1 significant figure, the number of people at a concert was 8000 .

What was the greatest number of people who could have been at the concert?

Whole Numbers

7. Calculate :-
a 31×30
b 423×2000
c 403×400
d $6600 \div 30$
e $800000 \div 400$
f $84000 \div 60$.
8. Carefully, work out the answers to the following :-
a $20-5 \times 2$
b $16-8 \div 2+5$
c $20 \div(2+3)$.
9. Re-write the following and insert brackets to make each of the statements correct :-
a $7+2 \times 4=36$
b $15 \div 5-2=5$
c $7+8 \div 2+3=3$.
10. A group of 8 people, a mixture of adults and children, bought tickets for the London Eye.

The bill came to $£ 97.20$.
How many adults and how many children must there have been?

11. What is the:-

a supplement of 75°
b complement of 75° ?
12. Copy and complete each diagram below, filling in all missing angles :-
a

b

C

d

e

h

i

Integers

13. Find :-
a 8-11
b $\quad-8+10$
c $13+(-6)$
d $7-(-3)$
e $-5-(-2)$
f $-15-(-25)$
$9-3+(-6)-(-9)$
h $-20-(-9)-(-8)$.
14. Find:-
a $-2+3-(-4)+(-5)$
b $\quad 18-(-10)+(-19)-8$
c $65+(-72)-(-45)$.
15. Find :-
a $5 \times(-4)$
b $(-7) \times(-3)$
c $20 \div(-4)$
d $(-24) \div(-6)$
e $3 \times(-6) \times 2$
$f \quad(-5) \times(-3) \times(-1)$
$g(-86) \times(-29) \times 0$
h $(-80) \div(-5) \times(-3)$
i $5 \times(-1) \times(-3)$
j $-3 \times(-8)+(-4) \div(-2)$.
16. a

From the entrance to a cave to the back of the cave, the temperature dropped from $12^{\circ} \mathrm{C}$ down to $-13^{\circ} \mathrm{C}$.
By how much had the temperature dropped?
b A small submarine was at a depth of -85 metres. It rose by 30 metres before descending 105 metres to the ocean floor.

What was the depth of the ocean at that point?

Coordinates

17. From the coordinate diagram :-
a Write down the coordinates of all the points.
b Which 2 points have the same x coordinate?
c Which points have the same x and y coordinate?
18. Draw a set of axes (-4 to 4 on both scales).
a Plot the points $A(-1,0), B(-3,4)$ and $C(1,2)$.
b Plot a 4 th point (D) so that figure $A B C D$ is a
 rhombus and write down the coordinates of D.
c Reflect figure $A B C D$ in the x-axis, showing its new position in your diagram, $\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)$, and write down the coordinates of $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime}.

Fractions, Decimals \& Percentages

19. Change each percentage to a decimal and then to a fraction in its simplest form :-
a 20\%
b 5%
c 36%
d 75%
e $66 \frac{2}{3} \%$
f $\frac{1}{2} \%$.
20. Change each of the following into a percentage :-
a 0.35
b 0.04
c $\quad \frac{7}{10}$
d $\quad \frac{11}{40}$
e 1.5
f $\frac{1}{3}$.
21. Find :-
a $\frac{3}{5}$ of $£ 80$
b 2% of $£ 1200$
c 75% of $£ 4000$
d $0 \cdot 3$ of $\$ 4000$.
22. Sandy bought an electric guitar for $£ 240$.

He sold it later to a friend for 25% less than what he bought it for.
For how much did Sandy sell his guitar?
23. Find:-
a 17% of $£ 340$
b $\quad \frac{5}{8}$ of 992 kg
c 0.65 of $£ 16.40$
d $37 \frac{1}{2} \%$ of $£ 176$
e $\frac{11}{15}$ of $€ 6450 \quad f \quad \frac{1}{2} \%$ of $£ 840$
g $12 \frac{1}{2} \%$ of $\frac{3}{5}$ of $£ 12000$.
24. a

Sally's monthly pay last year as a beautician was $£ 1850$.
This year she received a pay rise of 3.5%.
What is Sally's new :- (i) monthly pay (ii) annual salary?
b Farmer Giles buys food supplement for his sheep. A sack usually feeds 60 sheep but this month the sack contains an extra 30% feeding.
How many sheep will a sack now feed?

25. Simplify the following expressions :-
a $d+d$
b $p \times p$
c $4 c \times 8$
d $7 x+5 y-2 x-y$
e $\boldsymbol{\dagger} \times \boldsymbol{\dagger} \times \boldsymbol{t}$
f $5 b^{2} \times 7 a b$
g $15 m^{2} \div 3 m$
h $60 n^{2} \div 5 n$.
26. Work out the value of these expressions when $a=5, b=4$ and $c=-2$:-
a $3 a+b$
b $b^{2}+c^{2}$
c $a b c$
d $3 b^{2}$
e \sqrt{b}
f $\frac{2 a+c}{b}$
$9 \frac{4 a}{b+c}$
h $\sqrt{3 b-2 c}$.
27. Multiply out the brackets :-
a $5(x+3 y)$
b $3 m(m-5)$
c $-4(h-3)$
d $-2 q(5-q)$.
28. Expand the brackets and then simplify :-
a $5(x+2)-10$
b $8 b+4(b-3)$
c $2+3(d-2)$
d $12+6(2 x-3)$
e $2(3 t-1)-5(t-1)$
f $3 g-(4-g)$.
29. For each of the following formula, work out the value of the capital letter :-
a $T=2 d+e$. Find T, when $d=6.5$ and $e=0.4$.
b $\quad W=\sqrt{a+b c}$. Find W, when $a=11, b=2.5$ and $c=10$.
30.

a Construct a formula for finding P, the perimeter of the shape shown opposite.
b Find P, when $a=10, b=7$ and $c=13$.
c Find c, when $P=81, a=12$ and $b=9$.

Area \& Perimeter

31. Calculate the area of each of these :-
a

b

c

kite

f

32．Calculate the perimeter of each of the shapes in Question 31.

33．Calculate the area of these shapes，showing each step of your working ：－

c

Fraction Work

34．Write two equivalent fractions for：－
b $\frac{3}{11}$ ．
35．Find and simplify where possible ：－
a $\frac{5}{8}+\frac{1}{8}$
b $\frac{1}{3}+\frac{1}{4}$
C $\frac{4}{5}+\frac{1}{3}$
d $\frac{3}{5}+\frac{2}{3}-\frac{1}{2}$ ．
36．Change to a top heavy fraction ：－
a $2 \frac{1}{5}$
b $4 \frac{5}{6}$ ．
37．Change to a mixed number ：－
a $\frac{7}{6}$
b $\frac{28}{5}$ ．

38．Find each of the following，leaving your answer as a mixed number ：－
a $3 \frac{2}{5}+4 \frac{2}{5}$
b $5 \frac{7}{8}-1 \frac{1}{8}$
c $1 \frac{1}{4}+2 \frac{2}{3}$
d $\quad 10 \frac{7}{8}-7 \frac{1}{4}$
e $6 \frac{3}{4}-2 \frac{2}{5}$
f $5 \frac{1}{4}-1 \frac{1}{3}$
g $8 \frac{2}{5}-5 \frac{5}{6}$
h $7-2 \frac{3}{8}$ ．

39．I began with $4 \frac{3}{4}$ litres of Irn Bru．During the evening I drank $2 \frac{1}{3}$ litres．
How much Irn Bru was I left with？

Circle Work

 Give all answers correct to 3 significant figures．40．Calculate the circumference of each of these ：－
a

b

41．Calculate the diameter of a dinner plate with a circumference of 37.68 inches．

42．Work out the radius of this circular drain cover which has a circumference of 188.4 centimetres

43. Calculate the perimeter of each shape :-
a

b

c

44. Find the area of each object below correct to 3 significant figures : -
a

spinner radius $=35 \mathrm{~mm}$
b

orange radius $=4.25 \mathrm{~cm}$
c

clock diameter $=1.8 \mathrm{~m}$
45. Find the area of each of these shapes correct to 3 significant figures : -
a

b

c

Ratio

46. Of the 45 p change in my pocket, 27 p was made up of coppers.

Write down the ratio of :- copper coins : silver coins and simplify this ratio.
47. Simplify the following ratios as far as possible :-
a 12:18
b 44:33
c 25:75
e 26:39
f 17:19
g 5:7.5
d $42: 56$
(5:

49. Danny bought packets of plain and vinegar crisps. The ratio of plain : vinegar was $5: 4$.

There were 20 packets of vinegar crisps. How many packets of crisps were there altogether ?

Volume

50. Calculate the volume of this tin of biscuits.

51.

52．Change to litres：－
a 3500 ml
b $\quad 200 \mathrm{ml}$
c $\quad 30 \mathrm{ml}$ ．
53．Change to ml ：－
a $2 \frac{1}{2}$ litres
b 3.15 litres
c $\quad \frac{4}{5}$ litre．
54．Find the volume of each of these shapes ：－
a

b

55．This plastic cold water storage tank is a cuboid and it measures 1.8 m by 1.2 m by 80 centimetres deep．
a Calculate the volume of the storage tank in cm^{3} ．
b How many litres of water will it hold when full？

Time－Distance－Speed
56．a How far will a ship travel in 4 hours at an average speed of 15 km per hour ？
b How long will it take me to drive 200 miles at an average speed of 40 miles per hour？
c What is the average speed of a plane which covered 1050 miles in 3 hours ？

57．Calculate ：－
a the total distance covered by a train，going at an average speed of 80 mph for 2 hours and 30 minutes．

b the average speed of a bus which took 3 hours 15 minutes to travel 130 miles．
c the time taken by a ship to travel 126 kilometres at an average speed of $24 \mathrm{~km} / \mathrm{hr}$ ．

58．A pilot flew his light airplane from Barton Airport to Cranfoot airport，picked up a passenger and flew back to Barton again．

The graph shows his journey．
a When did he reach Cranfoot？
b How long did he spend there？
c Calculate his average speed for the journey from Barton to Cranfoot．
d On the way back，he met a＂head wind＂． Did this slow him down or help him ？ （Explain why，using the graph）．
e Calculate his speed for the return leg of his trip．

- To square a number means to multiply it by itself. e.g. the "square" of 4 is .. $4 \times 4=16$ (not 4×2).

This is shortened to " 4 squared $=4 \times 4=16 "$, or better still $4^{2}=4 \times 4=16$. (4^{2} is read as four squared).

Be able to square \& cube numbers and also raise them to a power

- To cube a number means to multiply it by itself, then itself again.
e.g. the "cube" of 2 is $2 \times 2 \times 2=8(n o t 2 \times 3)$.

This is shortened to " 2 cubed $=2 \times 2 \times 2=8$ ", or better still $2^{3}=2 \times 2 \times 2=8$.
(2^{3} is read as "two cubed")
The smaller number on the right shoulder is known as an index (plural "indices") or a power.
Example :- $\quad 3^{5}$ (read as 3 to the power of 5$)=3 \times 3 \times 3 \times 3 \times 3=243$.

Exercise 1

1. Do not use a calculator in this question. Copy and complete the following. :-
a $3^{2}=3 \times 3=\ldots$
b $5^{2}=5 \times 5=\ldots$
c $6^{2}=6 \times \ldots=\ldots$
d $8^{2}=\ldots \times \ldots=\ldots$
e $7^{2}=$
g $10^{2}=$
h $1^{2}=$
f $9^{2}=$
j $(-1)^{2}=$
k $(-8)^{2}=$
i $20^{2}=$
m $4^{3}=4 \times 4 \times 4=$...
n $3^{3}=3 \times 3 \times \ldots=\ldots$
| $\left(\frac{1}{2}\right)^{2}=$
p $6^{3}=\ldots \times \ldots=\ldots$
q $1^{3}=$
s $(-1)^{3}=$
$+(-2)^{2}=$

- $5^{3}=\ldots \times \ldots \times \ldots=\ldots$
w $3^{6}=$
r $10^{3}=$
v $2^{4}=$
u $\left(\frac{1}{2}\right)^{3}=$
$\times \quad 4^{5}=$.

2. You can use a calculator this time. Find the value of :-

a	13^{2}	b	17^{2}	c	21^{2}	d	26^{2}
e	37^{2}	f	100^{2}	g	19^{2}	h	300^{2}
i	29^{2}	j	51^{2}	k	43^{2}	l	58^{2}
m	8^{3}	n	12^{3}	\circ	19^{3}	p	25^{3}
q	$(-9)^{3}$	r	$\left(\frac{1}{7}\right)^{3}$	s	6^{4}	t	7^{7}
u	2^{8}	v	3^{10}	w	10^{6}	x	20^{5}.

3. You can calculate the area of a square using the formula :-

$$
\begin{array}{ll}
& \text { Area }=\text { (} \text { length })^{2} \\
\text { or } & A=L^{2}
\end{array}
$$

Use this formula to calculate the areas of the following squares :-
a

b

$$
\begin{aligned}
\text { Area } & =L^{2} \\
\Rightarrow A & =18^{2} \\
A & =\ldots \mathrm{cm}^{2}
\end{aligned}
$$

c

27 cm

$$
\begin{aligned}
\text { Area } & =L^{2} \\
\Rightarrow A & =\ldots{ }^{2} \\
A & =\ldots \mathrm{cm}^{2}
\end{aligned}
$$

d

Area $=L^{2}$
$\Rightarrow A=. .{ }^{2}$
$A=\ldots \mathrm{cm}^{2}$
4. Use your calculator to find :-
a $\quad 4^{2}+5^{2}$
b $\quad 9^{2}+8^{2}$
c $\quad 10^{2}+7^{2}$
d $\quad 9^{2}+2^{2}$
e $\quad 13^{2}+12^{2}$
$f \quad 2^{2}+3^{2}+5^{2}$
g $\quad 10^{2}+8^{2}+6^{2}$
h $20^{2}+21^{2}$.
5. a Use your calculator to find each of the following :-

$$
1^{2}-0^{2}, 2^{2}-1^{2}, 3^{2}-2^{2}, 4^{2}-3^{2}, 5^{2}-4^{2}, 6^{2}-5^{2}, 7^{2}-6^{2}
$$

b Did you notice a pattern? If so, write down the value of $8^{2}-7^{2}$ without using your calculator. Now check your guess with a calculator.
c No calculator. Write down the value of :- $9^{2}-8^{2}, 20^{2}-19^{2}, 101^{2}-100^{2}$.
6. Optional - (only if you have a scientific calculator).

If you have a scientific calculator, it will have a button like this \qquad x^{y} or y^{x}. This is useful for finding powers of a number.
a Find 5^{8} by writing it as $5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5$ and working it out.
b To find 5^{8}, using the x^{y} do the following:- Press $5 x^{y} 8=$ You should get the same answer as in part a, but a lot quicker!
7. Use a scientific calculator to find :-
a $\quad 4^{4}$
b 6^{5}
c $\quad 10^{5}$
d 8^{6}
e 9^{3}
f 3^{7}
$9 \quad 6^{8}$
h 7^{4}
i $\quad 1^{23}$
j 0^{8}
k $\quad 2^{7}$
11^{4}
$m \quad 3^{9}$
n 5^{12}

- 100^{4}
p $\quad 10^{10}$
q $(-2)^{4}$
r $(-5)^{5}$.

Square Roots and Cube Roots

Be able to find the
square root of any
number and some simple cube roots

You already know how to find "six squared" $6^{2}=6 \times 6=36$.
 From above, you can see that the answer must be 6.
We say that "the square root of 36 is 6 ", which shortens to $\sqrt{36}=6$

Exercise 2

1. Copy each line and complete :-
a since $3^{2}=9 \Rightarrow \sqrt{9}=3$
b \quad ince $5^{2}=25 \Rightarrow \sqrt{25}=$..
c since $7^{2}=49 \Rightarrow \sqrt{49}=\ldots \quad d \quad$ since $8^{2}=64 \Rightarrow \sqrt{64}=$...
e since $9^{2}=? \Rightarrow \sqrt{?}=\ldots \quad f \quad$ since $10^{2}=$? $\Rightarrow \sqrt{?}=\ldots$

2. Write down the answer to each of the following :-
a $\sqrt{16}$
b $\sqrt{1}$
c $\sqrt{400}$
d $\sqrt{900}$.
3. You can now use the " $\sqrt{ }$ " button on your calculator to find :-
a $\sqrt{400}$
b $\sqrt{900}$ c $\sqrt{121}$
d $\sqrt{361}$
e $\sqrt{225}$
f $\sqrt{256}$
$9 \sqrt{169}$
h $\sqrt{289}$
i $\sqrt{1.44}$
j $\sqrt{20 \cdot 25}$.

Most square roots are not exact :- $\sqrt{19}=4.358898944=4.36$ (to 2 decimal places)
4. Use your calculator to find the following to two decimal places :-
a $\sqrt{17}$
b $\sqrt{26}$
c $\sqrt{34}$
d $\sqrt{71}$
e $\sqrt{95}$
f $\sqrt{109}$
$9 \quad \sqrt{186}$
h $\sqrt{600}$
i $\sqrt{750}$
j $\sqrt{1000}$.
5. The square shown has an area of $324 \mathrm{~mm}^{2}$.

Calculate the length of one of its sides.

Cube Root
At this stage, we will look only at simple examples.
As "two cubed" $2^{3}=2 \times 2 \times 2=8$, then the "cube root" of 8 is 2 .
i.e. "what number \times itself, \times itself again gives 8 "?

The 3 g's

Revisit - Review - Revise

1. Find the area of the square shown.

2. Find the area of a square with side :-
a 9 mm
b $\quad 30 \mathrm{~cm}$
c $\quad 0.5 \mathrm{~m}$.
3. Find:-
a 5^{2}
b 8^{2}
c $\quad 10^{2}$
d $\quad 15^{2}$
e 100^{2}
f 40^{2}.
4. Find:-
a 2^{3}
b $\quad 2^{4}$
d 3^{4}
e 10^{6}
c $\quad 10^{4}$
$f \quad 1^{29}$.
5. Find:-
a $\sqrt{49}$
b $\sqrt{81}$
c $\sqrt{0}$
d $\sqrt{144}$
e $\sqrt{169}$
$f \quad \sqrt{2500}$.

You may use a calculator for questions 6 to 9.
6. Calculate the area of a square with side :-
a $\quad 33 \mathrm{~cm}$
b $\quad 2.6 \mathrm{~mm}$
c $\quad 85 \mathrm{~m}$.
7. Find:-
a $\quad 17^{2}$
b $\quad 5 \cdot 1^{2}$
c $\quad 3 \cdot 14^{2}$
d $\quad 6^{5}$
e 13^{6}
$f \quad 6 \cdot 3^{4}$.
8. Find the following and write your answers to 3 significant figures.
a $\sqrt{23}$
b $\sqrt{204}$
c $\sqrt{0.75}$.
9. This square lawn has an area of 42 square metres.

Find the length of a side of the lawn to 2 decimal places.
7.
f.

1. a Lucy earns $£ 345 \cdot 50$ per week. How much does she earn in a year?
b Derek's salary is $£ 29640$ per annum. How much is his monthly pay?
c Gary is paid a salary of $£ 2420$ per month. What is his annual salary?
d Louise earns $£ 11.60$ per hour and works a 35 hour week.
How much does she earn in a year ?
2. Baz works for a tyre repair company. He is paid $£ 12 \cdot 40$ per hour.
a How much will he earn in a week if he works for 40 hours?
Last week Baz also worked 8 hours overtime, at time and a half.
b Calculate how much he earned for his overtime.
c What was Baz's total pay for last week?

3. a

Jenny's gross pay last year, as a designer, was $£ 32524$.
Her net pay was £26845.
What were her total deductions last year ?
b Steve works as a school janitor and his net income this year was $£ 21944$.
His deductions came to $£ 4655$.
Calculate Steve's gross annual income.

4. Cheryl has a gross income of $£ 3085$ per month.

She pays $£ 175.50$ in National Insurance, $£ 89.75$ in Graduated Pension and her Income Tax is 15% of her gross pay.
a How much are Cheryl's total deductions?
b What is her net income?
5. Look at Millie's torn payslip for May 2012.

Calculate what Millie's Income Tax was.

6. The average gross annual income for 2012 in Scotland was $£ 26500$. The average total deductions were estimated at 22% of the gross income.
a Calculate what the average person paid in deductions in 2012.
b Calculate what the average net monthly pay was in Scotland in 2012.

Be able to use
money exchange

Example 1 :-
How many Euros will I get for $£ 250$?

British Pound (July 2012)	$£ 1=$
Euro	1.24
American Dollar (\$)	1.55
Chinese Yen	9.83
Indian Rupee	85.56
Mexican Peso	21.70
Norwegian Krone	9.40
South African Rand	13.03

Example 2 :-
How many $£(G B P)$ will I get for $\$ 285 \cdot 20$?

$$
285 \cdot 20 \div 1.55=£ 184
$$

*To change from £'s to another currency - multiply. *To change from another currency back to £'s - divide.

Exercise 1

Use the exchange rates given in the table above to answer the following questions :-

1. Len has $£ 450$ to spend on holiday. Change his spending money into :-
a Euros
b Yen
c Rand
d Rupee.
2. Alice has a balance of $£ 1220$ in her bank account.

Change her bank account balance into each of the foreign currencies in question 1.

Scotia Bank		
2311	3234	$5898 \quad 0041$
Valid from $02 / 12$	Expires $02 / 14$	
Alice Johnson		
Sortcode 200347	Acc	No. 00176502

3. Change each of the following into Euros:-
a

£12.50
b

£980
c

$£ 2600$
d

$£ 24600$
4. Change each of the following into GBP (Great British Pounds) to the nearest penny :-
a \$1200
b 75390 Rupees
c 3000 Pesos
d 225000 Krone.
5. Ellen bought her laptop in Hamburg, Germany for $542 €$. Kara bought the same laptop in San Francisco, America for \$642. Louise had paid $£ 442$ in Edinburgh for the identical laptop.

Who got the best deal? Explain.
6. Which is the best deal for each of the following :-
a

€322

\$370
b

3909 Rand

$3440 \cdot 50$
Yen

7486.50
Peso's
7. a Agnes took $£ 760$ spending money to France. She spent €740 on her holiday.
How many GBP did she return home with ?
b Jessie took $£ 1250$ spending money to Paris. She spent $€ 650$ on her hotel and $€ 540$ on food.

Does she have enough for a $€ 260$ trip to EuroDisney?
8.
9.

Kevin took £960 on holiday to Italy.
He spent 90% of his money.
How many Euros did he have left?

Sara also went on holiday to Italy.
She returned home with $£ 200$ which was 25% of her original spending money.

How many Euros did she spend on holiday?
10. Mr Forbes was given a $£ 850$ expenses account.

He changed this into Euros and spent $€ 700$ in Italy.
He then went to India and spent 1670 Rupees, and on to America where he spent $\$ 450$.
Did Mr Forbes overspend on his expense account ? Explain.

11. a Change $€ 600$ into GBP. Now change this amount into American dollars.
b Describe how you would change Rand into Yen.
c Change 2606 Rand into Yen.
12. Use the currency exchange rate to convert :-
a $\$ 3100$ into euros
b €620 into Yen
c $\quad 470$ krone into Rupees.
13. Mr Lee took his $£ 20000$ savings and went on a trip round the world.

He spent 18000 Rupees in India, 12800 Rand in South Africa, €7500 in France and $\$ 11000$ in the USA.

How much, in £'s did he have left, to the nearest £10, when his trip ended?

Best Buys - Money Management

When running a home, most people have to work to a budget. (A specific amount they can afford to spend).

When shopping, lots of money can be saved by finding the best buys for individual items.

Example :-

Lorne Dog Food comes in two sizes.

- The small one costs $£ 2.65$.
- The large one costs £3.64.

By calculating the cost of 100 grams of food for each size of tin, decide which is the better deal.

comparing different
offers

Cost of Small tin per 100 g :$£ 2 \cdot 65 \div 5=£ 0.53$.

Cost of Large tin per 100 g :$£ 3.64 \div 7=£ 0 \cdot 52$.

Better Deal is large tin. A saving of 1p per 100 g .

Exercise 2

1. Zad Soap Powder is offered in two different sizes.

- The Small box costs $£ 14.40$ for 600 grams.
- The Large box costs $£ 17.60$ for 800 grams. Which one is the better deal? Explain.

2.

Puss Puss Cat Treats come in two sizes of tin.

- The small tin costs $£ 2.45$ for 350 grams.
- The large tin costs $£ 4.40$ for 550 grams.

Which is the better deal? Explain.
(Hint :- find the cost per 50 grams or the cost per gram).
3. A box of Ricarde Chocolates costs $£ 4 \cdot 18$ for a 475 gram box or $£ 5.20$ for a 650 gram box. Which is the better deal ? Explain.

4. Two bottles of the same wine are priced $£ 8.40$ for the 700 ml bottle and $£ 9.50$ for the one litre bottle. Which is the better deal? Explain.
5. GROUPAT offers special deals at the Grand Hotel in Tollus.

Which of the two deals is better value for money? Explain.

6. Joanne is comparing two holiday companies offers. Which of the two should she choose? Explain.

7.

Fence Paint can be bought in two tin sizes -750 ml and 2.5 litres.
The larger tin costs $£ 27 \cdot 50$. The smaller tin costs $£ 9.75$.
Which of the two tins offers the better value?
8. Three cartons of rice are on offer.

- The small 800 gram carton costs $£ 1 \cdot 60$.
- The 2 kilogram carton costs $£ 3.60$.
- The large 12.5 kilogram trade carton costs $£ 20$.

Which of the boxes offers :-

a the best value
b the poorest value?
9.

Golf balls are sold in boxes of 6,16 and 24 .

- A box of six costs $£ 10 \cdot 20$.
- A box of sixteen costs £27-20.
- A box of 24 costs $£ 40.80$.

Which would you choose? Explain.

10. Noel paid $£ 91.80$ for 60 litres of diesel for his car at Texico.

Olive put 49 litres of diesel in her car at Jeet, costing £73.01.
Which petrol station offered the better deal ?

11.

Mr Brown has a lawn 6 metres by 10 metres. Mr White's lawn measures 8 metres by 12 metres.

- Mr Brown paid $£ 924$ to have his lawn re-turfed.
- Mr White paid $£ 1344$ to have a his lawn re-turfed.

Who got the better deal ?
12. At a local football match, Jake bought 6 pies and 4 bovrils which cost a total of $£ 20 \cdot 60$. Jake noticed that the price of a bovril was $£ 1.55$.

Alan was at another football match in the city.
He paid $£ 12.30$ for 3 pies (at $£ 2.70$ per pie) and 3 bovrils.
a Who got the better deal on the pies?
b Who got the better deal on the bovrils ?

13. Investigate for yourself, or in a group, if buying goods in larger quantities always provides a better value for money.

Most people in real life will "shop around" to find the best deal for service providers like plumbers, joiners etc.

Many of the service industry workers will charge a call-out charge, then a rate per hour and finally any parts or items that need purchased.

Example :-

- PlumbMan has a call-out charge of $£ 40$ and charge a rate of $£ 32$ per hour.
- PlumbServices have a $£ 70$ call-out charge and a $£ 24$ per hour rate.

Mrs Jackson needs a new sink and is told it will be a 5 hour job.
Which company should she choose?

PlumbMan labour $£ 32 \times 5=$ callout			$£ 160$
total	$£ 40$	labour $£ 24 \times 5=$	callout
She should use PlumbServices as it is $£ 10$	cheaper.		

Exercise 3

1. a Mrs Jackson (above example) had miscalculated the time it would take to do her job. It actually only took 4 hours. Which company would have given the better deal ?
b Mrs Jackson decided to have her whole bathroom renewed.
PlumbMan gave her a quote for the job which would take 9 hours.
PlumbServices quoted her for an 11 hour job.
Which was the cheaper quote and by how much ?

2.

Jay's Joiners charge a rate of $£ 36$ per hour and have a $£ 25$ call-out fee. Kay's Carpenters have a $£ 15$ call-out charge and a rate of $£ 28$ per hour.
Jay's have quoted Alex for a six hour job to floor his loft.
Kay's have quoted seven hours to do the same job.
a Which provided the lower quote and by how much ?
b If the job took 9 hours, calculate each company's bill.
3. $B G$ Media charge $£ 80$ call-out and $£ 42 \cdot 50$ per hour. Vigin charges $£ 47.50$ per hour with a $£ 70$ call-out fee.

Mrs Chalmers needs a new aerial installed (a two hour job).
What would be the cheaper option?

4. Two washing machine repair men have different charges.

Bill - $£ 75$ for the 1 st hour - $£ 35$ per hour thereafter
Ben - Call-out charge $£ 50-£ 30$ per hour
Jackie employed Bill who took 3 hours to repair her washing machine.
a How much was she charged in total ?
b Would she have been cheaper if she had called Ben ?
5.

Greg called ElectroFix to rewire two of his rooms.
ElectroFix had a call-out fee of $£ 40$ and charged $£ 48$ per hour for the 4 hour job.
They also charged him for 14 metres of cable at $£ 4.75$ per metre.
SparkServices would have charged him a call-out of £50, a rate of $£ 59$ per hour but the cable was included in the price.

Would SparkServices have been cheaper ? (Explain).
6. Derek repairs washing machines. He charges according to the graph shown opposite.
a After 0 hours what will he charge ? (Hint-his call-out fee).
b What is his rate per hour?
c What would he charge in total for:-
(i) 4 hours
(ii) 10 hours?

7.

Alfie also repairs washing machines and he uses this graph to show his charges.
a What is his call-out fee ?
b What does he charge per hour?

c What would he charge for a job lasting :-
(i) 5 hours
(ii) 11 hours?
8. a Euan repairs cars from his mobile garage.

He has a call-out charge of $£ 30$ and charges $£ 40$ per hour.
Draw a graph, similar to that in question 6 and 7 , to show Euan's fees.
b On the same graph show Terry's charges of a call-out of $£ 50$ and a rate of $£ 30$ per hour.
c Who charges more for a 2 hour job ?
d How many hours are needed for Terry to be cheaper than Euan?
e How much would you save for an eight hour job by using Terry rather than Euan ?
9. Investigate for yourself, or in a group, different rates and charges for different services.

Best Deal - Rates or Contracts

 internet and TV providers before taking out or renewing contracts with
Exercise 4

1. Mr Lee is looking for the best currency exchange rate to change his Yen into GBP ($£$'s). Xchange gives a rate of 13.45 Yen to the $£$. YenRate offers 13.6 Yen to the $£$.
a What rate should he take? Explain.
b If Mr Lee has 4000 Yen, how much more would he get by choosing YenRate?
2. Gerry has $£ 2400$ and is flying to Thailand. The exchange rate for 3 companies is :-
```
X-rate: £1 to 49.1 Baht X - Money: £10 to 503 Baht Xpound : £100 to 4898 Baht.
```

How many more Baht will Gerry get from the best rather than the poorest deal ?
3. Two banks show the interest given on their deposit accounts.
a Which bank would you choose if you had £2000 to invest?
b How much more per year would you get from your choice?

Scotty Bank Deposit account 3.7\% APR interes	
	Glasgow Bank
	Deposit account

4. Alice is looking at mobile phone tariffs.

On					
Phone Company	Free mins	Free texts	Internet	Contract	Cost (monthly)
O3	100	1000	unlimited	12 months	$£ 12$
Oringe	100	1000	unlimited	24 months	$£ 12$

Explain why most people would choose O_{3}.
5. Mrs Quinn is taking out a $£ 8600$ loan to buy a new car.

Three companies offer different interest rates as shown :-
a Which company should she use? (Explain).
b Calculate the least amount of interest she will have to pay for her loan?
c How much will she save by taking the best

CarLoan	-	11.5% interest
Loan Car	-	12% interest
Loans-R-us	-15% interest	

6. Shown is a table of Energy Suppliers' tariffs.
a Eddie uses ScotPow for gas and electricity. Last month he used 400 KWh (Kilowatt hour) of electricity and 1450 KWh of gas.
How much did he pay in total?
b Which company would have been cheapes \dagger supplying Eddie with both gas and electricity?

c How much would he have saved?
d Which is the best company to choose for his electricity and which is best for his gas ?
e How much would he have saved if he had used these two companies ?
f What would be the difference (if using two companies) between the cheapest and dearest options?
7. Zara uses 4800 KWh of electricity and 18350 KWh of gas during the year.
a Decide which two companies she should choose and find her total bill.
b Power3 offer 10\% off the total bill if you take both electricity and gas.
Should Zara choose Power3 for both? Explain.
8. a Arthur is trying to decide which telephone provider to go with. He uses very few call minutes but he uses lots of texts.

Which provider do you think he should choose. (Explain).

Service	Free Provider	Minutes	Free	Internet	Contract
Texts	Usage	Period per			
O3	100	100	unlimited	12 month	$£ 9$
Tangerine	200	1000	unlimited	24 month	$£ 13$
Small Talk	400	4000	unlimited	18 month	$£ 20$
Q-Mobile	100	5000	unlimited	12 month	$£ 30$
Dovafone	1000	5000	unlimited	12 month	$£ 40$

b Amy has a budget of around $£ 35$ a month. She estimates she uses about 800 minutes of calls and approximately 4000 texts a month. What would you advise her?
c Which would you choose from the table above? Explain why you would choose this.

d List some other things, not in the table, that you should consider when buying a contract.
9. Pick a service provider (e.g. gas, water, electricity, TV, phone, internet, etc.)

Investigate different companies tariffs for your chosen subject. Which would you use?
Write a report or project to show the findings of your investigation.

Credit cards are a way of paying for something by borrowing money. Credit card companies charge a percentage of what you borrow disadvantages of using each month if your account is in arrears - you owe them money.

Debit cards are bank related and money comes straight from your bank.

Exercise 5

Questions 1-4 could be tackled orally.

1. Discuss and list some of the advantages and disadvantages of using :-

a a credit card b a debit card.
2. Leo is offered two credit cards as shown.
a Find out what APR stands for.
b Which card should he choose? Explain.
c What percentage interest would he pay each month for each of these cards ?

MNBA Card
 Interest charge 30\% APR

d Leo owes $£ 1200$ at the end of the month.
How much would he owe in interest from each card?
3.

MNBA		\square	
4511	6587	0809	9101
Valid from	$01 / 11$	Expires	$07 / 15$
Ali Massala			

Ali owes his MNBA credit card (see above) $£ 2500$. Amix ask him to transfer his MNBA debt to them, where he will pay no interest for three months.
Write down or discuss whether he should accept. (Give a reason for your answer).
4. Rita owes her Amix card $£ 3000$ and her MNBA card $£ 4500$.
a How much interest does she owe this month ?
b How much interest would she pay over a year if she did not clear her debt?
c The real answer to b is quite a bit more than you think. Can you see why?
5. Paul has been very silly over the last couple of years.

He owes 4 credit cards the following amounts :-
£5600, £8750, £4100, £6200.
His credit card companies charge APR's of :-
$30 \%, 38 \%, 29 \%$ and 32% respectively.
How much interest will Paul have to pay each month ?

6. Investigate different cards and APR's.

Write a short report or presentation on your results.

The 3 ${ }^{\prime}$'s

Revisit - Review - Revise

1. Eazy Clean floor polish comes in 2 sizes. The 500 ml bottle costs $£ 2.95$ and the 2 litre plastic container costs $£ 11 \cdot 20$.
a How much does it cost per 100 ml for the container ?
b How much does it cost per 100 ml for the bottle?
c Which is better value ?

2. Which is the best buy here - the 6-pack, the 8-pack or the 9-pack of Cola ?

£1.86

£2.32

£2.88
3. On my way back from Florida USA, I spent some time in Paris, France.

When I got home, I had $\$ 192$ and $€ 168$ left.
If I changed them back to $£$'s, which would give the greater amount, and by how much ?

4. At one point, the exchange rate was $€ 1 \cdot 20$ to the pound and 1 week later it was $€ 1 \cdot 25$.
a When going on holiday from Scotland to Italy, which gives a better rate? (Explain).
b Coming back from Italy I change my euros back to $£^{\prime}$ s. Which is the better ? (Explain).
5. Sheila travelled from Australia to Spain. She managed to obtain $€ 1008$ for her 1200 Australian dollars. What is the rate of exchange for Australian dollars to euros?

6.

I bought myself a new motorbike costing $£ 7495$. I took out a Hire Purchase contract agreement.

I paid a deposit of $£ 750$ and $£ 395$ a month for 18 months.
a How much would I have saved if I had paid cash ?
b State 1 advantage and 1 disadvantage of using Hire Purchase to buy something.
7. I need to hire a cement mixer, to help build a garden wall.

I estimate it will need to be hired for 6 hours.
Tools $4 U$ charge a basic hiring fee of $£ 15$ plus $£ 8.50$ per hour after that.

Hire-it-All don't charge any basic fee but their rental charges are $£ 10.25$ per hour.
a Which company should I hire it from? (Explain).

b It actually takes me 10 hours to build the wall.
Would I have been better hiring it from the other company? (Explain).
8.

Jenny is having her lawn treated to help get rid of weeds.
Greenfingers charge $£ 3.80$ per square metre as well as a charge of $£ 8.50$ for the fertiliser.
Lawn Tidy charges $£ 4 \cdot 10$ per square metre but the fertiliser only costs $£ 4.50$.
Her lawn measures 25 square metres.
Which company offers the better deal for her size of lawn?
9. My electricity bill with ScotPow last year was $£ 940$.

GlowGas charged me $£ 1140$ for my gas.
I was offered a combined deal with Electrogas whereby my total bill for gas and electricity would have worked out at $£ 165$ per month.
Should I have taken up Electrogas' offer? (Explain).

10. Robyn was studying 3 different mobile phone providers' tariffs.

Tangerine	$£ 17.50$ per month	200 min free - then $10 \mathrm{p} / \mathrm{min}$	300 free texts then $10 \mathrm{p} /$ text
Dovafone	$£ 25$ per month	400 mins free - then $8 \mathrm{p} / \mathrm{min}$	100 free texts then $10 \mathrm{p} /$ text
P3	$£ 37.50$ per month	350 mins free - then $5 \mathrm{p} / \mathrm{min}$	free texting.

Last month, Robyn's statement said she used 410 minutes of calls and 240 texts.
a How much would it have cost Robyn each month with each of the 3 providers?
b Which option should she choose ? (Explain).
c Robyn decided to take out a contract with "Tangerine". This month, she used 500 mins and 300 texts.

Would she have been better off with Dovafone?
d Write a short report stating what kind of user should go with which provider.

1. Round each of the following to 1 decimal place :-
a 9.749

2. Round each of the following to 3 decimal places :-
a 1.0061
b 0.0096 .
3. Round each of the following to 1 significant figure :-
a 5399
b 65001 .
4. Round each of the following to 2 significant figures :- a 0.00396
b 5465320 .
5. Round each of the following to 3 significant figures :- a 125099
b 0.03798 .
6. How many significant figures have each of the following numbers been rounded to :-
a 0.06007
b 0.0300
c 105309 ?
7. Round each number to one significant figure and give an approximate answer to each :-
a 217×51
b $\quad 3109 \times 189$
c $\quad 0.209 \times 315$
d $8809 \div 32$
e $784200 \div 1884$
f $0.3751 \div 1.84$.
8. As part of a bird monitoring programme, the public reported seeing 45475 sparrows in May.
Round this to :-
a 2 significant figures
b 1 significant figure.
9. Rounded to 2 significant figures, the number of bees in a hive was 4700 .

What was the greatest number of bees there could have been in the hive?
11. During the course of 32 flights, a businessman discovered he had flown a total of 58765 miles.

Approximately, how many miles did he travel on each flight?

12. Calculate :-
a 34×20
b $\quad 123 \times 300$
c $\quad 204 \times 5000$
d $7600 \div 40$
e $96000 \div 8000$
f $50400 \div 700$.
13. Carefully, work out the answers to the following :-
a $15-6 \times 2$
b $20-12 \div(4+2)$
c $8+10 \div 2$.
14. Re-write the following and insert brackets to make each of the statements correct :-
a $6+2 \times 3=24$
b $18 \div 3+6=2$
c $2+3 \times 5-3=10$.

You may use a calculator in this section, but please show all working.
15. a Which of these were leap years - 1964, 1982, 1999, 2000, 2002, 2010 ?
b I changed $£ 3500$ to euros before going to Germany .
The rate was $£ 1=€ 1 \cdot 23$.
How many euros did I receive?
c I opened my piggy bank and discovered the following number of coins :-

$275-1 p$ coins	$123-2 p$ coins	$65-5 p$ coins $\quad 84-10 p$ coins
$72-20 p$ coins	$15-£ 1$ coins	$6-£ 2$ coins, and some 50p coins.

Altogether, I found that I had saved $£ 75 \cdot 26$. How many 50 p coins must I have had ?
16.

Henry measured his average walking stride.
It was 95 centimetres.
He went on a 5 kilometre charity walk.
How many steps would Henry have taken during the walk?
17. My new Mazda $M \times 5$ was priced $£ 19750$ in the car showroom. I paid it up monthly as follows :-

- an initial payment of $£ 1975$ (10\%),
- followed by 36 monthly payments of $£ 545$.

How much less would it have cost me if I'd paid cash ?

18.

A large tin of soup weighs 750 grams.
Tins were packed into a cardboard box and weighed.
Altogether, the tins and the box weighed 36.5 kilograms.
The box weighs less than 1 tin of soup.
a Calculate how many tins were in the full box?
b How heavy must the empty box have been?
19. This "Goody Bag" contains 20 items - a mixture of Chewy Lollies (15 grams) and Sugar Mice (20 grams).

The total weight of the 20 items is 375 grams.
How many Lollies and how many Sugar Mice are in the bag?

20.

1 lolly and 4 Chocy Bars cost 72p.
2 lollies and 2 Chocy Bars cost 54p.
How much will I pay for 1 lolly and 2 Chocy Bars?

By now, you should know your times tables really well.
Example :- $9 \times 1=9, \quad 9 \times 2=18, \quad 9 \times 3=27, \quad 9 \times 4=36, \ldots \ldots$.
The $9,18,27,36, \ldots .$. are sometimes referred to as "stations of 9 ".
More often, they are given their proper name :- "the multiples of 9".

Examples:-
The first seven multiples of 9 are (0), $9,18,27,36,45,54, \ldots$
The first five multiples of 4 are (0) $, 4,8,12,16, \ldots$

* Since " 0 " is always a multiple, (the trivial multiple), for the rest of this chapter we will ignore it.

Exercise 1

1. List (not including 0) :-
a the first ten multiples of 4
c the first nine multiples of 5
2. a Write down all the multiples of 3 between 8 and 25 .
b Write down all the multiples of 6 between 29 and 61.
c Write down all the multiples of 8 between 23 and 73 .
d Write down all the multiples of 9 between 53 and 100.
3. a List the first ten multiples of 2.
b the first eight multiples of 3
d the first seven multiples of 10 .

b There is a special name for the "multiples of 2". What is it ?
c Subtract 1 from each of the numbers you have in part a and write them down.
Is this a set of multiples?
d What is the special name for this group of numbers?
4. $\{14,21,28,35,42\}$ could be described as "the multiples of 7 from 14 to 42 ".

Describe the following sets of numbers in the same way :-
a $\{44,46,48,50,52,54,56\}$
c $\{120,130,140,150,160\}$
e $\{81,90,99,108,117\}$
$g\{15,30,45,60,75\}$
i $\{39,52,65,78,91\}$
b $\{35,40,45,50,55,60\}$
d $\{60,66,72,78,84,90\}$
f $\{60,80,100,120,140\}$
h $\{600,650,700,750,800\}$
j $\{500,750,1000,1250,1500\}$.
5. a List the first twelve multiples of 3 .
b List the first twelve multiples of 4.
c From a and b, write down the multiples which are "common" to both lists. (The numbers that are multiples of both 3 and 4).
d What is the lowest number that is a multiple of both 3 and 4 ?
This is called the "lowest common multiple" of 3 and 4 (the l.c.m.)
6. a List the first ten multiples of 4.
b List the first ten multiples of 6 .
c List the common multiples of 4 and 6 .
d What is the I.c.m. of 4 and 6 ?
7. a List the first twelve multiples of 5 .
b List the first fifteen multiples of 3 .
c List the common multiples of 5 and 3 .

d What is the I.c.m. of 5 and 3 ?
8. Find the I.c.m. of each of the following pairs of numbers.
(hint :- go through the multiples of the larger of the two numbers until you reach a number into which the smaller number divides exactly)

a 2 and 5	b	6 and 3	c	4 and 9	d	3 and 4
e 9 and 6	f	4 and 10	g	5 and 6	h	7 and 8
i	10 and 6	j	9 and 8	k	9 and 12	l

9. Find the I.c.m. of :- a 2,3 and 5
b 3,4 and 8 c 2,5 and 8
d 2,5 and 10 e 2,3 and 7 f 3,6 and 9 g 6, 8 and 20 .
10. Howard's timetable for his golf lessons is :-

- Driver lessons every 5 days.
- Putter lessons every 6 days.
- Sand Bunker lessons every 8 days.

He had a lesson on all three on the same day.
How many days after that is he scheduled to have all three lessons on the same day again?
11. A christmas tree's lights are set so that :-

- the blue lights flash every 9 seconds.
- the green lights flash every 12 seconds.
- the red lights flash every 15 seconds.

When they are switched on, they all flash together.
How long will it be until they flash together again?

$1,2,4$ and 8 are all the whole numbers which divide exactly into 8.
These numbers are called the factors of 8 .
highest common factor

Examples :- | The factors of 6 are :- | $1,2,3,6$. |
| :--- | :--- |
| The factors of 12 are :- | $1,2,3,4,6,12$. |

* The factors of any number always includes the number itself and 1.

Exercise 2

1. The number 10 has four factors. What are they?

2. List all six factors of 28 .
3. List the six factors of 18 .

Factors usually occur in pairs. In the example below, 1 and 24 are a pair, as are 2 and 12. 3 and 8 and 4 and 6 are also pairs.

Using this pairing helps you not to miss out any of the factors.
4. Copy and complete the following, showing all the factors of 20.

5. Use this method to find all the factors of :-

a	8	b	24	c	27
e	30	f	31	g	32
i	67	j	40	k	45

6. Look at all your answers to Question 5 .

Check that in each case, there is an even number of factors.
7. For each of the following, list all the factors and state how many factors each number has :-
a 9
e 25
b 49
f 64
c 36
g 16
d 4
h 100 .
8. a Check that your answer to each question in Q7 has an odd number of factors.
b What is the special name for these numbers ? $\{4,9,16,25,36, \ldots$.
c Can you explain why there will always be an odd number of factors for this type of number?
9. 36 apples are laid out in rows.

One way is to have 4 rows of 9 apples.
State a few other ways of laying out the
36 apples. (2 rows of \qquad etc)
10. a List all the factors of 12. $\{1,2 . \ldots .$.

b List all the factors of 18. $\{1,2, \ldots .$.
c Make a list of the common factors of 12 and 18. (those that appear in both lists).
d What is the largest of these numbers?
This number is referred to as the highest common factor (or h.c.f.) of 12 and 18.
11. a List all the factors of $15 . \quad$ b List all the factors of 20.
c Make a list of the common factors.
d What is the h.c.f. of 15 and 20 ?

12. Find the highest common factor for each of the following :-
a 6 and 9
b 12 and 20
c 20 and 30
e 24 and 36
f 40 and 100
g $\quad 17$ and 34
d 24 and 28
h 18 and 42 .
13. Find the h.c.f. of :-
a 7 and 23
b $\quad 31$ and 41
c 11 and 17
d 53 and 67 .
14. Find the h.c.f. of :-
a
8,12,20
b $10,20,45$
c $14,35,56$
d $24,32,40$.
15. A full revolution is divided into 360 parts. Each part is called " 1 degree". The choice of 360 is no accident*.

The reason is that 360 has many factors (24 in fact) and this means a circle can be divided equally in lots of ways.

Write down all 24 factors of 360 .
16. There is only one number which is both a multiple and a factor of 1000 . Which number?
17. * The Mayan calendar had a year of 360 days which meant, every day, the earth moved 1 degree in its orbit around the sun.
This was possibly another reason why the circle was divided into 360 bits.
Investigate other ancient and modern calendars.

Examine how many factors these two groups of numbers have :-

```
6 has }4\mathrm{ factors {1, 2,3,6}
8 has }4\mathrm{ factors {1,2,4,8}
12 has }6\mathrm{ factors {1,2,3,4,6,12}
20 has }6\mathrm{ factors {1, 2, 4, 5, 10, 20}
32 has }7\mathrm{ factors {1, 2, 4, 6, 8, 16, 32}
```

5 has 2 factors $\{1,5\}$
7 has 2 factors $\{1,7\}$
11 has 2 factors $\{1,11\}$

19 has 2 factors $\{1,19\}$
23 has 2 factors $\{1,23\}$

There is a special name for the numbers in the right hand box - the ones with only 2 factors.
They are called PRIME NUMBERS.
They are said to be the most important group of numbers in the study of arithmetic.

Every number can be divided by itself and 1.

Every prime number can only be divided by itself and 1.

```
A prime number is a number
``` with exactly 2 factors.

\section*{Exercise 3}
1. Write all the factors of 10 . Why is 10 not a prime number?
2. Write all the factors of 3 . Why is 3 a prime number?
3. How many factors has the number 14? Is 14 a prime number or not?
4. Explain why the number 1 is not a prime number.
5. For each of the following numbers :-
- list all of its factors, and state whether or not it is a prime number.

\begin{tabular}{lllllll}
a & 5 & b & 16 & c & 15 & d \\
e & 23 & f & 27 & \(g\) & 29 & h \\
i & 44 & j & 47 & k & 51 & l
\end{tabular}
6. A number which is not a prime, is called a composite number.

State which of the following numbers are composite :-
\[
20,37,42,33,36,37,40,41,43,49,50 .
\]
7. Is 2 a prime number? Give a reason for your answer.
8. a How long would it take you to write down all of the odd prime numbers?
b How long would it take you to write down all of the even prime numbers? Try it.
9. a Make a neat large copy of this number square showing all the numbers from 1 to 100 .
b On your copy, score out the number 1. It is not a prime number.
c Don't score out 2 but score out every other multiple of \(2-(4,6,8\), \(\qquad\) 100).
\begin{tabular}{|cccccccccc|}
\hline 4 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 \\
51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 \\
61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 \\
71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 \\
81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\
91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 \\
\hline
\end{tabular}
d Keep 3. Score out every other multiple of 3-(6,9,12, \(\qquad\)
e Keep 5. Score out every other multiple of \(5-(10,15,20\), 95).
f Keep 7. Score out every other multiple of 7 - (14, 21, 28, 98).

9 Now draw a circle round every remaining number in the square.

You will find that these are all the prime numbers.
h Make a list of all the primes from 1 to 100. Might be a good idea to learn them ! (There are exactly 25 of them).
10. a Make up a grid similar to the one in Q9 for all the numbers from 101 to 200.
b Score out every multiple of \(2,3,5\) and 7 as in Q9.
c Now score out every multiple of 11.
d Lastly score out every multiple of 13.
e Circle all the remaining numbers - these are the primes from 101 to 200.
f Make a list of all the primes from 101 to 200. (There are 21 of them).

It is not difficult to check whether a large (but not too large) number is a prime or not. You simply have to check if the number can be divided by all the primes \(2,3,5,7,11,13\), etc, smaller than the number and if none of the primes (below it) divide into it, then the number must be prime.
The study of prime numbers has fascinated mathematicians for hundreds of years.
11. (As of 23rd August 2003, the largest known Prime was \(2^{(13466917)}\) - 1) with 4053917 digits.
\[
\text { (This means }(2 \times 2 \times 2 \times 2 \times \ldots . .(13466917 \text { times) }) \text { then take away } 1) . *
\]

Investigate what the largest prime number is at this time.
12. There are obvious reasons why some numbers are not prime.

In each case below, say why they are not prime :-
a 37495
b 1264572
c 89479480
d 3396303.
13. Find out about the Greek mathematician, Eratosthenes and how he was involved with prime numbers.

* see http://www.math.utah.edu/~pa/math/largeprime.html for a full printout of all 4053917 digits - 924947.

Every number is either prime or composite, except for 0 which is neither. If it is composite, like 18, it can be expressed as a "product of primes".

This means that composite numbers can be factorised in such a way as to be written as a series of prime numbers multiplied together.
\[
\begin{array}{ll}
18=2 \times 9=2 \times 3 \times 3 & \text { (3 prime numbers) } \\
60=2 \times 30=2 \times 2 \times 3 \times 5 & (4 \text { prime numbers) } \\
64=2 \times 32=2 \times 2 \times 2 \times 2 \times 2 \times 2 & \text { (6 prime numbers) }
\end{array}
\]
as a product of primes

Here is an easy way of doing it for the number 40 :-

\section*{Exercise 4}
1. Copy this diagram and complete it to show the prime decomposition of the number 60 .
\[
\text { So } 60=2 \times 2 \times \ldots \times \ldots
\]

2. Copy and complete these prime factor trees :-
a

\(45=3 \times \ldots \times \ldots\)
b

c

\(99=3 \times \ldots \times \ldots\)
3. Use a similar method to find the prime decomposition of the following numbers :-
\begin{tabular}{llllllll}
a & 16 & b & 18 & c & 20 & d & 27 \\
e & 30 & f & 54 & \(g\) & 45 & h & 48 \\
i & 68 & j & 98 & k & 100 & l & 162.
\end{tabular}
4. a Find the prime decomposition of 60 starting with \((5 \times 12),(4 \times 15)\) and \((30 \times 2)\).
b Do you get a different final answer each time? What does this tell you?

\section*{The 3 \({ }^{\prime}\) 's}

\section*{Revisit - Review - Revise}
1. Write down the :-
a first ten non-zero multiples of :- (i) 4 and of (ii) 5 .
b lowest common multiple (I.c.m.) of 4 and 5.
2. Write down the lowest common multiple (I.c.m.) of :-
a 6 and 9
b \(\quad 15\) and 25
c 4,5 and 6 .
3. Write down the :-
a factors of 10 and of 15
b highest common factor (h.c.f.) of 10 and 15.
4. Write down the highest common factor (h.c.f.) of :-
a 18 and 24
b \(\quad 20\) and 70
c 27,45 and 108 .
5. a Write down all the numbers, under 10, that have exactly two factors.
b Write down three numbers with exactly three factors.
6. a What is the lowest common multiple of the numbers \(2,3,4,5,6\) and 7 ?
b What is the highest common factor of the numbers \(95,96,97,98\) and 99 ?
7. How many factors does a prime number have?
8. Write down all the prime numbers between :-
a 20 and 30
b 50 and 60
c 90 and 110 .
9. Write down TRUE or FALSE for each of the following statements :-
a There are no even prime numbers.
b If you multiply any two prime numbers, the answer you get is always a prime.
c Twenty one thousand four hundred and forty five is NOT a prime number.
10. Write down why each of these numbers are definitely not prime numbers :-
a 483792
b sixteen million
c 99999 .
11. a Write down the highest common factor (h.c.f.) of 17 and 23.
b Make a statement about the highest common factor of ANY two prime numbers.
12. Write each of the following numbers as the product of prime factors :(For example, \(18=2 \times 3 \times 3\) and \(50=2 \times 5 \times 5\)).
a \(\quad 15\)
b 54
c \(\quad 75\)
d 256.

1. Change each percentage to a decimal and then to a fraction in its simplest form :-
\begin{tabular}{llllllll}
a & \(50 \%\) & b & \(35 \%\) & c & \(10 \%\) & d & \(25 \%\) \\
e & \(27 \%\) & f & \(12.5 \%\) & g & \(64 \%\) & h & \(100 \%\) \\
i & \(33 \frac{1}{3} \%\) & j & \(2 \%\) & k & \(66 \frac{2}{3} \%\) & I & \(150 \%\).
\end{tabular}
2. Change each of the following into a percentage :-
a 0.45
b \(\quad 0.9\)
c 0.03
d 0.80
e \(\frac{7}{10}\)
f \(\frac{2}{5}\)
\(9 \quad \frac{13}{20}\)
k \(2 \frac{1}{2}\)
h \(\frac{16}{25}\)
i \(\quad 1.6\)
j 0.004
10.01.
3. Find:-
a \(\frac{3}{10}\) of \(£ 240\)
b \(\frac{2}{5}\) of 80 euros
c \(1 \%\) of \(£ 5600\)
d \(75 \%\) of 360 litres
e \(12 \frac{1}{2} \%\) of \(\$ 8000\)
f 0.3 of 250 km
g \(33 \frac{1}{3} \%\) of \(€ 150\)
h 0.7 of 3000 ml
i \(81 \%\) of 2000 mm .
4. a A jug, containing 800 ml of water, was placed on a window ledge. Two hours later, 20\% of the water had evaporated.
How much water was left in the jug?

b

450 fans went to watch Motherton play in their opening match.
They played so badly that two fifths of them left at half-time.
How many fans stayed on after half-time?
c House prices in Ridgewater rose by \(15 \%\) last year.
A detached bungalow was valued at \(£ 210000\) before the rise.
How much will it cost to buy the bungalow this year?

Wee Johnnie's mum measured his height at 140 cm in 2012.
During 2012-2013, his height increased by 7\%.
How tall was Johnnie when measured in 2013 ?

This is a calculator section.

5. Find:-
a \(35 \%\) of \(£ 260\)
b \(\quad \frac{5}{9}\) of 1467 euros
c \(7 \%\) of \(£ 18000\)
d 0.85 of \(£ 28.60\)
e \(37 \frac{1}{2} \%\) of \(£ 20400\)
f \(\frac{9}{11}\) of 6820 mg
g \(\frac{1}{2} \%\) of \(£ 750\)
6. \(a\)

The McDuff's were quoted a total price of \(£ 720\) for their flights.
They received an email saying flight prices had risen by \(7.5 \%\).
What will the McDuff's have to pay now for their flights?
b Shed and Holder's new shampoo bottle holds \(16 \%\) more shampoo.
I used to be able to get 75 washes from the old shampoo bottle.
How many times can I wash my hair with the new one?

7. \(a\)

GameZone bought in 25 new Crazy Cult computer games for \(£ 450\).
The owner hopes to make at least a \(45 \%\) profit by selling the games.
What must he sell each game for to make the required profit?
b The distance from the Earth to the Moon is 384400 kilometres.
A spacecraft had only travelled \(62.5 \%\) of this journey when its rockets failed.
How far short of the moon was the spacecraft at that time?
8.

> An Education Authority presented 850 pupils for a maths exam in 2012 .
> \(22 \%\) of those presented failed to pass the exam.
> How many pupils did pass?
9. List these people in order, beginning with the one with the largest new annual salary.
- Tania earns \(£ 350\) per week and gets a weekly rise of \(£ 35\).
- Chas earns \(£ 19500\) per year and is given a \(5.5 \%\) wage rise.
- Donna is paid \(£ 1545\) per month and her pay rises by a fifteenth.
10.

Janie bought a new computer and printer from QD World.
She made an initial deposit of \(15 \%\) of the cash price followed by 18 monthly payments of \(£ 36.50\).
How much more expensive was this than the cash price?

\section*{Revision - Sequences and Patterns}

Remember :- the rule for defining this sequence of numbers \(6,9,12,15, \ldots\) is start at 6 and add 3 each time.

\section*{Be able to recognise} and continue a basic sequence of numbers

\section*{Exercise 1}

1. Give a possible rule used in these sequences :- (begin with " start at ... and then").
a \(2,5,8,11,14, \ldots\).
b \(7,13,19,25, \ldots\).
c \(25,20,15,10, \ldots\)
d \(98,81,64,47, \ldots\).
e \(3,9,27,81, \ldots\).
f \(1,6,36,216, \ldots\)
\(9200,100,50,25, \ldots . \quad\) h \(192,48,12,3, \ldots . \quad\) i \(1,4,16,64, \ldots\)
j \(1 \frac{1}{2}, 2,2 \frac{1}{2}, 3, \ldots . \quad\) k \(5 \frac{3}{4}, 5 \frac{1}{4}, 4 \frac{3}{4}, 4 \frac{1}{4}, \ldots . \quad\) I \(1,2,4,8, \ldots\)
\(m\) 200, 100, 0, -100,
n \(108,36,12,4, \ldots\).
- 2, 1, 2, \(1, \ldots\)
2. Write down the next two numbers in each sequence from question 1.
3. Find two more numbers for each sequence :-
\begin{tabular}{lllll}
a \(7,9,11,13, \ldots \ldots\). & b \(5,9,13,17, \ldots \ldots\). & c \(24,22,20, \ldots \ldots\). \\
d \(70,58,46,34, \ldots \ldots\). & e \(1,3,9, \ldots \ldots\). & f \(2,4,8,16, \ldots \ldots\). \\
g \(96,48,24, \ldots \ldots\) & h \(1000,100,10, \ldots \ldots\). & i \(1,6,11,16, \ldots\) \\
j \(2,3,5,8, \ldots \ldots\). & k \(3,4,6,9, \ldots \ldots\). & l \(2,6,12,20,30, \ldots\)
\end{tabular}
4. Shown is the pattern for square numbers.

Write down the first 20 square numbers.

5. a Copy the first 4 patterns shown. This is the sequence of triangular numbers.
b How many dots did you have to add to the 3rd pattern to get to the 4th ?
c How many dots will you have to add to the 4th pattern to get to the 5th ?

\(1 s t=1\)

2nd \(=3\)

\(3 r d=6\)

(i) 11 th
(ii) 12 th
(iii) 13th ?
d The 10th triangular number is 55 . What is the :-
e Write down a relationship between the 68th and 69th triangular numbers.
\(f\) Write down the first 20 triangular numbers.
6. Shown is the first six rows of Pascal's Triangle.
a Copy these first 6 rows of the triangle.
b Describe how to find the numbers in the next row.
c Write out the next 4 rows.
d Write down or discuss any patterns or sequences you can see.

7. a Copy and extend this pattern for four more rows. Discuss the patterns used, then write down the :-
b 10th row c 25 th row
d 100th row
e nth row.
\[
\begin{aligned}
& 2^{2}-1^{2}=4-1=3=2+1 \\
& 3^{2}-2^{2}=9-4=5=3+2 \\
& 4^{2}-3^{2}=16-9=7=4+3
\end{aligned}
\]
8. a Add the first two triangular numbers.
b Add the 2nd and 3rd triangular numbers.
c Add the 3rd and 4th triangular numbers.
d Add the 4th and 5 th triangular numbers.
e What do you notice about your answers ?
9. a Which two consecutive triangular numbers add to give 36 ?
b Write down the sum of :-
(i) the \((9 t h+10 t h)\) triangular numbers. (ii) the \((99 t h+100 t h)\) triangular numbers.
10. a Write down each of these values :-
\[
\frac{1}{2}(1 \times 2), \quad \frac{1}{2}(2 \times 3), \quad \frac{1}{2}(3 \times 4), \quad \frac{1}{2}(4 \times 5) .
\]
b What do you notice about this sequence of numbers?
c Copy and complete :- "the nth pattern is \(\frac{1}{2}(n \times \ldots\).\() .".\)

d Can you find the 1000th triangular number ?

\section*{Work in a small groups to investigate each of these problems :-}
11. Twenty people arrive at a meeting.

Each person shakes hands with every other person.
How many handshakes are there altogether?

\title{

}
12. How many squares are on a chessboard?
(The answer is not 64).
13. How many diagonals would there be in a decagon?
(\(A\) decagon is a sided shape).

In the school cafe, tables and chairs are arranged as shown.

1 table
3 pupils

2 tables
6 pupils

3 tables 9 pupils

Putting these values into a table helps you see a pattern :-
\begin{tabular}{|l|cccccc|}
\hline No. of tables \((T)\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline No. of Pupils \((P)\) & 3 & 6 & 9 & 12 & \(?\) & \(?\) \\
\hline
\end{tabular}

Can you see that for every new triangular table => the number of pupils rises by 3 ?
=> we can write this in words as :-
```

number of Pupils = 3 x number of Tables

```
=> or in symbol form :-
```

P=3\timesT

```

\section*{Exercise 2}
1. Each filing cabinet has 4 drawers.
a Copy and complete the table :-
\begin{tabular}{|c|llllll|}
\hline No. of Cabinets \((C)\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline No. of Drawers (D) & 4 & 8 & \(?\) & \(?\) & \(?\) & \(?\) \\
rises by: \(\longrightarrow\) & \(\underbrace{}_{4}\) & & \(?\) & \(?\) & & \\
\hline
\end{tabular}
b Write down a formula showing the relationship between \(C\) and \(D\). (ie \(D=\ldots . \times C\)).

2 cabinets
8 drawers
c Use your formula to find how many :-
(i) drawers you need if you have 20 cabinets.
(ii) cabinets you require if you have 60 drawers.
2. Here is a pattern of teddies, \((T)\), and buttons, \((B)\).
a Construct a table similar to question 1.
b Copy and complete the formula:- \(B=\)...... \(T\)
c How many buttons do you need for 9 teddies?
d How many teddies do you need for 72 buttons?

1 Teddy
6 buttons

2 Teddies 12 buttons
3. For each of the tables below :- (i) complete each one (ii) construct a formula.
a No. of cakes and price
\begin{tabular}{|c|cccccc|}
\hline\(C\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(P\) & 40 & 80 & 120 & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
b No. of Starfish and no. of arms
\begin{tabular}{|c|cccccc|}
\hline\(S\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(A\) & 5 & 10 & 15 & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline \hline \multicolumn{1}{c|}{\(A=\ldots \ldots \times S\)} \\
\hline
\end{tabular}
c No. of days and no. of hours
\begin{tabular}{|c|cccccc|}
\hline\(D\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(H\) & 24 & 48 & 72 & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline & \(H=\ldots \ldots \times D\)
\end{tabular}
d No. of chairs to tables
\begin{tabular}{|c|cccccc|}
\hline\(T\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(C\) & 6 & 12 & 18 & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline \multicolumn{6}{c|}{\(C=\ldots \ldots \times T\)}
\end{tabular}
e No. of dogs and no. of legs

\(f\) No. rooms to no. of chairs
\begin{tabular}{|c|cccccc|}
\hline\(R\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(C\) & 31 & 62 & 93 & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
9 No. of calculators and no. of buttons
\begin{tabular}{|c|cccccc|}
\hline\(C\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(B\) & 12 & 24 & 36 & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

h No. of erasers and no. of boxes
\begin{tabular}{|c|cccccc|}
\hline\(B\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(E\) & 66 & 132 & 198 & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
4. For both of these tables :-
(i) complete each table
(ii) construct a formula
(iii) find \(y\) given \(x=20\)
(iv) find \(x\) given \(y=60\).
a \begin{tabular}{|l|llllll|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 0 & 2 & 4 & 6 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
\(y=\) \(\qquad\)
b
\begin{tabular}{|l|llllll|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 0 & 3 & 6 & 9 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
\(y=\ldots \ldots\).
5. A machine turns at a constant speed and completes ten revolutions every three seconds.
\begin{tabular}{|l|cccccc|}
\hline No. of seconds (S) & 3 & 6 & 9 & 12 & \(?\) & \(?\) \\
\hline No. of Revs \((R)\) & 10 & 20 & 30 & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline \hline
\end{tabular}
a Complete the table to show the number of revs \((R)\) and the time taken.
b Make a formula to show the relationship between the revs and the time.
c Use your formula to find :-
(i) how many revs for 60 seconds
(ii) how many seconds for 110 revs.

\section*{Linear Graphs}

Look again at the table from question 4a.
We can show this pattern as
\[
y=2 x
\]

Consider each pair of numbers as a coordinate pair and plot them on a Cartesian graph.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(x\) & \multicolumn{7}{|r|}{\(\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}\)} \\
\hline \(y\) & \multicolumn{7}{|l|}{\(0 \quad 2461 . .\).} \\
\hline \multicolumn{8}{|c|}{\((0,0) \downarrow(2,4) \downarrow(4, ?)\)} \\
\hline \multicolumn{8}{|c|}{\((1,2) \quad(3,6)\)} \\
\hline
\end{tabular}

Can you see what happens?
Can you also see why these are called Linear Patterns?
It can be seen that \(y=2 x\) can be represented graphically as a straight line?

Also notice that this line of coordinates passes through the origin.

6. For each of the tables below :-
(i) complete each table
(ii) construct a formula
(iii) take each pair of numbers as coordinates
(iv) plot the points on a coordinate graph
(v) draw a line through the points and label the line with your formula.
a
\begin{tabular}{|c|llllll|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 0 & 3 & 6 & 9 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
c
\begin{tabular}{|c|cccccc|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 0 & 5 & 10 & 15 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
e

b
\begin{tabular}{|c|cccccc|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 0 & 4 & 8 & 12 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
d
\begin{tabular}{|c|cccccc|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 0 & 6 & 12 & 18 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
f
\begin{tabular}{|c|cccccc|}
\hline\(x\) & 0 & 2 & 4 & 6 & 8 & 10 \\
\hline\(y\) & 0 & 1 & 2 & 3 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
7. Repeat question 6 instructions for these tables :- (Grids should show all 4 quadrants).
a
\begin{tabular}{|l|llllll|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & \(\ldots\) & -1 & 0 & 1 & 2 & \(\ldots\) \\
\hline
\end{tabular}
c
\begin{tabular}{|l|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & \(\ldots\) & -3 & 0 & 3 & 6 & \(\ldots\) \\
\hline
\end{tabular}
b

d
\begin{tabular}{|c|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & \(\ldots\) & 2 & 0 & -2 & -4 & \(\ldots\) \\
\hline \hline
\end{tabular}

Remember our simple pattern of tables and chairs for the school cafe.

Consider what would happen if we rearranged the tables in this way :-

1 table
3 pupils

2 tables
4 pupils

3 tables
5 pupils

For each additional table the number of pupils rises by 1 .
\begin{tabular}{|l|lllllll|}
\hline No. of tables \((T)\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline No. of Pupils \((P)\) & 3 & 4 & 5 & 6 & \(?\) & \(?\) \\
\hline
\end{tabular}

But \(P=1 \times T\) doesn't work this time!
Check \(1 \times 1 \neq 3\)
\(1 \times 2 \neq 4\)
\(1 \times 3 \neq 5\)
\(1 \times 4 \neq 6\)
but \(1 \times 1+2=3 \quad 1 \times 2+2=4\)
\(1 \times 3+2=5\)
\(1 \times 4+2=6\)

A correction number is required to make this pattern work. In this example the number is +2
\(\Rightarrow \quad P=1 \times T+2\) Example :- With 10 tables you need \(P=1 \times 10+2=12\) pupils

\section*{Exercise 3}
1. Here is another pattern with tables and chairs.
a Copy and complete the table below to show this relationship :-

1 table
4 customers

2 tables
6 customers

3 tables
8 customers
\begin{tabular}{|l|llllll|}
\hline No. of tables (\(T\)) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline No. of customers (C) & 4 & 6 & 8 & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
b Copy and complete the formula for this pattern :- \(C=\ldots \times T+\ldots\).
c Use this formula to find the number of customers around 20 tables.
d Use this formula to find the number of tables needed for 30 customers.
2. This pattern is made up of equilateral triangles:-

1 triangle 3 lines

2 triangles 5 lines

3 triangles
7 lines

4 triangles
.... lines
a Copy the following table and complete it :-
\begin{tabular}{|c|llllll|}
\hline No. of triangles \((T)\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline No. of lines \((L)\) & 3 & 5 & 7 & \(\ldots\) & \(?\) & \(?\) \\
\hline
\end{tabular}
b Write down the formula using symbols :- \(L=? \times T+\) ?
c Use your formula to decide how many lines are needed to place 30 triangles in a row as in the pattern above.
d If 31 lines are used to make one of the above patterns, how many triangles must there have been?
3. Look at the pattern of fence posts and support panels :-

2 posts
3 supports

3 posts
6 supports

4 posts
9 supports
a Copy the following table and complete it :-
\begin{tabular}{|l|llllll|}
\hline No. of posts \((P)\) & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline No. of supports \((S)\) & 3 & 6 & 9 & \(?\) & \(?\) & \(?\) \\
\hline
\end{tabular}
c Use your formula to decide how many support panels are needed with 20 posts.
d Use your formula to find how many posts are needed if you have 87 supports.
4. These "house shapes" are made up of squares and triangles.

2 squares
3 triangles

this is page 42

Patterns \& Relationships
4. a Copy the following table and complete it :-
\begin{tabular}{|l|llllll|}
\hline No. of squares \((S)\) & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline No. of triangles \((T)\) & 3 & 5 & 7 & \(?\) & \(?\) & \(?\) \\
\hline & \(\underbrace{}_{?}\) & & \(?\) & & & \\
\hline
\end{tabular}
b Write down the formula using symbols :- \(\quad T=\) ? \(\times S\) - ?.
c Use your formula to decide how many triangles are needed with 25 squares.
d Use your formula to find how many squares you would have for 131 triangles.
5. This table shows the cost of hiring a car, where \(D\) is the number of days and \(C\) is the cost in \(£\) 's.
a Write down the cost of hiring for 5 days and 6 days.
b Write down a formula showing this relationship.
c Find the cost of hiring a car for a fortnight.
d I paid \(£ 320\) for my car hire. For how long did I have the car ?
\begin{tabular}{|c|cccccc|}
\hline\(D\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(C\) & 40 & 60 & 80 & 100 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

6. For each of the tables below :-
(i) complete each table
a
\begin{tabular}{|l|llllll|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 2 & 3 & 4 & 5 & \(\ldots\) & \(\ldots\) \\
\hline \hline
\end{tabular}
c
\begin{tabular}{|l|llllll|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 3 & 5 & 7 & 9 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
e
\begin{tabular}{|c|cccccc|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 2 & 5 & 8 & 11 & \(\ldots\) & \(\ldots\) \\
\hline \hline
\end{tabular}

9
\begin{tabular}{|c|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & \(\ldots\) & -5 & -3 & -1 & 1 & \(\ldots\) \\
\hline \hline
\end{tabular}
i
\begin{tabular}{|c|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & \(\ldots\) & -3 & -2 & -1 & 0 & \(\ldots\) \\
\hline
\end{tabular}
k
\begin{tabular}{|c|cccccc|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 2.5 & 3 & 3.5 & 4 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
(ii) construct a formula.
b
\begin{tabular}{|l|llllll|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 1 & 3 & 5 & 7 & \(\ldots\) & \(\ldots\) \\
\hline \hline
\end{tabular}
d
\begin{tabular}{|c|cccccc|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 5 & 6 & 7 & 8 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
f
\begin{tabular}{|c|cccccc|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & -1 & 2 & 5 & 8 & \(\ldots\) & \(\ldots\) \\
\hline \hline
\end{tabular}
h
\begin{tabular}{|c|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & \(\ldots\) & -6 & -2 & 2 & \(\ldots\) & \(\ldots\) \\
\hline \hline
\end{tabular}
j

1
\begin{tabular}{|c|cccccc|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 1.3 & 2.5 & \(3 \cdot 7\) & 4.9 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

\section*{Further Linear Graphs}

We can show this pattern as
\[
y=2 x+1
\]

Again, consider each pair of numbers as a coordinate and plot them on a Cartesian graph (this time showing all 4 quadrants).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(x\) & -2 & -1 & 0 & 1 & 2 & & 3 \\
\hline \(y\) & -3 & -1 & 1 & 3 & 5 & & 7 \\
\hline & \[
-2,-
\] & & \[
(0,1
\] & & & & \\
\hline
\end{tabular}
\((-1,-1) \quad(1,3)\)
Can you see that \(y=2 x+1\) can be represented graphically as a straight line?

Notice where the line cuts the \(y\)-axis.
Notice how steep the graph is.

7. For each of the tables below :-
(i) complete each table
(ii) construct a formula
(iii) take each pair of numbers as a coordinate (iv) plot the points on a coordinate graph.
(v) draw a line through the points and label the line with your formula.

C
\begin{tabular}{|c|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & 0 & 2 & 4 & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
e
\begin{tabular}{|l|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & -4 & -3 & -2 & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

9
\begin{tabular}{|c|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & -3 & 0 & 3 & \(\ldots\) & \(\ldots\) & \(\cdots\) \\
\hline
\end{tabular}
\begin{tabular}{|c|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & -10 & -8 & -6 & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
k
\begin{tabular}{|c|cccccc|}
\hline\(x\) & -4 & -2 & 0 & 2 & 4 & 6 \\
\hline\(y\) & \(\ldots\) & 0 & 2 & 4 & \(\ldots\) & \(\ldots\). \\
\hline \hline
\end{tabular}
b
\begin{tabular}{|c|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & 1 & 2 & 3 & \(\ldots\) & \(\cdots\) & \(\cdots\) \\
\hline
\end{tabular}
d
\begin{tabular}{|c|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & \(\ldots\) & \(\ldots\) & -1 & 1 & 3 & \(\ldots\) \\
\hline
\end{tabular}
\(f\)
\begin{tabular}{|c|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & -9 & -5 & -1 & 3 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
h
\begin{tabular}{|c|cccccc|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & \(\ldots\) & 0 & 4 & 8 & \(\ldots\) & \(\cdots\) \\
\hline
\end{tabular}
j

I
\begin{tabular}{|c|rrrrrr|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & 3 & 3 & 3 & 3 & \(\ldots\) & \(\cdots\) \\
\hline
\end{tabular}
8. Discuss each of the above graphs - look at each formula and where the line crosses the \(y\)-axis and the steepness of each graph.

\section*{The 3 \({ }^{\prime}\) 's}

\section*{Revisit - Review - Revise}
1. Write down the next two numbers in these sequences :-
a \(80,73,66,59,52\),
b \(225,196,169,144,121,\).
c \(2,6,12,20,30, \ldots\).
d \(1,2,5,10,20, \ldots\).
2. If you add any 2 consecutive triangular numbers together, you get a square number.

For example :- \(1+3=4,3+6=9,6+10=16\), etc...
Which 2 consecutive triangular numbers add to give the square number 100 ?
3. The table below shows the weight in grams of a bag with lollies in it.
\begin{tabular}{|l|cccccc|}
\hline No. of lollies (L) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Weight in grams \((W)\) & 50 & 85 & 120 & & & \\
\hline
\end{tabular}
a How heavy will the bag be with 4 Iollies?
b Write down the formula for the weight of the bag with L lollies.

\[
W=
\]
\(\qquad\)
c How heavy will a full bag be if it contains 20 lollies ?
4. A necklace is made up using a mixture of purple Amethyst stones and Diamonds.

2 Amethysts
3 diamonds

3 Amethysts
6 diamonds

4 Amethysts
9 diamonds

5 Amethysts
12 diamonds
a Derive a formula for the number of Diamonds \(D\) in terms of the number of Amethysts \(A\).
\[
D=
\]
\(\qquad\)
b How many Amethysts would you need if you had 87 diamonds?
5. Shown below are four tables showing the connection between pairs of values.

Write down a formula connecting the value of the 2nd letter in the table to the 1st letter.
a
\begin{tabular}{|c|cccc|}
\hline\(h\) & 1 & 2 & 3 & 4 \\
\hline\(P\) & 1 & 4 & 9 & 16 \\
\hline
\end{tabular}
\(P=\)......
c
\begin{tabular}{|c|cccc|}
\hline\(x\) & 1 & 2 & 3 & 4 \\
\hline\(D\) & 1 & 7 & 13 & 19 \\
\hline
\end{tabular}
\(D=. . . .\).
b
\begin{tabular}{|c|cccc|}
\hline\(m\) & 1 & 2 & 3 & 4 \\
\hline\(T\) & 12 & 19 & 26 & 33 \\
\hline
\end{tabular}
\(T=\)......
d
\begin{tabular}{|c|cccc|}
\hline\(c\) & 1 & 2 & 3 & 4 \\
\hline \(\boldsymbol{N}\) & 2 & 5 & 10 & 17 \\
\hline
\end{tabular}
\(N=. . . .\).
1. Find:-
a 6-11
b \(\quad-5+9\)
c \(18+(-12)\)
d 7-(-3)
e \(-7-(-2)\)
f \(-51-(-53)\)
\(9-2+(-6)-(-8)\)
h \(-3-(-11)\).
2. Find:-
a \(-2+3-(-4)+(-5)\)
b \(20-(-13)+(-18)-15\)
c \(75+(-81)-(-96)\).
3. Find:-
a \(5 \times(-4)\)
b \((-2) \times(-7)\)
c \(24 \div(-3)\)
d \((-28) \div(-7)\)
e \(3 \times(-4) \times 2\)
f \((-4) \times(-3) \times(-2)\)
\(g(-59) \times(-13) \times 0\)
h \((-40) \div(-5) \times(-3)\).
4. Find:-
a \(8-(-2) \times(-3)\)
b \(-4 \times(-5)+(-6) \div(-2)\)
c \((-2) \times(-2)-(-2) \times(-2)\).
5. At the end of May, Lena's bank balance was - \(£ 545\).
a What does a "balance of - \(£ 545\) " really mean ?
Her monthly salary of \(£ 1725\) was paid in on 1st June and she paid for her \(T\) in the Park tickets, costing \(£ 360\).
b What was Lena's new balance?

6.

When Scott left England to travel to the Antarctic, the temperature was \(18^{\circ} \mathrm{C}\).
When he arrived, it had dropped to \(-29^{\circ} \mathrm{C}\).
By how much had the temperature changed?
7. Simplify the following expressions :-
a \(p+p+p\)
b \(m \times m\)
c \(4 d \times 5 e\)
d \(9 a+5 b-a-7 b\)
e \(p^{2} \times 4 p\)
f \(5 t \times 3 t^{2}\)
g \(20 x^{2} \div 5 x\)
h \(4 s \times 9 s \div 6 s\).
8. Work out the value of these expressions when \(a=9, b=4\) and \(c=-3\) :-
a \(2 a+b\)
b \(a^{2}-b^{2}\)
c \((b-c)^{2}\)
d \(2 b^{2}\)
\(e \sqrt{a}\)
f \(\frac{a-c}{b}\)
\(9 \frac{a b^{2}}{c^{2}}\)
\(h \sqrt{b^{2}+2 a-5 c}\).
9. Multiply out the brackets :-
a \(4(3 x+2)\)
b \(7(6 a-3 b)\)
c \(g(g+5)\)
d \(3 y(4 y-7 z)\)
e \(-6(d-5)\)
f \(-a(a-4 b)\)
\(9-2 w(5-w)\)
h \(-q^{2}(q-4 r)\).
10. Expand the brackets and then simplify :-
a \(3(x+4)-9\)
b \(5+4(m-2)\)
c \(3(h+4)+2(h-5)\)
d \(9(g-2)+7(g+3)\)
e \(3(2 b-1)-2(b-3)\)
f \(5 d-(3-d)\).
11. This shape is made up of a rectangle with a right angled triangle on top, (a trapezium).

Write down an expression for the total area of the shape, in terms of \(x\).

12. Determine the value of the capital letter:-

a \(\quad G=2 p-q\)
Find \(G\), when \(p=13.5\) and \(q=21\).
b \(\quad S=\frac{w-x}{y}\)
Find \(S\), when \(w=15, x=-6\) and \(y=7\).

Find \(D\), when \(b=13\) and \(c=12\).
13. To change a number of miles into kilometres :-

Multiply the miles by eight, then divide your answer by five.

14. To change from degrees Fahrenheit (\({ }^{\circ} \mathrm{F}\)) to degrees Celsius \(\left({ }^{\circ} \mathrm{C}\right)\) :-

Subtract 32 then divide your answer by 1.8.
Change \(68^{\circ} \mathrm{F}\) to \({ }^{\circ} \mathrm{C}\).

15. To find the monthly repayments of a 1 year bank loan :-

Add on \(8 \%\) of the loan to the loan, then divide this total by 12 .
a Calculate the interest (the 8\%) on an annual loan of \(£ 3600\).
b Calculate the monthly repayments.
16.

a Write down the formula for the circumference of a circle.
b Calculate the circumference of this circle.
17. a Construct a formula for finding \(P\), the perimeter of the symmetrical shape shown opposite.
b Find \(P\), when \(a=12 \mathrm{~cm}, b=8 \mathrm{~cm}\) and \(c=15 \mathrm{~cm}\).
c Find \(c\), when \(P=42 \mathrm{~mm}, a=6.5 \mathrm{~mm}\) and \(b=4.3 \mathrm{~mm}\).

\section*{Solving Equations}

\section*{Be able to} solve simple equations
* your teacher may show you an alternative method
\[
\begin{aligned}
& x-7=17 \\
\Rightarrow & x=17+6 \\
\Rightarrow & x=23
\end{aligned}
\]
\[
\begin{aligned}
x-9 & =-2 \\
\Rightarrow \quad x & =-2+9 \\
\Rightarrow \quad x & =7
\end{aligned}
\]

\section*{Exercise 1}
1. Copy each equation and solve to find the value of \(x\), as shown above :-
\begin{tabular}{llllll}
a & \(x+2=5\) & b & \(x+9=19\) & c & \(x+6=11\) \\
d & \(x+12=12\) & e & \(x-3=4\) & f & \(x-8=1\) \\
g & \(x-17=0\) & h & \(x-20=30\) & i & \(x+9=6\) \\
j & \(x-7=0\) & k & \(x+13=0\) & l & \(x-16=29\) \\
m & \(9+x=1\) & n & \(4+x=4\) & 0 & \(22+x=0\) \\
p & \(11+x=4\) & q & \(8+x=8\) & r & \(19+x=-19\).
\end{tabular}

Examples :- Solving equations of the type \(a x=b\).
\begin{tabular}{c}
move the \(x 4\) to the \\
other side \(e\) \\
change it to \(\Rightarrow 4\)
\end{tabular}
\(\Rightarrow x=28 \div 4\)
\(\Rightarrow x=7\)
\[
\begin{aligned}
3 p & =-27 \\
\Rightarrow p & =-27 \div 9 \\
\Rightarrow p & =-3
\end{aligned}
\]
\[
\begin{aligned}
5 k & =18 \\
\Rightarrow k & =18 \div 5 \\
\Rightarrow x & =\frac{18}{5}=3 \frac{3}{5}
\end{aligned}
\]
2. Copy each equation and solve to find the value of the letter :-
\begin{tabular}{|c|c|c|c|c|c|}
\hline a & \(2 x=16\) & b & \(5 p=45\) & c & \(3 k=24\) \\
\hline d & \(3 h=21\) & \(e\) & \(4 g=36\) & f & \(7 n=7\) \\
\hline 9 & \(8 m=12\) & h & \(13 c=0\) & i & \(4 d=1\) \\
\hline j & \(3 y=120\) & k & \(10 s=300\) & 1 & \(6 w=21\) \\
\hline m & \(4 a=13\) & \(n\) & \(5 b=29\) & - & \(7 e=23\) \\
\hline p & \(10 j=65\) & 9 & \(8 q=2\) & \(r\) & \(3 r=29\). \\
\hline
\end{tabular}

Examples :- Solving equations of the type \(a x+b=d\).

3. Find the value of \(x\) in the following equations (Set down each step of working carefully).
\begin{tabular}{lllll}
a & \(2 x+4=10\) & b & \(6 x+3=21\) & c \\
d & \(3 x+5=29\) & e & \(4 x-3=37\) & f \\
g & \(10 x-6=44\) & h & \(8 x-8=0\) & i \\
j & \(7 x-3=39\) & k & \(3 x+12=15\) & \(9 x-7=38\) \\
m & \(6 x-6=36\) & n & \(10 x+23=123\) & l \\
p & \(2 x-1=14\) & q & \(12 x+12=0\) & o \\
s & \(4 x+10=8\) & t & \(6 x+3=30\) & r \\
l & & & u & \(3 x-8=0\) \\
& & & &
\end{tabular}

\section*{Harder Equations}

This diagram shows a set of balanced scales.
- 5 blocks and a 4 kg weight on the left
- 2 blocks and a 10 kg weight on the right.

If each block weighs \(x \mathrm{~kg}\), then the equivalent equation for this is :-
\[
5 x+4=2 x+10
\]
- to be solved.

To simplify the situation, remove 2 blocks (\(2 x\)) from both sides.

This leaves a much simpler equation, \(3 x+4=10\), which you already know how to solve.
\begin{tabular}{l}
remove \(2 x\) from \\
both sides
\end{tabular}
\(\Rightarrow\) \begin{tabular}{lc}
& \(5 x+4=2 x+10\) \\
\(\Rightarrow\) & \(3 x+4=10\) \\
\(\Rightarrow\) & \(3 x=10-4\) \\
\(\Rightarrow\) & \(x=2\)
\end{tabular}

Examples :- Solving equations of the type \(a x+b=c x+d\).

\section*{Exercise 2}
1. Copy and complete
\[
\begin{aligned}
& 6 x+1=4 x+19 \\
& \Rightarrow \quad 2 x+1=\ldots . \\
& \Rightarrow \quad 2 x=\ldots \\
& \Rightarrow \quad x=\ldots .
\end{aligned}
\]
b

2. Solve these equations by removing the correct number of \(x\) 's from each side first :-
a \(4 x+3=2 x+9\)
b \(3 x+2=x+18\)
c \(6 x+6=5 x+18\)
d \(10 x-9=7 x+12\)
e \(\quad 6 x-1=2 x+23\)
f \(6 x-4=x+41\)
\(g 13 x-3=9 x+29\)
h \(10 x-7=8 x+8\)
i \(4 x+8=x+26\)
j \(6 x+9=2 x+11\)
k \(\quad 3 x+22=9 x-2\)
| \(x+1=9 x+9\).
3. These equations are a little "different". Solve them in the same way as shown above :-
a \(3 x=2 x+3\)
b \(\quad 5 x=x+16\)
c \(6 x=3 x+36\)
d \(9 x=8 x+1\)
e \(\quad 5 x=3 x+17\)
f \(7 x-9=5 x\)
g \(4 x-27=x\)
h \(3 x+13=x\)
i \(8 x=11 x-39\).
4. Joe bought 3 packets of rollos. Harry bought 1 packet, but he already had 20 loose rollos.

They discovered that they then had exactly the same number of rollos.

a Make up an equation to show this information. (let \(x\) be the number of rollos in 1 packet)
b Solve the equation to determine how many rollos there are in a packet.
5. A group of sales reps have booked a room on the top floor of a hotel for a conference.

They use the hotel elevator (full) 4 times and as well as this, 9 of the reps use the stairway.
After the conference, the elevator is filled only twice, the remaining 25 reps using the stairway to go down to reception.
a Make up an equation to show this information.
(let \(x\) be the number of reps in 1 full elevator)

b Solve the equation to determine how many reps were at the conference.

Examples :- Solving equations with brackets.
* your teacher may
show you an
alternative method
\[
\begin{aligned}
& 4(3 x+5)-2(4 x-1)=2 x+20 \\
& \Rightarrow 12 x+20-8 x+2=2 x+20 \\
& \Rightarrow \quad 4 x+22=2 x+20 \\
& \Rightarrow \quad 2 x+22=20 \\
& \Rightarrow \quad 2 x=20-22 \\
& \Rightarrow \quad 2 x=-2 \\
& \Rightarrow \quad x=-1
\end{aligned}
\]

Multiply out
the brackets

Take " \(x\) " from both sides

Move the +3
to the other side

Divide by 5
\[
\begin{array}{rlrl}
& 3(2 x+1)=x+18 \\
& \Rightarrow & 6 x+3=x+18 \\
& \Rightarrow & 5 x+3=18 \\
\Rightarrow & & 5 x=18-3 \\
\Rightarrow & & 5 x=15 \\
& \Rightarrow & x=3
\end{array}
\]

\section*{Exercise 3}
1. Solve these equations by multiplying out the brackets first :-
a \(2(x+2)=10\)
b \(\quad 3(x+7)=24\)
c \(5(x-4)=25\)
d \(4(x+3)=44\)
e \(6(x+3)=60\)
\(g \quad 10(x-2)=30\)
h \(8(x+3)=56\)
f \(2(x+5)=12\)
j \(7(x-1)=0\)
k \(\quad 4(x-1)=2\)
i \(\quad 4(x-1)=24\)
\(3(x+4)=6\).
2. Solve these equations :-
a \(2(4 x+1)=10\)
b \(\quad 3(2 x-3)=15\)
c \(4(5 x-2)=12\)
d \(2(4 x+5)=26\)
e \(\quad 3(2 x-11)=9\)
g \(3(2 x-2)=4 x+12\)
h \(\quad 2(4 x+2)=3 x+29\)
f \(2(5 x-5)=0\)
k \(\quad 10(2 x-6)=14 x+54\) \(2(1+3 x)=4 x+7\)
j \(7(2 x-1)=13 x\)
l \(10(x+4)=2 x\).
3. Solve :-
a \(3(x+2)-x-6=10\)
b \(\quad 2(x+2)+3 x-8=16\)
c \(5(x+3)-2 x=24\)
d \(5(x-2)+2 x+6=38\)
e \(2 x+8+3(x-2)=12\)
\(9 \quad 2(x+5)+3(x-3)=21\)
i \(4(2 x+1)+2(x-3)=6 x+40\)
f \(4 x+2(x-4)=10\)
h \(4(3 x+2)+5(1-2 x)=25\)
k \(\quad 4(x+8)-2(x+6)=18\)
j \(\quad 2(3 x-5)+4(x+8)=3 x+29\)
m \(3(3 x+1)-2(x-5)=x+31\)
I \(8(x-1)-3(x-2)=18\)
n \(\quad 13(x+1)-2(3 x+6)=2 x-49\).

Fractions are a real nuisance in equations.
\(\Rightarrow\) Fortunately, we can do away with fractions in equations quite easily.
Rule :- Always eliminate the fractions at the beginning by multiplying
 every term by the I.c.m. of all the fractional denominators.

\section*{Examples :-}

Multiply both
sides by 2 to
eliminate the
one fraction \(\frac{1}{2}\)
\[
\begin{aligned}
& \frac{1}{2} x+4=9 \\
& 2 \times \frac{1}{2} x+2 \times 4=2 \times 9 \\
& \Rightarrow \quad x+8=18 \\
& \Rightarrow \quad x=18-8 \\
& \Rightarrow \quad x=10
\end{aligned}
\]

\section*{Exercise 4}
1. Copy and complete the following two equations :-
a
\begin{tabular}{rrr}
\begin{tabular}{rlr}
1 \\
2
\end{tabular}\(x+3\) & \(=7\) \\
\(2 \times \frac{1}{2} x+2 \times 3\) & \(=2 \times 7\) \\
\(\Rightarrow\) & \(x+\ldots\) & \(=\ldots\) \\
\(\Rightarrow\) & \(x\) & \(=\ldots\)
\end{tabular}
b
\begin{tabular}{rlrl}
& \begin{tabular}{rl}
\(\frac{3}{4} x-5\) & \(=\frac{3}{5} x-2\) \\
\(20 \times \frac{3}{4} x-20 \times 5\) & \(=20 \times \frac{3}{5} x-20 \times 2\) \\
\(\Rightarrow\) & \(15 x-\ldots\)
\end{tabular} \\
\(\Rightarrow\) & \(3 x-\ldots x-\ldots\) \\
\(\Rightarrow\) & \(\ldots x\) & \(=\ldots\) \\
\(\Rightarrow\) & \(x\) & \(=\ldots\)
\end{tabular}
2. Solve each of these equations, by first of all multiplying every term by the I.c.m. of all the fractional denominators. This should eliminate all the fractions.
a \(\quad \frac{1}{2} x-3=1\)
b \(\quad \frac{1}{4} x+5=6\)
c \(\quad \frac{1}{8} x-3=0\)
d \(\quad \frac{2}{3} x-4=4\)
e \(\quad 4+\frac{4}{5} x=16\)
f \(\quad \frac{5}{8} x+4=14\)
g \(\frac{3}{4} x+\frac{1}{2}=5\)
h \(\quad \frac{1}{2} x+\frac{3}{5}=1\)
i \(\frac{2}{5} x+\frac{1}{3}=1\)
j \(\quad \frac{1}{2} x-1=\frac{1}{4}\)
k \(\quad \frac{2}{3} x-4=\frac{1}{3}\)
I \(\frac{3}{4} x-1=\frac{2}{3}\)
m \(\quad \frac{1}{2} x+2=\frac{1}{3} x+4\)
n \(\quad \frac{3}{4} x-1=\frac{3}{5} x+2\)
- \(2+\frac{3}{4} x=\frac{1}{3} x+3\)
P \(\quad \frac{1}{2} x-\frac{1}{3}=\frac{3}{4}\)
q \(\frac{1}{4} x+\frac{1}{2}=\frac{3}{5}\)
r \(\frac{1}{3} x-\frac{1}{2}=\frac{1}{4} x+\frac{2}{5}\).
\(2 x+5=11\) and \(3(x-4)=2 x+3\) are two examples of equations.
Inequalities are similar except the \(=\) sign is replaced with one of :\(\langle\),\(\rangle , \leq\) or \(\geq\) each time.

Solving an inequality is almost identical to solving the corresponding equation.
\begin{tabular}{c:c|}
\hline equation & inequality \\
\(2 x-5=11\) & \(2 x-5>11\) \\
\(2 x=11+5\) & \(2 x>11+5\) \\
\(2 x=16\) & \(2 x>16\) \\
\(x=8\) & \(x>8\)
\end{tabular}

The solution this time is " \(x\) can be any number greater than 8" (not \(x=8\))
\begin{tabular}{|c:c|}
\hline equation & inequality \\
\(4(2 x-1)=x+17\) & \(4(2 x-1) \leq x+17\) \\
\(8 x-4=x+17\) & \(8 x-4 \leq x+17\) \\
\(7 x-4=17\) & \(7 x-4 \leq 17\) \\
\(7 x=21\) & \(7 x \leq 21\) \\
\(x=3\) & \(x \leq 3\) \\
\hline
\end{tabular}

The solution this time is " \(x\) can be any number smaller
than or equal to \(3^{\prime \prime}\)
\[
\begin{array}{ll}
\hline \text { Reminder :- } & "<\text { " - means "less than". } \\
& \text { ">" - means "greater than". } \\
& \text { " } \leq \text { " - means "less than or equal to". } \\
& " \geq \text { " - means "greater than or equal to". } \\
\hline \hline
\end{array}
\]

\section*{Exercise 5}
1. Solve these inequalities, leaving your answers in the form \(x>2\), etc. :-
a \(x+2>6\)
b \(x+4<12\)
c \(x-9 \leq 8\)
d \(x+7 \geq 12\)
e \(x-6 \leq 6\)
f \(x-14 \geq 0\).
2. Solve each inequality, leaving your answers in the form \(x \leq 4\), etc. :-
a \(5 x<15\)
b \(4 x>32\)
c \(3 x<18\)
d \(8 x \geq 32\)
e \(9 x \leq 54\)
f \(280<10 x\).
3. Solving the following inequalities :-
a \(4 x+1<25\)
b \(\quad 2 x+3>11\)
c \(\quad 6 x-1<17\)
d \(2 x+5 \geq 21\)
e \(10 x-2 \leq 48\)
f \(8 x-3>53\)
g \(8 x-20<0\)
h \(20 x-20 \geq 20\)
i \(15 \geq 2 x+8\)
j \(\quad \frac{1}{2} x-1<13\)
k \(\quad \frac{1}{4} x+6 \geq 11\)
| \(\frac{1}{5} x-1>1\)
m \(2(x+3)<20\)
n \(\quad 4(x-3) \geq 36\)
- \(3(4 x+1) \leq 27\)
p \(2(5 x+4) \leq-2\)
q \(\quad \frac{1}{2}(2 x-8)>0\)
r \(\quad \frac{1}{9}(x-3)<2\)
s \(7(x+2)<4 x+23\)
\(+5(2 x+2)>6 x+20\)
u \(5 x+17 \leq 3(2 x-4)\).

\section*{The 3 g's}

\section*{Revisit - Review - Revise}
1. Find the value of \(x\) in these equations:-
a \(x+9=15\)
b \(5-x=-1\)
c \(4 x=18\)
d \(3 x+16=0\)
e \(7 x-2=54\)
f \(5 x+100=50\).
2. Solve each of the following equations :-
a \(7 x-1=6 x+8\)
b \(10 x+5=8 x+17\)
c \(6 x-2=3 x+22\)
d \(\quad 9 x+3=5 x+31\)
e \(\quad 12 x=7 x-45\)
f \(11 x-25=x\).
3. Solve these equations :-
a \(3(x+2)=24\)
b \(\quad 2(3 x-5)=14\)
c \(4(1+3 x)=52\)
d \(6(x-5)-x=0\)
e \(5(x+1)-3(x-2)=17\)
f \(4(3 x-1)=9 x+23\).
4. Solve each of the following inequalities, leaving your answer in the form \(x<3, x \geq 5\) etc.
a \(x-3>10\)
b \(5 x \geq 45\)
c \(6 x-7<35\)
d \(3(x+4) \leq 33\)
e \(4(2 x-3)<28\)
f \(7 x-2 \geq 4 x+19\).
5. Solve these equations and inequalities :-
a \(\quad \frac{1}{2} x=7\)
b \(\quad \frac{1}{4} x+3=8\)
c \(\quad \frac{1}{3} x-2>3\)
d \(\quad \frac{1}{2}(3 x+5)=13\)
e \(\quad \frac{1}{5}(x-11) \leq 0\)
f \(\quad \frac{1}{3}(4 x-5)=x\).
6. I'm thinking of a number (\(x\)). I multiply it by 4 , then add on 30 to it.

I then half this and take away 11. I end up with an answer of 20.
a Construct an equation to show this information.
b Solve the equation to determine the number I was thinking of to begin with.
7. Tommy is a joiner and he bought 6 boxes of screws, though he already had 40 loose ones.
Alf, his apprentice, had 4 boxes of screws as well as 190 loose screws.

They found they each had the same number of screws.
a Construct an equation to show this information. (Let \(x\) represent the number of screws in a box).
b Solve the equation to find how many screws there are in a full box.

1. What is the :-
a complement of \(70^{\circ}\)
b supplement of \(60^{\circ}\) ?
2. Copy and complete each diagram below, filling in all missing angles :-
a

b

c

d

e

h

i

j

k

I

m

\(n\)

0

p

9

\(r\)

\section*{Be able to find} unknown angles using corresponding angles

A line which cuts across 2 or more parallel lines is called a transversal.

The two angles shown in the above figure are said to be in "corresponding positions".
Note :- Corresponding angles are EQUAL.

\section*{Exercise 1}
1. Use three letters each time to name the pairs of corresponding angles :-
a

\[
\angle \text { NAP and } \angle \ldots \ldots
\]
c

b

\[
\angle \ldots . . \text { and } \angle \ldots .
\]
d

2. In this figure, \(j\) corresponds to a.

Which angle corresponds to :-
a w
b \(f\)
c \(z\) ?

3. COPY the diagrams shown and mark the angles which CORRESPOND to the ones already marked.
a

b

c

d

e

f

4. Write down the sizes of the angles marked \(p, q, r, \ldots\).
a

b

c

d

e

f

Remember :-

5. Use the above facts, along with corresponding (F) angles, to help COPY the diagrams below and enter all the missing angles :-
a

b

c

6. Copy the figure shown opposite and fill in the sizes of all the missing angles.

7.

In this figure, \(\angle X F A=75^{\circ}\).
a Write down the size of \(\angle F E P\).
b Make a neat sketch of the figure and calculate the sizes of all the other angles.
8. Sketch each of the following and fill in all the missing angles :-
a

b

c

d

f

9

h

i

If a pair of parallel lines have a line joining them, a \(Z\) - shape is formed :-

using alternate angles

The two angles shown in the above figure are said to be in "alternate positions".
Note :Alternate angles are EQUAL.

\section*{Exercise 2}
1. Make a neat sketch of each of these figures and mark the angle which is alternate to the one already marked :-
a

b

c

d

e

f

2. Use three letters each time to name the pairs of alternate angles :-
a

b

c

d

3. In this figure, which angle is alternate to :-
a \(z\)
b c
c \(j\)
d \(p\) ?

4. Write down the values of \(a, b, c, d, e\) and \(f\) :-
a

b

c

d

e

5. Copy the figure shown opposite.
Fill in the sizes of all the missing angles.

6.

Make a neat copy of this figure and fill in all the missing angles.
7. Make a neat copy of this figure and fill in all the missing angles.

1. Using the above facts, sketch the following diagrams NEATLY and mark in all the missing angles :-
a
\(63^{\circ}\)
d

b
\(100^{\circ}\)
e

h

\(\xrightarrow{\text { Cles }}\)
i

k

2. These are harder :-

d

e

f

h

j

\section*{The 3 \({ }^{\prime}\) 's}

\section*{Revisit - Review - Revise}
1. a What is the size of the angle which is complimentary to \(34^{\circ}\) ?
b Write down the supplement of \(85^{\circ}\).
2. Make a neat sketch of each diagram and find the size of the angles marked with a letter.
a

d

e

f

9

h

3. Make a copy of these two d
a

b

1. For each of these shapes, name the shape, state what formula should be used to find its area and then calculate its area.
b

C

2. Calculate the perimeter of :- \(a\)

b

3. Calculate the area of these composite shapes, showing each step of your working :-

4. Calculate the volume of this gift-box.

Calculate the total volume of this shape consisting of a cube on top of a cuboid.
6. Change to litres :- a 3500 ml
7. Change to ml :-
a \(6 \frac{3}{4}\) litres
b \(\quad 270 \mathrm{ml}\)
c \(\quad 20 \mathrm{ml}\).
8.

This tray is used by a hotel to catch the water at the bottom of a fridge as it is being defrosted.
a Calculate the volume of the tray in \(\mathrm{cm}^{3}\).
b How many litres of water will it hold when full?

10.

This is an octagonal prism with one of its 8 identical sections shown.

Calculate the volume of the triangular prism and hence find the volume of the octagonal prism.

\section*{2 Dimensions}

\section*{Recognising Polygons}

\section*{Be able to recognise and know names of polygons}

A polygon is a flat shape consisting of straight lines that are joined to form a closed chain or a circuit.

In book 1a, you were asked to go online and look up the name of polygons with up to 12 sides. Now you will be asked to learn these names.

\section*{Exercise 1}
1. Here are 15 polygons and 15 names. See if you can match each shape with its correct name. Have a good guess at any you don't know - but when you find out the correct name - learn it !

2. How many :-
a sides has a rectangle
b diagonals has a square
c vertices has a triangle
d sides has a pentagon
e diagonals has a hexagon
9 sides has a nonagon
i vertices has a dodecagon
k diagonals has a decagon
\(m\) sides has a kite
- vertices has a trapezium
\(f\) vertices has an octagon
h diagonals has a heptagon
j vertices has a nonagon
vertices has a parallelogram
n diagonals has a rhombus
p sides has a heptagon?
3. There is a building in the USA called "The Pentagon".

Why is the building so called, where exactly is it and what is it used for?

\section*{Drawing Triangles}

You will require :- a RULER, a PROTRACTOR and a PAIR of COMPASSES.

Given 3 relevant pieces of information about a triangle, you should be able to draw it accurately.

Two Sides and the Included Angle
(the angle between the 2 sides)
Here is a sketch of \(\triangle A B C\).

Given 2 sides and the included angle, be able to draw a triangle

To draw it accurately :-
Step 1 :- Draw a line \(A B=6 \mathrm{~cm}\).

Step 2 :- Place your protractor at \(A\) and mark an angle of \(50^{\circ}\).

Step 3 :- Draw a line \(A C\), from \(A\) through the \(X\), to point \(C\).
Make sure it is 4.5 centimetres long.

Step 4 :- Join B to \(C\) to make the triangle.

\section*{Exercise 2}
1. Shown is a sketch of \(\triangle D E F\).

Follow the instructions to draw it accurately :-
\begin{tabular}{|c|c|}
\hline Step 1 :- & Draw line \(D E=5 \mathrm{~cm}\) \\
\hline Step 2 :- & Put your protractor at \(D\) and mark (with an \(X\)) an angle of \(25^{\circ}\). \\
\hline Step 3 :- & \begin{tabular}{l}
Draw line \(D F\), from \(F\) through the \(X\), to point \(F\). \\
(Make sure it is 4 centimetres long).
\end{tabular} \\
\hline Step 4 :- & Join \(E\) to \(F\) to make the triangle. \\
\hline
\end{tabular}

2. Make accurate drawings of the following triangles :-
a

b

c

3. Make accurate drawings of the following triangles :-
(Make rough sketches of the triangles first before drawing them accurately).
a Draw \(\triangle K L M\) where
\(\mathrm{KL}=10 \mathrm{~cm}, \mathrm{KM}=8 \mathrm{~cm}\) and \(\angle \mathrm{MKL}=60^{\circ}\).
b Draw \(\triangle\) PUT where
\(\mathrm{PU}=11 \mathrm{~cm}, \quad \mathrm{UT}=6.5 \mathrm{~cm}\) and \(\angle \mathrm{PUT}=120^{\circ}\).

\section*{Two Angles and a Side}

Shown opposite is a sketch of \(\Delta\) SUD.
To draw it accurately :-

Step 1 :- \(\quad\) Draw line \(S U=5 \mathrm{~cm}\)
\(S \longrightarrow \quad 5 \mathrm{~cm}\)

Step 2 :- Put your protractor at \(S\) and mark an angle of \(50^{\circ}\).

continued

Step 3 :- Draw line from \(S\) through the point \(X\).

Step 4 :- Now put your protractor at \(U\) and mark an angle of \(40^{\circ}\).

Step 5 :- Finally, draw the line from \(U\) through your new \(X\) point.
(Mark the point where the two lines meet with the letter \(D\)).

\section*{Exercise 3}
1. Shown is a sketch of \(\triangle A B C\).

Follow the instructions to draw it accurately :-

Step 1 :- Draw line \(A B=6 \mathrm{~cm}\)
Step 2 :- Put your protractor at \(A\) and mark (with an \(X\)) an angle of \(60^{\circ}\).
Step 3 :- Draw a line from \(A\) through the \(X\).
Step 4 :- Put your protractor at \(B\) and mark (with an \(X\)) an angle of \(30^{\circ}\).
Step 5 :- \(\quad\) Draw a line from \(B\) through the \(X\), to meet your first line at point \(C\).
2. Make accurate drawings of these triangles :-
a

b

c

3. Make accurate drawings of the following triangles :-
(Make rough sketches of the triangles first before drawing them accurately).
a Draw \(\triangle\) PLJ where
\(\mathrm{PL}=9 \mathrm{~cm}, \angle \mathrm{JPL}=55^{\circ}\) and \(\angle \mathrm{PLJ}=65^{\circ}\).
b Draw \(\triangle H M V\) where
\[
H M=6 \mathrm{~cm}, \angle V H M=120^{\circ} \text { and } \angle H M V=25^{\circ} .
\]

\section*{Three Sides}

Shown opposite is a sketch of \(\Delta N R Z\).
To draw it accurately :-

Step 1 :- Draw line NR \(=8 \mathrm{~cm}\)

Step 2 :- Set a pair of compasses to 6 cm , place the compass point on \(R\) and draw a light arc as shown.

Step 3 :- Now set your compasses to 5 cm , place the compass point on N and draw a 2nd light arc.
(Call the point where the 2 arcs meet, \(Z\))

Step 4 :- Finally, use your ruler to join
\(N\) to \(Z\) and \(R\) to \(Z\)

\section*{Exercise 4}
1. Shown is a sketch of \(\triangle\) POW.

Draw it accurately using the following instructions :-
Step 1 :- Draw line \(P O=6 \mathrm{~cm}\)

Step 2 :- Set your compasses to 5 cm , place the compass point on \(O\) and draw a light arc.
Step 3 :- Now set your compasses to 7 cm , place the compass point on \(P\) and draw a \(2 n d\) arc.
Step 4 :- Call this point where the arcs meet \(W\) and join \(W\) to \(P\) and to \(O\).
2. Make accurate drawings of these triangles :-

CfE Book 3b - Chapter 7
b

this is page 70

2 Dimensions

Be able to draw quadrilaterals and regular polygons

Three examples using only a pair of compasses and a straight edge :-

\section*{Bisecting a Line at Right Angles}

We want to find the midpoint of line \(A B\).
Step 1 :- Set your compasses to a size larger than half of \(A B\).

Step 2 :- Draw an arc, centre \(A\) and another arc, centre \(B\), with same radius.
Step 3 :- Join the 2 points (\(C\) and \(D\)) where the arcs intersect.
This line CD will bisect (cut in half) \(A B\) and does so at right angles. (Discuss why).

\section*{Bisecting an Angle}

We want to cut \(\angle \mathrm{PUT}\) in half (bisect it).
Step 1 :- With centre \(U\) and using any radius, draw an arc, cutting PU at Q and UT at R.

Step 2 :- With the same radius as above, draw an arc centre \(Q\) and another, centre R.
These will meet at a point (call it \(X\)).
Step 3 :- Join U to X. This line will cut \(\angle P U T\) in half.

Can you see that UQXR is a rhombus? (Discuss why this is so).

Drawing a \(60^{\circ}\) Angle
Step 1 :- Draw a line KL.
Step 2 :- With radius KL draw an arc centre K.
Step 3 :- Draw a 2nd arc, centre L, with the same radius.

Step 4 :- The 2 arcs intersect at a point \(M\).
Join K to M. \(\left(\angle M K L=60^{\circ}\right)\). (Why ?)

\section*{Exercise 5}
1. Draw a line PQ in your jotter and use a method shown on the previous page to find its mid-point. (i.e. show how to bisect the line PQ)
2. Draw any angle \(A B C\).

Use the method shown earlier to bisect the angle.

3. Draw a line KP, 8 cm long.

Show how to create an equilateral triangle KPR.
4. Draw a line \(C D=7 \mathrm{~cm}\) and make an accurate drawing of rectangle CDEF sketched opposite :-
(No protractor allowed here!)

5.

Draw the same line \(C D=7 \mathrm{~cm}\) and create a rectangle, but this time the diagonal has to be 7 cm .
6. a Start with a line HI \(=8 \mathrm{~cm}\) and create an angle of \(60^{\circ}\). (call it \(\angle G H I\)).

b Now show how to bisect \(\angle G H I\) to create an angle of \(30^{\circ}\).
7. Show how to create the rhombus KLMN shown opposite, using only a ruler and a pair of compasses.

For Question 8 you can use compasses and a ruler - but a NOT a protractor!
8. Make accurate drawings of these two quadrilaterals :-
a

b

\section*{The 3 9 's}

\section*{Revisit - Review - Revise}
1. What is the mathematical name given to these polygon shapes?

b

C

2. Make an accurate drawing of a rectangle with length 8 cm and breadth 5.5 cm .
3. a Make an accurate drawing of triangle \(P Q R\).
b Measure and write down the size of line RQ.

4. a Draw accurately a triangle named \(D E F\) where :-
\[
D E=8.5 \mathrm{~cm} \quad \angle D E F=65^{\circ} \quad \angle F D E=25^{\circ} .
\]
b Measure and write down the size of line DF.
5.

Look at the sketch of triangle UVW.
a Make an accurate drawing of this triangle.
b Measure and mark in the sizes of its angles.
6. Draw a kite with sides \(5 \mathrm{~cm}, 5 \mathrm{~cm}, 8 \mathrm{~cm}\) and 8 cm . The angle between the 2 smaller sides is to be \(110^{\circ}\).
7. a Make a neat, accurate drawing of this trapezium.
b Measure the length of the 4th side.

11 cm

1. Write down two equivalent fractions for :-
a \(\frac{1}{3}\)
b \(\frac{3}{4}\)
c \(\frac{5}{8}\)
d \(\frac{3}{100}\).
2. Work out and simplify where possible :-
a \(\frac{3}{5}+\frac{1}{5}\)
b \(\quad \frac{7}{8}-\frac{3}{8}\)
C \(\frac{1}{3}+\frac{1}{4}\)
d \(\frac{1}{6}+\frac{1}{5}\)
e \(\frac{1}{10}+\frac{1}{2}\)
f \(\frac{1}{3}-\frac{1}{6}\)
g \(\frac{3}{4}+\frac{1}{3}\)
h \(\frac{4}{5}-\frac{1}{2}\)
i \(\frac{3}{4}-\frac{2}{5}\)
j \(\frac{9}{10}-\frac{2}{3}\)
k \(1-\frac{4}{5}\)
l \(\frac{13}{16}-\frac{5}{8}\).
3. Find:-
a \(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\)
b \(\frac{3}{4}+\frac{1}{3}-\frac{2}{5}\)
C \(\quad \frac{3}{5}+\frac{2}{3}-\frac{3}{4}\).
4. Change each of the following into a top heavy fraction :-
a \(2 \frac{1}{5}\)
b \(1 \frac{7}{8}\)
c \(3 \frac{2}{7}\)
d \(5 \frac{9}{10}\).
5. Change each of the following into a mixed number :-
a \(\frac{11}{4}\)
b \(\frac{20}{3}\)
c \(\frac{33}{5}\)
d \(\quad \frac{40}{11}\).
6. Find each of the following, leaving your answer as a mixed number :-
a \(\frac{3}{2}+\frac{4}{3}\)
b \(2 \frac{2}{5}+1 \frac{2}{5}\)
c \(5 \frac{5}{6}-1 \frac{1}{6}\)
d \(3 \frac{1}{4}+4 \frac{1}{5}\)
e \(7 \frac{1}{2}+2 \frac{3}{4}\)
f \(8 \frac{3}{4}-5 \frac{5}{8}\)
g \(9 \frac{7}{8}-4 \frac{1}{2}\)
h \(5 \frac{2}{3}+2 \frac{3}{5}\)
i \(6 \frac{1}{4}-4 \frac{2}{3}\)
j \(10 \frac{2}{7}-8 \frac{3}{4}\)
k \(7-3 \frac{4}{9}\)
l \(15-12 \frac{2}{5}\).
7. We took \(4 \frac{1}{2}\) litres of Cola with us on a picnic.

On returning, we were left with \(1 \frac{2}{3}\) litres.
How much Cola had we consumed?

8.

Rod got his chain and his wife's bracelet valued for insurance purposes.
His chain weighed \(3 \frac{2}{5}\) ounces and the bracelet weighed \(1 \frac{5}{8}\) ounces.
What was the combined weight of the two pieces of jewellery?
9. The perimeter of this rectangle is \(18 \frac{1}{6} \mathrm{~cm}\).

Calculate the length of one of its smaller sides.

Fractions

\section*{Multriplying Fractions}

The rule for multiplying two basic fractions is very simple.
\[
\text { To multiply } \frac{3}{5} \times \frac{4}{7} \rightarrow \frac{3}{5} \times \frac{4}{7}=\frac{3 \times 4}{5 \times 7}=\frac{12}{35}
\]

Example 1 :-
Example 2 :-
\(\frac{3}{4} \times \frac{3}{5}\)
\(=\frac{3 \times 3}{4 \times 5}\)
\(=\frac{9}{20}\)

Example 3 :-
\(\quad \frac{8}{9} \times \frac{3}{4}\)
\(=\frac{24}{36}\)
\(=\frac{2}{3}\)

Be able to multiply one fraction by another fraction

\section*{Basic Rule :-}
- Multiply the 2 numerators.
- Multiply the 2 denominators.
- Simplify where possible.

\section*{Exercise 1}
1. Copy each of the following and complete :-
a
\[
\begin{array}{r}
\frac{3}{4} \times \frac{4}{5} \\
=\frac{3 \times 4}{4 \times 5} \\
=\frac{?}{20}=\frac{?}{?}
\end{array}
\]
b
\(\frac{5}{6} \times \frac{1}{3}\)
\(=\frac{5 \times 1}{6 \times 3}\)
\(=\frac{?}{?}\)
c \(\quad \begin{array}{r}\frac{3}{4} \times \frac{5}{6} \\ =\frac{3 \times 5}{4 \times 6} \\ =\frac{15}{24}=\frac{?}{8}\end{array}\)
2. Multiply the following fractions and simplify (where possible) :-
a \(\frac{4}{5} \times \frac{2}{3}\)
b \(\quad \frac{5}{6} \times \frac{7}{10}\)
c \(\quad \frac{3}{5} \times \frac{4}{9}\)
d \(\quad \frac{4}{7} \times \frac{5}{6}\)
e \(\frac{5}{8} \times \frac{4}{5}\)
f \(\frac{7}{12} \times \frac{6}{7}\)
\(9 \quad \frac{11}{16} \times \frac{2}{3}\)
h \(\quad \frac{2}{9} \times \frac{9}{10}\)
i \(\frac{4}{5} \times \frac{3}{5} \times \frac{1}{2} \quad\) j \(\quad \frac{4}{7} \times \frac{3}{8} \times \frac{1}{2}\)
k \(\quad \frac{3}{10} \times \frac{3}{5} \times \frac{3}{8}\)
1 \(\frac{5}{6} \times \frac{2}{5} \times \frac{11}{16}\).
3. Calculate the area of a rectangular sheet of metal measuring \(\frac{5}{6}\) metre by \(\frac{3}{8}\) metre.
4. I spent \(\frac{3}{4}\) of my paper round wage in a shop. Of that, \(\frac{2}{5}\) of it went on sweets. What fraction of my wage was spent on sweets? (i.e. \(\frac{2}{5} \times \frac{3}{4}\)).
5.

\section*{A cuboid has dimensions as shown.}

Find the volume of this cuboid in cubic metres.

Dealing with Mixed Fractions:- \(\quad\left(3 \frac{1}{2} \times 2 \frac{1}{3}\right)\)
Simple Rule :- You MUST CHANGE mixed fractions into top-heavy fractions first.
Example 4 :-
\[
\begin{aligned}
& 3 \frac{1}{2} \times 2 \frac{1}{3} \\
= & \frac{7}{2} \times \frac{7}{3} \\
= & \frac{49}{6} \\
= & 8 \frac{1}{6}
\end{aligned}
\]
Example 5 :-
\[
\begin{aligned}
& 4 \frac{3}{4} \times 1 \frac{1}{3} \\
= & \frac{19}{4} \times \frac{4}{3} \\
= & \frac{76}{12} \\
= & \frac{19}{3}=6 \frac{1}{3}
\end{aligned}
\]
6. Copy and complete the following :-
a
\(\quad 3 \frac{1}{2} \times 1 \frac{1}{3}\)
\(=\frac{7}{2} \times \frac{4}{3}\)
\(=\frac{28}{6}\)
\(=4 \frac{\pi}{6}=4 \cdots\)
b
\(5 \frac{2}{3} \times 1 \frac{1}{4}\)
\(=\frac{17}{3} \times \frac{5}{4}\)
\(=\frac{85}{12}\)
\(=7 \cdots\)
\(\cdots\)
c
\(2 \frac{2}{3} \times 1 \frac{3}{4}\)
\(=\frac{\cdots}{3} \times \frac{\cdots}{4}\)
\(=\frac{\cdots}{12}\)
\(=4 \underset{\cdots}{\cdots}=4 \underset{\cdots}{\cdots}\).
7. Do the following fractions in the same way (simplify wherever possible) :-
a \(3 \frac{1}{3} \times 2 \frac{1}{2}\)
b \(3 \frac{1}{5} \times 3 \frac{1}{2}\)
c \(4 \frac{1}{3} \times 1 \frac{3}{4}\)
d \(1 \frac{2}{7} \times 3 \frac{2}{3}\)
e \(2 \frac{1}{4} \times 1 \frac{3}{5}\)
f \(1 \frac{5}{6} \times 4 \frac{1}{2}\)
\(9 \quad 3 \frac{3}{10} \times 2 \frac{1}{3}\)
h \(1 \frac{1}{2} \times 1 \frac{2}{5}\)
i \(3 \frac{2}{3} \times 1 \frac{3}{4}\)
j \(4 \frac{1}{2} \times 2 \frac{4}{5}\)
k \(3 \frac{1}{2} \times 10 \frac{6}{7}\)
l \(6 \frac{1}{2} \times \frac{4}{5}\).
8. A rectangular piece of metal measures \(1 \frac{1}{3}\) inches wide by \(4 \frac{1}{2}\) inches long. Calculate its area.
(note " - is the old symbol used to stand for "inch".)

9.

A one metre length of a kitchen worktop weighs \(3 \frac{3}{4} \mathrm{~kg}\).
What would a \(2 \frac{1}{2}\) metre length of the worktop weigh ?
10. Alice's mum found that she weighed \(1 \frac{2}{3}\) times as much as Alice.

If Alice weighed \(31 \frac{1}{2}\) kilograms, what did her mum weigh ?
11. A music "jingle" on the radio lasted \(12 \frac{1}{2}\) seconds.

The new replacement jingle lasts \(1 \frac{1}{3}\) times as long as this.
For how long does the new jingle last?
12. Find the volume of a cuboid with dimensions \(\frac{1}{4} \mathrm{~m}\) by \(\frac{2}{3} \mathrm{~m}\) by \(1 \frac{1}{2} \mathrm{~m}\).

\section*{Be able to divide}
a fraction by a fraction
=> Instead, we change a "division" problem to a "multiplication" one.
\(\Rightarrow \frac{2}{3} \div \frac{3}{5}\) is the same as \(\frac{\frac{2}{3}}{\frac{3}{5}}\)
\(\Rightarrow\) We can simplify the denominator by multiplying both it and the numerator, by \(\frac{5}{3}\).
\[
\begin{aligned}
& \frac{\frac{2}{3}}{\frac{3}{5}} \text { becomes } \frac{\frac{2}{3}}{\frac{3}{5}} \times\left(\frac{5}{3}\right) \\
& =\frac{\frac{10}{9}}{\frac{15}{15}}=\frac{\frac{10}{9}}{1}=\frac{10}{9}=1 \frac{1}{9}
\end{aligned}
\]
\[
\text { Since } \frac{\frac{5}{3}}{\frac{5}{3}}=1
\]
this does not alter the answer.

This becomes easier if we miss out the bottom line which always becomes 1 .
\[
\frac{2}{3} \div \frac{3}{5} \text { becomes } \frac{2}{3} \times \frac{5}{3}=\frac{10}{9}=1 \frac{1}{9} \text {. }
\]
* Rule :- instead of dividing by \(\frac{a}{b}\), => multiply by \(\frac{b}{a}\) instead.
\[
\text { Example :- } \frac{5}{8} \div \frac{2}{3}=\frac{5}{8} \times \frac{3}{2}=\frac{15}{16} \text {. }
\]

\section*{Exercise 2}
1. Copy each of the following and complete :-
a
\(3 \div \frac{3}{10}\)
\(=\frac{3}{4} \times \frac{10}{3}\)
\(=\frac{?}{12}=\frac{?}{4}=2 \frac{?}{?}\)
b
\(\frac{1}{6} \div \frac{2}{3}\)
\(=\frac{1}{6} \times \frac{3}{2}\)
\(=\frac{?}{12}=\frac{?}{?}\)
C
\(\frac{3}{4} \div \frac{5}{6}\)
\(=\frac{3}{4} \times \frac{6}{5}\)
\(=\frac{?}{20}=\frac{?}{?}\).
2. Divide the following fractions and simplify (where possible) :-
a \(\frac{2}{5} \div \frac{2}{9}\)
b \(\quad \frac{5}{6} \div \frac{5}{12}\)
c \(\frac{3}{7} \div \frac{6}{7}\)
d \(\quad \frac{3}{5} \div \frac{4}{5}\)
e \(\frac{5}{12} \div \frac{5}{6}\)
f \(\frac{7}{12} \div \frac{7}{8}\)
\(9 \quad \frac{11}{16} \div \frac{5}{8}\)
h \(\frac{2}{9} \div \frac{1}{6}\)
i \(\quad \frac{5}{9} \div \frac{3}{5}\)
j \(\frac{7}{16} \div \frac{3}{10}\)
k \(\quad \frac{8}{9} \div \frac{3}{4}\)
l \(\frac{1}{5} \div \frac{1}{7}\).
3. a How many \(\frac{3}{10}\) 's are there in \(\frac{2}{5}\) 's?
b How many pieces of cloth \(\frac{1}{16}\) metre long, can I cut from a piece \(\frac{3}{4}\) metre long?

Division of Mixed Fractions:- \(\quad\left(3 \frac{1}{2} \div 2 \frac{1}{3}\right)\)
Rule :- \(\quad\) You MUST CHANGE mixed fractions to be top-heavy fractions first,
- then use the rule "turn the 2nd fraction upside down and multiply".

Example 1 :-
\[
\begin{aligned}
& 3 \frac{1}{2} \div 2 \frac{1}{3} \\
= & \frac{7}{2} \div \frac{7}{3} \\
= & \frac{7}{2} \times \frac{3}{7} \\
= & \frac{21}{14}=1 \frac{7}{14}=1 \frac{1}{2}
\end{aligned}
\]

Example 2 :-
\[
\begin{aligned}
& 5 \frac{3}{4} \div 1 \frac{2}{3} \\
= & \frac{23}{4} \div \frac{5}{3} \\
= & \frac{23}{4} \times \frac{3}{5} \\
= & \frac{69}{20}=3 \frac{9}{20}
\end{aligned}
\]
4. Copy and complete the following :-
a \(2 \frac{1}{4} \div 1 \frac{1}{5}\)
\(=\frac{9}{4} \times \frac{?}{6}\)
\(=\ldots=\ldots .\).
b \(4 \frac{2}{3} \div 1 \frac{2}{5}\)
\(=\frac{14}{3} \div \frac{7}{5}\)
\(=\frac{14}{3} \times \frac{?}{?}\)
\(=\ldots . . .=\ldots\).
c \(2 \frac{2}{3} \div 3 \frac{1}{5}\)
\(=\frac{?}{3} \div \frac{?}{5}\)
\(=\)....
5. Divide the following fractions in the same way (simplify if possible) :-
a \(4 \frac{1}{3} \div 1 \frac{1}{2}\)
b \(\quad 4 \frac{1}{5} \div 3 \frac{1}{2}\)
c \(\quad 2 \frac{1}{3} \div 1 \frac{3}{4}\)
d \(\quad 3 \frac{3}{7} \div 2 \frac{2}{3}\)
e \(2 \frac{1}{4} \div 1 \frac{3}{5}\)
f \(\quad 7 \frac{1}{2} \div 1 \frac{1}{4}\)
\(9 \quad 1 \frac{3}{5} \div 3 \frac{2}{3}\)
h \(\quad 17 \frac{1}{2} \div 1 \frac{3}{7}\)
i \(\quad 5 \frac{1}{3} \div 1 \frac{3}{5}\)
j \(\quad 9 \frac{1}{2} \div 1 \frac{1}{4}\)
k \(\quad 6 \div 2 \frac{1}{2}\)
\(18 \div \frac{2}{3}\).
6. The area of this piece of card is \(10 \frac{1}{2}\) square inches. It is \(1 \frac{2}{3}\) inches wide. Calculate its length.
7. A \(4 \frac{1}{2}\) metre length of guttering weighs \(10 \frac{1}{8}\) kilograms.
a What does 1 metre of the guttering weigh ?
b What is the weight of a \(1 \frac{1}{4}\) metre guttering?
8. My fir tree is \(1 \frac{3}{4}\) times as tall my elm tree.

If my fir tree is \(4 \frac{1}{4}\) metres tall, how tall is my elm tree?
9.

\(2 \frac{1}{4}\) laps of the park took Mr Bridger \(12 \frac{1}{2}\) minutes to walk.
How long, on average, did each lap take?
1. Change to a mixed number :-
a \(\frac{24}{5}\)
b \(\quad \frac{42}{8}\).
2. Rewrite as a top-heavy fraction :-
a \(\quad 4 \frac{5}{6}\)
b \(\quad 10 \frac{2}{7}\).
3. How many \(\frac{1}{3}\) pizza slices can by sold from \(6 \frac{2}{3}\) pizzas ?
4. Copy and complete :-
a \(\frac{3}{7}+\frac{2}{7}\)
b \(\frac{1}{2}+\frac{3}{4}\)
c \(\quad \frac{5}{6}-\frac{1}{6}\)
d \(\quad 2 \frac{3}{5}+1 \frac{4}{5}\)
e \(\quad 7 \frac{3}{5}-5 \frac{1}{3}\)
f \(\quad 7 \frac{1}{2}-\frac{2}{3}\)
\(9 \quad 11 \frac{7}{8}-9 \frac{2}{3}\)
h \(11 \frac{2}{3}-10 \frac{11}{12}\).
5. Copy and complete :-
a \(\frac{1}{2} \times \frac{1}{3}\)
b \(\quad \frac{8}{9} \times \frac{3}{5}\)
C \(\quad 3 \frac{1}{2} \times 2 \frac{1}{5}\)
d \(\frac{5}{8} \div \frac{1}{4}\)
e \(\frac{11}{12} \div \frac{2}{5}\)
f \(3 \frac{3}{4} \div 2 \frac{2}{3}\)
g \(\quad 13 \frac{1}{2} \div 1 \frac{4}{5}\)
h \(\frac{1}{4} \div 2 \frac{1}{4}\).
6. Before her diet, Mrs Barbour weighed \(11 \frac{1}{2}\) stones. She lost \(2 \frac{3}{4}\) stones on her diet.

What was her new weight?

7.

A hardware shop sells lengths of heavy duty chain. 1 metre of the chain weighs \(2 \frac{4}{5} \mathrm{~kg}\).

What will the weight of a \(1 \frac{1}{4}\) metre chain be?
8. An empty wooden crate weighs \(4 \frac{7}{8} \mathrm{~kg}\).

It holds 6 large cartons of rice.
Each carton weighs \(1 \frac{3}{4} \mathrm{~kg}\).
Calculate the total weight of the crate and cartons.

9.

The area of this rectangle is \(7 \frac{1}{5} \mathrm{~cm}^{2}\). Its breadth is \(1 \frac{1}{3} \mathrm{~cm}\).

Calculate its length.
10. Find:- \(\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times \frac{5}{6} \times \frac{6}{7} \times \frac{7}{8}\).

\section*{The 3 9 's}
1. Change to a mixed number :-
a \(\frac{17}{4}\)
b \(\quad \frac{49}{9}\)
c \(\frac{121}{2}\)
d \(\quad \frac{67}{7}\).
2. Rewrite as a top-heavy fraction :-
a \(\quad 1 \frac{5}{6}\)
b \(8 \frac{2}{7}\)
c \(\quad 5 \frac{2}{3}\)
d \(\quad 11 \frac{7}{9}\).
3. How many \(\frac{1}{3}\) pizza slices can by sold from \(4 \frac{2}{3}\) pizzas?

4. Multiply the following fractions and simplify fully (where possible) :-
a \(\frac{4}{5} \times \frac{2}{3}\)
b \(\quad \frac{5}{8} \times \frac{7}{10}\)
c \(\quad \frac{3}{5} \times \frac{5}{9}\)
d \(\quad \frac{5}{7} \times \frac{3}{5} \times \frac{1}{2}\)
e \(2 \frac{1}{3} \times 4 \frac{1}{2}\)
f \(3 \frac{1}{5} \times 1 \frac{1}{2}\)
g \(\quad 7 \frac{1}{3} \times 3 \frac{3}{4}\)
h \(\quad 7 \frac{1}{2} \times \frac{4}{5}\).
5. Divide the following fractions and simplify fully (where possible) :-
a \(\frac{2}{3} \div \frac{2}{9}\)
b \(\frac{5}{6} \div \frac{5}{12}\)
c \(\frac{3}{14} \div \frac{6}{7}\)
d \(\quad \frac{3}{5} \div \frac{4}{5}\)
e \(2 \frac{1}{3} \div 3 \frac{1}{2}\)
f \(\quad 4 \frac{1}{5} \div 1 \frac{1}{2}\)
\(9 \quad 3 \frac{1}{3} \div 2 \frac{3}{4}\)
h \(5 \div \frac{2}{3}\).
6. a Calculate the area of a rectangle measuring \(4 \frac{1}{4} \mathrm{~cm}\) by \(1 \frac{3}{5} \mathrm{~cm}\).
b How many \(\frac{1}{3}\) metre lengths of wood can I cut from a \(10 \frac{1}{2}\) metre length?
c Mia 's mum weighs \(3 \frac{1}{2}\) times as much as Mia, who weighs \(16 \frac{3}{4} \mathrm{~kg}\).
What is the weight of her mum?
7. a A cube has each of its sides \(3 \frac{1}{3} \mathrm{~cm}\).
 Calculate the volume of the cuboid.
b A square has side \(2 \frac{2}{3}\) centimetres.
A rectangle has a perimeter with the same numerical value as the area of the square.
The rectangle has length equal to three times its breadth.
Find the length of the rectangle.

1. Write down the coordinates of all the points :-
a from \(A\) to \(G\)
b that have the same \(y\) coordinate
c that have the same \(x\) coordinate
d that have the same \(x\) and \(y\) coordinate
e 3 along and 2 up from \(G\)
f 3 back and 1 down from \(B\).

2. Copy the coordinate grid above and plot the following points :-
\(L(4,3), \quad M(2,4), \quad N(0,3), \quad O(0,0), \quad P(3,4), \quad Q(2,1 \cdot 5)\).
3. a Write down all the coordinates from \(Q\) to \(Z\).
b Write down all the points that have the same y coordinate.
c Write down all the points that have the same \(x\) and \(y\) coordinate.
d TVZA are the vertices of a rectangle. State the coordinates of \(A\).
e YZUB are the vertices of a parallelogram. State the coordinates of B .

4. a Draw a set of axes (from -5 to 5).
b Plot the following points on your grid :-
\[
C(5,3), \quad D(-1,5), \quad E(-3,-1), \quad F(4,-2), \quad G(-5,0), \quad H(0,-4), \quad I(-5,-5) .
\]
5. a Draw a set of axes (from -5 to 5).
b Plot the triangle with vertices of \(P(0,4), Q(4,3)\) and \(R(5,-2)\).
c Reflect triangle PQR over the :-
(i) the \(y\) axis
(ii) \(\times\) axis.
6. Repeat question \(5 a\) and \(5 c\) for the quadrilateral with vertices :-
\(M(-4,-3), \quad N(-3,1), \quad O(0,0)\) and \(P(1,-3)\).

\section*{Enlarging \& Reducing Shapes}

Be able to enlarge or reduce the size
of a shape

If you are asked to make a two-times enlargement of a shape, simply double all of its sizes.
e.g. a rectangle measuring 3 cm by 6 cm will become a 6 cm by 12 cm rectangle.

Similarly, if a three times reduction is made on the 3 cm by 6 cm rectangle, it will become a 1 cm by 2 cm rectangle, (\(\div 3\)).

\section*{Exercise 1}
1. Make a two-times enlargement of these shapes, each large box being 1 cm by 1 cm .
a

b

c

d

e

f

h

i

j

2. Make enlargements of the following using the given scale :-
a

make a three times enlargement
c

make a three times enlargement
e
reduce this shape to one third of its size (a three times reduction)

b

make a four times enlargement

reduce this shape to half its size
(a two times reduction)

reduce this shape to half its size

\section*{Using a Scale Drawing to Find a Length}

This is a map of Durah Island, drawn to scale.
It has been drawn to a scale of :-
\[
1 \mathrm{~cm}=8 \mathrm{~km} .
\]

What this simply means is that every time you measure 1 cm on the diagram, in real life it represents 8 kilometres.

If you measure the distance from Benalder to Caulford on the map, you will find it is 4 centimetres.
\(\Rightarrow\) the real distance between the 2 towns is \(4 \times 8=32\) kilometres.

RULE :- To find the real distance between 2 places :-
- Measure the distance on the map using a ruler,
- Multiply your measurement by the "scale" value.

Exercise 2 A ruler and a calculator are required for ALL exercises.
1. This scale drawing of Mr Able's allotment is drawn to a scale of :-
\[
1 \mathrm{~cm}=4 \mathrm{~m}
\]
a Calculate the real length of the allotment.
b Now calculate its real breadth.

2.

This truck has been drawn using the scale :-
\[
1 \mathrm{~cm}=1.5 \mathrm{~m} .
\]
a Calculate the real length of the truck.
b Calculate its real height.
3. This window frame has been drawn to a scale of :1 cm represents 20 cm .
a Calculate the real length of the window.
b Calculate the real height of the window.

4. This drawing of a garden gate is done using a scale :-

1 cm represents 25 cm .
Calculate :-
a the real width of the gate.

3 cm

b the real height of the gate.
c the real length of the diagonal support bar.
5.

This bed has been drawn to a scale of :1 cm represents 18 cm .
a Calculate the real length of the bed.
b Calculate the real width of the bed.
6. Shown is a scale drawing of Florida Line-dance Hall.

The scale is :- \(1: 400\). (i.e. \(1 \mathrm{~cm}=400 \mathrm{~cm}=4 \mathrm{~m}\)).
a Measure the length and breadth of the dance hall with your ruler.
b What is the real length and breadth of the hall, in metres.

c Duncan enters by the door and heads straight towards Maisie, dancing in the far corner. How many metres has Duncan to walk?
7.

The map opposite shows 4 islands in a stretch of water between two countries.
a Use your ruler to measure the distance from Somner to Welden.
b Use the scale of the map to work out the real distance between the 2 islands.
c Measure the distance between the following pairs of islands and then use the given scale to calculate the real distance between them :-
(i) Somner and Rendall
(ii) Porton and Welden.

\section*{Exercise 3}
1. Here is a sketch of a kitchen.

Make an accurate scale drawing of the kitchen using the simple scale of :-
\[
1 \mathrm{~cm}=1 \text { metre. }
\]
2.

4 m

This is a sketch of the Brodie Park Putting Green. Below are the instructions as to how to make an accurate scale drawing of the putting green using a scale of :-
\[
\text { 1: 300. (i.e. } 1 \mathrm{~cm}=300 \mathrm{~cm}=\ldots \mathrm{m} \text {). }
\]
a If 3 metres is represented by 1 centimetre in the scale drawing
=> 30 metres (length) will be represented by \((30 \div 3)=10\) centimetres. Start your scale drawing by drawing a line 10 centimetres long.
b Also => 21 metres (breadth) will be represented by \((21 \div 3)=\ldots . \mathrm{cm}\).
Now finish your scale drawing by drawing the width centimetres long and completing the rectangular putting green.
3. This car park measures 25 metres by 45 metres. Make a scale drawing of the car park using a scale :-
\[
1 \mathrm{~cm} \text { represents } 5 \mathrm{~m} \text {. }
\]

4.
 The foot bath measures 80 centimetres by 60 centimetres. Make a scale drawing of the foot bath using a scale :-

1 cm represents 10 cm .
5. This light aircraft runway at Leuchars measures 240 metres by 40 metres. The scale is \(1: 2000\).
a What does 1 cm represent in metres?
b Make a scale drawing of the runway.

6. a Make a scale drawing to show this 12 m tall tower as it is viewed from point \(A, 5\) metres from the base of the tower.
The scale is \(1 \mathrm{~cm}=2 \mathrm{~m}\).
b Measure the length from point \(A\) to the top of the tower.
c What is the real length from point \(A\) to the top of the tower?

7.

The wooden roof support for a shed is shown. It is in the shape of a right angled triangle.
a Make a scale drawing of the support, using the scale :-

\[
1 \mathrm{~cm} \text { represents } 9 \mathrm{~cm} .
\]
b Measure the sloping line on your drawing and calculate the real length of the sloping roof to the nearest centimetre.
8. A house has an "L-shaped" living room.

Not all of the actual sizes of the room are shown.
a Write down the two sizes which are missing.
b Make a scale drawing of the room, using the scale :-

1 cm represents 3 m .

9.

The blue garage roof is in the shape of an isosceles triangle.
a Make a scale drawing of the roof using a scale :-
\[
1: 50 \quad \text { (What does } 1 \mathrm{~cm} \text { represent in metres)? }
\]
b Measure one of the sloping lines and calculate the real length of the sloping garage roof on one side.
10. Here is a sketch of the door side of another garden shed.

Make a scale drawing of it, including the door, using the scale :-

1 cm represents 25 cm .

\section*{Making Scale Drawings Using a Protractor}

Be able to make scale

A ruler and a protractor are required for this exercise.

\section*{Example :-}

The sketch shows a flagpole supported by a wire (AC).
The distance from \(A\) to \(B\) is 16 metres and \(\angle B A C=50^{\circ}\).
1. Follow the instructions below carefully in order to make an accurate scale drawing using a scale of :-
\[
1 \mathrm{~cm}=2 \text { metres. }
\]

2. Use your drawing to calculate the real height of the flagpole.
\[
\begin{aligned}
& \text { Step } 1 \text { :- Scale } 2 \mathrm{~m}=1 \mathrm{~cm} \\
& \Rightarrow 16 \mathrm{~m} \text { becomes }(16 \div 2)=8 \mathrm{~cm} \text {. } \\
& \Rightarrow \text { draw } A B=8 \mathrm{~cm}
\end{aligned}
\]

Step 2 :- Draw a light line straight up from \(B\) to show the flagpole.

Step 3 :- Put your protractor on \(A\) and mark out an angle of \(50^{\circ}\).

Step 4 :- Draw the \(50^{\circ}\) line from \(A\) till it crosses the line drawn up from B.

Step 5 :- Measure the length

from \(B\) to \(C\), where the 2 lines cross (in cm).

Step 6 :- Multiply this length by the scale (\(x 2\)) to obtain the real height of the flagpole in metres.
\[
B C=9.5 \mathrm{~cm}
\]

Real height of pole \(=9.5 \times 2=19 \mathrm{~m}\)

\section*{Exercise 4}
1. a Make a scale drawing to show this tree as it is viewed from point \(P\).

Use a scale of :- \(1 \mathrm{~cm}=2\) metres
- Start by drawing the line representing PQ.
- Draw a feint line straight up from \(Q\).
- Use your protractor to measure out \(\angle \mathrm{P}=40^{\circ}\).
b Measure, in centimetres, the height of the tree in your drawing.
c Calculate the height of the real tree.
2. James is standing 18 metres from the medieval building tower. The angle between James' feet and the top of the tower is \(60^{\circ}\). a Make a scale drawing of the sketch.
\[
\text { scale :- } 1 \mathrm{~cm}=3 \text { metres }
\]
b Calculate the height of the real tower.

3. For each of the following :-
(i) Make a scale drawing using the given scale.
(ii) Calculate the real height of the given object.
a

c

4. The picture shows a photographer bravely taking photos of a giant alien cowboy.
a Draw a triangle using the scale :-
\[
1 \mathrm{~cm}=2 \text { metres. }
\]
b Measure the height of the alien in your figure and calculate its real height.

5.

Shown is one of the modern buildings on the main street in the village of Brimley.
a Make a scale drawing to represent the height of the building, using a scale :-
\[
1 \mathrm{~cm}=2.5 \mathrm{~m} .
\]
b Measure the height of the building in your scale drawing and calculate its real height.
6. The sketch shows the journey a cargo ship makes when it delivers supplies to the islands.
Yoar Island is due West of the Mainland and Boar Island is South of Yoar.
a Draw a triangle to scale, showing the ship's journey.
\[
\text { scale } 1 \mathrm{~cm}=1.5 \mathrm{~km} \text {. }
\]
b Measure the distance between the two islands in centimetres and calculate
 the real distance between them in kilometres.
7.

\footnotetext{
Duns General
}

Two helicopters set off from the roof of Duns Hospital.
One of them heads off on a course due East.
The sketch shows where they are after 10 minutes.
The 2nd helicopter is now due North of the 1st one.
A scale of 1:100000 is to be used to represent it.
a How many kilometres does 1 cm represent?
b Make a scale drawing showing the paths of both helicopters.
c Calculate how far apart the two aircraft are at the end of the 10 minutes.

A ruler and a protractor are required for this exercise.

\section*{Be able to create \\ scale drawings}

\section*{You should already know :-}
- the points of a compass and their 3 figure bearings

- that bearings are measured clockwise from the North and always have 3 figures
- how to read bearings and measure them using a protractor.

Later in this exercise we combine all three to make scale drawings involving directions and bearings.

\section*{Exercise 5}
1. Write down in which direction you end up heading when travelling :-
a North, then make a \(45^{\circ}\) turn clockwise.
b South East, then make a \(90^{\circ}\) turn clockwise.
c South, then make a \(225^{\circ}\) turn anti-clockwise.
d North West, then make a \(315^{\circ}\) anti-clockwise.
2. Write each of the following compass directions as a 3 figure bearing :-
a South
b North East
c West
d South East
e North
f East
9 North West
h South West.
3. For each of these directions, write down its 3 figure bearing :-
a

b

c

4. Using a protractor, measure and write down the 3 figure bearing for these directions :-
a

b

c

5. Use your protractor to draw a 3 figure bearing of :-
a \(090^{\circ}\)
b \(140^{\circ}\)
c \(230^{\circ}\)
d \(310^{\circ}\).
6. A cruise liner and a tall-ship leave port \((P)\) at the same time.

The cruise liner travels 60 kilometres north east.
The tall-ship sails 30 kilometres south east.
a Make a scale drawing of the two journeys.
\[
\text { scale } 1 \mathrm{~cm}=10 \mathrm{~km}
\]
- start by marking a point on your page to show \(P\)
- draw in the north-south and east-west lines through \(P\) - use your protractor to show \(45^{\circ}\) from north ie N.E.
- use your ruler to show the cruise liner's journey path - repeat for the tall-ship's journey

b Measure the distance between the two ships, in centimetres.
c Now calculate the real distance between them, in kilometres.
7.

Two holiday flights leave Los Angeles Airport in USA. One flies East for 200 kilometres.

The other flies South West for 280 kilometres.
a Make a scale drawing of both flights.
\[
\text { scale } 1 \mathrm{~cm}=40 \mathrm{~km}
\]
b Measure the distance between the two planes, in centimetres.
c Now calculate the real distance between the two planes, in kilometres.
8. This sketch highlights a journey made by the old aircraft carrier, Ark Royale.
It sailed for 35 km on a bearing of \(050^{\circ}\) from Bearl Harbour to Mogri Island.

From there, it sailed on a bearing of \(120^{\circ}\) for 30 km to Habana.
a Make a scale drawing showing this route taken by the Ark Royale.

b Measure the distance from Bearl Harbour to Habana on your scale drawing.
c Calculate the distance the ship had to travel to return to Bearl Harbour from Habana.
9. An orienteer begins a competition by heading off on a bearing of \(070^{\circ}\) towards Checkpoint 1 . When he arrives, on what bearing must he then set off in to return directly to his starting point ?

\section*{The 3 9 's}

\section*{Revisit - Review - Revise}
1. Write the 3 figure bearing representing :-
a South West
b South East
c North East.
2.
 A toy school bus has been made to a scale :- 1 cm to 1.5 m . If the length of the toy bus is 6 cm , what is the length of the real school bus?
3. The scale drawing shows the relative position of two petrol stations on a motorway.
a Measure the distance between them on the drawing.
\(b\) The scale of the drawing is :- \(1: 100000\).
Calculate the real distance between the petrol stations, in kilometres.

4. a Make a scale drawing of this sketch of a lighthouse.
```

Scale - 1 cm - 20 metres

```
b Determine the real height of the lighthouse.

5. A helicopter is used to take patients from a medical centre on a small island to the hospital on the mainland.

The bearing of the hospital from the medical centre is \(060^{\circ}\).

What is the bearing of the medical centre from the hospital ? (a sketch should help)
6. A ship leaves Denham Harbour. It sails for 90 kilometres on a bearing of \(055^{\circ}\) to Buick Island.
It then sails from Buick Island for 60 km on a bearing of \(135^{\circ}\) to Capa Point.
a Make a scale drawing showing the two stages of the trip.
\[
\text { scale } 1 \mathrm{~cm}=10 \mathrm{~km} \text {. }
\]
b Measure the distance from Denham Harbour to Capa Point in centimetres.

c Calculate the real distance from Denham Harbour to Capa Point, in kilometres.
7. Draw a neat 2 times enlargement of this shape.

Each box is a 1 centimetre square.

This shape is not drawn to scale.
Make an accurate drawing of the shape with one quarter of its given dimensions.
9. This cathedral has been drawn with a scale of :-

1 cm represents 12 metres.
Find the height of the real cathedral.

10.

A model of a dinosaur is to be built \(\frac{1}{500}\) of its real life size.
The actual dinosaur is 15 metres tall.
What will the height of the model be, in centimetres?
11. What must the reduction scale factor have been in this diagram?

12. A photograph is taken of this scarecrow.

The photograph is an eighth of the actual size.
Calculate the values of \(w\) and \(h\).

1. In a butcher's shop window there are 103 mince pies, 79 curry pies and 58 steak pies. Write down the ratio of :-

a curry pies : mince pies b
b steak pies: curry pies
c mince pies: steak pies d curry pies : total number of pies.

2. Write down each ratio in its simplest form :-
a pentagons: hexagons
b squares: pentagons
c squares: rectangles
d quadrilaterals : hexagons

e quadrilaterals: other shapes
3. Write each of these ratios in its simplest form :-
a 1 centimetre: 1 metre
b 1 second: 1 minute
d 30p: £6
e 1 day:1 year
c 10 minutes : 1 hour
g \(£ 2 \cdot 50: £ 10\)
h days in February 2012 : days in June 2012.
4. In a week Rhona earns \(£ 450\), Mary earns \(£ 500\) and Vicky earns \(£ 650\). Write down each of the following ratios of wages in their simplest form :-

a Rhona: Vicky
b Mary: total wages
c Vicky: Mary : Rhona.
5.

In Seaworld Centre, the ratio of sharks to seals is \(3: 5\).
a If there are 27 sharks, how many seals must there be ?
b If there are 40 seals, how many sharks are there?
6. Melanie is making a model ship to a scale of \(1: 50\).
a Her model is 30 cm in height. What is the height of the real ship, in metres?
b The real ship is 25 metres long. What length, in cm , should her model be?

7.

a Share 27 rollos between Brain and Helen in the ratio of \(2: 1\) so that Brian gets the larger share.
b If the rollos are shared in the ratio 5:4 with Brian still getting the larger share, how many more rollos will Helen get than in part a ?

\section*{Proportion}

\section*{Proportional Division}

Be able to share in any given ratio

Bill and Ben share a prize of \(£ 400\) in a ratio of \(3: 5\).
How much will each receive?
Step 1 :- Since the ratio is \(3: 5\), there are \((3+5)=8\) shares
Step 2 :- Each share is worth (\(£ 400 \div 8\)) = £50
Step 3 :- Bill has 3 shares \((3 \times £ 50)=£ 150\)
Ben has 5 shares \((5 \times £ 50)=£ 250\)
(Check that the total for Ben and Bill is \(£ 400\)).

\section*{Exercise 1}
1. Share \(£ 2000\) between Sal and Seth in the ratio \(2: 3\).

Copy and complete : -
\[
\begin{aligned}
& \text { Total number of shares }=2+3=\underline{5} \\
& \text { Each share }=£ 2000 \div \underline{5}=£ 400 \\
& \text { Sal has } 2 \text { shares }=2 \times £ \ldots . .=£ \ldots . . \\
& \text { Seth has } 3 \text { shares }=3 \times £ \ldots . .=£ \ldots . .
\end{aligned}
\]
(check total is \(£ 2000\)).
2. Share \(£ 36000\) between James and Pauline in the ratio \(2: 7\).
(Show all your working and remember to check your total comes to \(£ 36000\)).
3. Show all your working for each of the following :-
a Share \(£ 45000\) between Peter and Paul in the ratio 4:11.
b Share \(£ 12000\) between Anne and Tom in the ratio 7:5.
c Share \(£ 8.60\) between Gary and Dennis in the ratio 1:3.
d Share \(€ 7140\) between Pieter and Helena in the ratio 4:3.

e Share one million pounds between Addy and Steve in the ratio 13:7.
4.

Each week Ed and Edie share a \(£ 16\) lottery ticket cost. Ed pays \(£ 12\) and Edie pays \(£ 4\).
a Write the ratio of how much they pay in simplest form.
b Last week their ticket won \(£ 2400\).
How much money should each receive?
5. Beth (age 12) and Joshua (age 8) are left \(£ 100000\) in their Gran's will.

The money is to be shared between Beth and Joshua in the ratio of their ages.
How much should Joshua receive from his Gran's will ?
6.

Sam and Simon are in the final of a hot-dog eating contest. They will share the \(£ 600\) prize money in the ratio of how many hot-dogs they each eat!
Sam eats 14 hot-dogs. Simon eats 16 hot-dogs.
How much more prize money did the winner receive than the runner-up?
7. a Share \(£ 600\) amongst \(\mathrm{Al}, \mathrm{Bo}\) and Cal in the ratio \(1: 2: 3\)
b Share \(£ 1000\) amongst Addison, Bronte and Cairn in the ratio \(1: 3: 6\).
c Share \(\$ 600\) amongst Tam, Sam and Pam in the ratio \(4: 5: 11\).
8.

A Fifty kilometre triathlon is to be held tomorrow.
Each contestant will run, then swim and then cycle distances that are in the ratio \(2: 1: 7\).

How far will each contestant :-
a run
b swim
c cycle?
9. The new Up's \& Downs Theatre show has a 2 hour running time.

It is split into 3 timed sections in a ratio of \(5: 2: 3\).
Write down the times of each section, in minutes.

10.

A fruit stall is set up in Market Square.
The ratio of apples: oranges : pears is \(5: 8: 2\).
There are 64 oranges.
How many pieces of fruit are there?
11. A drinks dispenser is programmed to give 35 litres of orange juice to three children each week in the ratio of their weights.

Sebastian is half Henry's weight.
Timmy is half Sebastian's weight.
Henry weighs 40 kilograms.
How much orange juice will each child be given in a week?
12.

Two litres of Summer Punch are poured into three different punch bowls. The first bowl holds 200 ml .

The 2nd bowl hold four times as much as the 1st bowl.
Find the ratio of punch per bowl for the 3 bowls.

If you know the total cost of several items, you can easily find the cost per item.

Example :- The cost of 5 pies is \(£ 4.00\).

The cost of 1 pie \(=(£ 4 \cdot 00 \div 5)=£ 0 \cdot 80-\) (simply divide).

\section*{Exercise 2} Oral Exercise
1. The cost of 6 cakes is \(£ 6 \cdot 30\). Find the cost of one cake.
2. Find the cost per item :-
a 5 sweets costing 35p
c 7 DVD's costing £63
b \(\quad 9\) shirts costing £108
e 12 carrots costing \(£ 2.40\)
d 11 ice-creams costing \(£ 2.20\)
f 10 rabbits costing \(£ 210\).
3. It took a truck 60 trips to move 1200 tonnes of rubble.

How many tonnes did the truck move each trip?

4.

A soldier can march 36 kilometres in 6 hours.
Calculate the rate in kilometres per hour.
5. Jill exchanges \(£ 40\) for 44 euros. What is the rate of \(€\) per \(£\).
6.

A 4 kilogram bag of carrots costs \(£ 2\).
What is the weight per \(£\) ?
7. A hamster rotates a running wheel 90 times in a minute. Calculate the number of rotations per second.

8.

Jack was "Walking Round Scotland" for charity.
During the month of June, he travelled a total distance of 480 miles.
How many miles (on average) did he travel each day?
9. David bought a set of 4 new tyres from Slow-Fit for a total of \(£ 96\). Tim bought a set of 5 similar tyres from Tyres 'R Us for \(£ 110\).
Who got the better deal ?

\section*{Direct Proportion}

Be able to use direct proportion
to solve problems

5 cakes cost \(£ 3 \cdot 50\)

\section*{Exercise 3}
1. The cost of 7 books is \(£ 65 \cdot 80\).

Find the cost of 6 books.
\begin{tabular}{cll}
Books & & Cost \\
7 & \(\rightarrow\) & \(£ 65 \cdot 80\) \\
1 & \(\rightarrow\) & \(£ 65.80 \div 7=£ . . .\). \\
6 & \(\rightarrow\) &
\end{tabular}
2. Nine sheets of high gloss photo paper costs \(£ 7.29\) How much would it cost for 10 sheets? (Find the cost of 1 sheet first).
3. On holiday, Bronte exchanged \(£ 80\) for \(\$ 120\).

How many dollars would Bronte have got for \(£ 45\) ? (Find how much for £1 first).

4. a It takes a cement mixer 2 minutes to mix 1.2 cubic metres of cement. What volume of cement could the mixer do in 9 minutes?
b A wheel turns 500 times in 4 minutes.
How many turns would it make in 5 minutes?

5. a 5 air-mail letters cost \(£ 4\) to post.

How much would it cost to post 6 letters ?
b Nine cakes cost \(£ 18 \cdot 36\). How much would ten cakes cost?

6.

A machine makes 3000 staples every 6 seconds.
How many staples will it make in :-
\begin{tabular}{ll}
a 1 second & b 7 seconds \\
c one minute & d an hour ?
\end{tabular}
7. Which of the following are examples of direct proportion?
a 5 cakes cost £3. Six cakes cost £3.50. b 9 sweets cost 72 p. Ten cost 81 p.
c 3 DVD's cost £42. Four DVD's cost £52. d 11 pies cost £11.99. 5 pies cost \(£ 5 \cdot 45\).
8.

A bricklayer can lay 35 bricks in seven minutes.
a How many bricks could he lay in an hour ?
b How long would it take to build a wall with 250 bricks?
9. A computer programmer writes 30 lines of computer code in an hour.
a How long would it take to write 25 lines of code?
b It took 1 hour and 48 minutes to write a computer programme. How many lines of code were in this programme?

Sometimes it is easier to find the cost of 10 , or 100 , or 1000 items first, instead of just 1 !
Example : - \(\quad 500\) coloured crayons cost \(£ 20\). How much would it cost for 700 crayons ?

This time it would be easier to find the cost of 100 first, then multiply by 7 .
\begin{tabular}{|ccl|}
\hline Crayons & & Cost \\
500 & \(\rightarrow\) & \(£ 20\) \\
100 & \(\rightarrow\) & \(£ 20 \div 5=£ 4\) \\
700 & \(\rightarrow\) & \(£ 4 \times 7=£ 28\)
\end{tabular}
10. a 200 litres of olive oil costs \(£ 30\). Find the cost of 150 litres.
b 100 tyres take 5 hours to burn, one at a time. How long would it take 70 tyres to burn?
c It takes 500 bees a week to make 3.5 kg of honey.
What weight of honey would you get in a week from 400 bees?
d 600 ml of strawberry concentrate costs \(£ 2.40\).
How much would it cost for one litre?
e 60 metres of rope costs \(£ 24\). How much would it cost for 24 metres?

11.

The cost of painting is directly proportional to the area being painted.
a A corridor panel 12 metres by 3 metres costs \(£ 72\) to paint.
How much would it cost for a panel 15 metres by 3 metres?
b A factory wall (25 metres by 8 metres) costs \(£ 160\) to paint.
How much would it cost to paint a 30 metres by 5 metres wall ?

Linear Graph of Direct Proportion
Be able to show direct proportion
The table below shows the cost of packets of "Biscuits".

We can represent each pair as a set of coordinates.
\((1,20),(2,40),(3,60),(4,80)\), etc...
Can you see that all of the points lie on a straight line, passing through the origin?

This is true for any two quantities which are in DIRECT PROPORTION.

\section*{Exercise 4}
1. a Copy and complete the table.
b Using the same scales as in the above graph, plot the points (1, 30), (2, ?),

\begin{tabular}{|l|cccccc|}
\hline No. of Pears & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \(\operatorname{Cost}(p)\) & 30 & 60 & & & & \\
\hline
\end{tabular}
c (i) Join the points with a straight line
(ii) Does the line pass through the origin?
(iii) Explain why the line must pass through the origin.
2. a Copy and complete this table.
b Use an appropriate scale to plot the points (1,40), (2, ...), etc.

\begin{tabular}{|l|cccccc|}
\hline No. of Pots & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \(\operatorname{Cost}(p)\) & 40 & 80 & & & & \\
\hline
\end{tabular}
c (i) Join the points with a straight line.
(ii) Does the line pass through the origin?
3. a Copy and complete this table for a cycle travelling at \(15 \mathrm{~km} / \mathrm{hr}\).
b Using a scale of 2 boxes to represent 1 hour on the horizontal axis and 2 boxes to represent 10 km on the vertical axis, plot the points and draw a line through them.
\begin{tabular}{|l|cccccc|}
\hline Time (hrs) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Distance (km) & 15 & 30 & & & & \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { (i) } 8 \text { hours } & \text { (ii) } 6 \frac{1}{2} \mathrm{hrs} \text { ? }\end{array}\)
4. a Draw a set of axes and plot the following points.
\begin{tabular}{|c|cccc|}
\hline\(x\) & 1 & 2 & 3 & 4 \\
\hline\(y\) & 3 & 6 & 8 & 12 \\
\hline
\end{tabular}\(\Rightarrow(1,3), \ldots\), etc.
b Are \(y\) and \(x\) in direct proportion here? Explain.

A simple check for direct proportion is found by dividing each pair of values.
\[
(3 \div 1),(6 \div 2),(8 \div 3),(12 \div 4)
\]

If you always obtain the same value, then they are in direct proportion.
If even one of the values differs from the rest, they are not in direct proportion.
5. This graph shows the annual interest given by the "Scottish Building Society" on savings of \(£ 100, £ 200, £ 300, £ 400\) and \(£ 500\).

a Use the graph to copy and complete this table.
\begin{tabular}{|l|l|}
\hline Savings (£) & 100200300400500600 \\
\hline Interest (\%) & 2 \\
\hline
\end{tabular}
b Are the quantities in direct proportion? Explain.
c Calculate the interest gained on savings of \(£ 1000\) ?
6. Which two of the following tables indicate examples of direct proportion? (hint-divide)
a
\begin{tabular}{|c|cccc|}
\hline\(x\) & 1 & 2 & 3 & 4 \\
\hline\(y\) & 1 & 4 & 9 & 16 \\
\hline
\end{tabular}
b
\begin{tabular}{|c|cccc|}
\hline\(x\) & 1 & 2 & 3 & 4 \\
\hline\(y\) & 5 & 10 & 20 & 40 \\
\hline
\end{tabular}
c
\begin{tabular}{|c|cccc|}
\hline\(w\) & 1 & 2 & 3 & 4 \\
\hline\(P\) & 2 & 4 & 6 & 8 \\
\hline
\end{tabular}
e
\begin{tabular}{|c|cccc|}
\hline\(d\) & 1 & 2 & 3 & 4 \\
\hline\(H\) & 0 & 2 & 6 & 10 \\
\hline
\end{tabular}
d
\begin{tabular}{|c|llll|}
\hline\(m\) & 1 & 2 & 3 & 4 \\
\hline\(s\) & 5 & 4 & 3 & 2 \\
\hline
\end{tabular}
\(f\)
\begin{tabular}{|c|cccc|}
\hline\(z\) & 1 & 2 & 3 & 4 \\
\hline\(T\) & 30 & 60 & 90 & 120 \\
\hline
\end{tabular}
7. For each of your two answers to question 6, verify they are in direct proportion by plotting the points and showing a line can be drawn through these points and the origin.
8. Work in pairs or groups - the best graphs may be used on the wall of your classroom.
a Find a currency exchange rate used somewhere in the world.
b On graph paper write a report using a direct proportion graph and explain why such a graph could be used for currency conversion.
c Discuss other places where direct proportion is used.

\section*{The 3 \({ }^{\prime}\) 's}

\section*{Revisit - Review - Revise}
1. a One shirt costs £7. How much would it cost for 4 shirts ?
b One pair of boots costs \(£ 45\). How much would it be for 3 pairs?
c Six vests are needed for football training.
How much will it cost in total if one costs \(£ 3.25\) ?
2. a Five melons cost £5.25.

How much would it be for one melon?
b Ten boxes of strawberries costs \(£ 17.50\).
How much would it cost for each box ?

3. a Three ties cost \(£ 18\). How much would two ties cost?
b Seven bars of soap costs \(£ 14 \cdot 70\). How much would three bars cost?
c How much would five chairs cost, if four chairs cost £56?
4.

These three toy cars cost £18.99.
How much would four cars cost ?
5. a Which is the better deal when buying pies?
b Explain why.

Tray of 10 pies - £12.20

Tray of 8 pies - £9.60
6. a Share \(£ 6000\) in a ratio of \(2: 1\).
b Share 180 grapes in a 2:3 ratio.
7. Sara, Tina and Una won a million pounds in the lottery. Their winnings are to be split into a 5:3:2 ratio.

How much will each girl receive?

8. a Copy and complete this table for a van travelling at \(50 \mathrm{~km} / \mathrm{hr}\).
b Using a scale of 2 boxes to represent 1 hour on the horizontal axis and 2 boxes to represent 10 km on the vertical axis, plot the points and draw a line through them.
c How far will the van travel in 9 hours ?

- ©

\section*{Fractions \& Decimals}
1. Change each of the following into decimals and fractions in their simplest form :-
a 37\%
b \(80 \%\)
c \(75 \%\)
d \(2.5 \%\).
2. Change each fraction into a decimal (to three decimal places) and then to a percentage :-
a \(\frac{1}{8}\)
b \(\frac{8}{11}\)
c \(\quad \frac{17}{70}\)
d \(\quad \frac{432}{777}\).
3. Write the following list in order, smallest first :-
\[
47 \%, \quad 0.46, \quad \frac{1}{2}, \quad \frac{147}{300}, \quad 0.05
\]
4. Jake scored the following in 3 tests :-
\[
\text { English } 56 / 70 \text { Physics } 42 / 60 \text { Music } 15 / 20
\]

Which was his best score? Explain.

5. Calculate :-
\begin{tabular}{llllllll}
a \(24 \%\) of 120 kg & b & \(15 \%\) of 80 m & c & \(55 \%\) of 10 km & d & \(17.5 \%\) of \(£ 1240\) \\
e \(70 \%\) of \(£ 1\) & f \(11 \%\) of 5 cm & g & \(48 \%\) of 680 ml & h & \(3 \cdot 2 \%\) of \(£ 6200\).
\end{tabular}
6. At a local derby \(76 \%\) of the 8600 crowd were home supporters.
a What was the percentage of the away supporters?
b How many away supporters were at the match?
7. a There is a \(30 \%\) discount on a pair of football boots costing \(£ 45\).

How much do the football boots cost in the sale?
b A football strip costing \(£ 68\) is to have its price increased by \(15 \%\).
How much will the strip now cost?

8. \(a\)

A town raised \(£ 8000\) last year to save their local church.
This year they need to raise 20\% more than last year.
How much do they need to raise this year?
A congregation of 1800 attended a church in 2010.
The attendance in 2011 rose by \(10 \%\).
The 2012 attendance dropped by \(10 \%\) from the previous year's figure.
What was the attendance in 2012 ?

\title{
CHAPTER 11
}

\section*{Symmetry}

\section*{Line Symmetry}

Revision
Remember :- A line of symmetry occurs in a shape if, when the shape is folded over the line, "the two pieces, either side of the line, are exactly the same".

These shapes have lines of symmetry

Be able to identify line symmetry and create symmetrical shapes

\section*{Exercise 1}
1. Make a neat tracing of each of the following shapes.

Use a coloured pencil to show all the lines of symmetry.
Write down beside each shape how many lines of symmetry it has.
a

f

c

d

9

h

i

j

n

0

p

2. Copy each of the following shapes neatly and complete each one such that the red dotted line is a line of symmetry each time.
\begin{tabular}{|c|}
\hline a & & & & & & & b & & & & & & c & & & & & & d & & & & & & & & e & & & & & & & & \\
\hline & & & & & & & & & & & & & & & 1 & & & & & & 7 & & & & & & & & & & , & & & , & \\
\hline & & & & & & & & & & & & & \(\checkmark\) & & & & & & & & & & & & & & & & & & & - & & - & \\
\hline & & & & & & & & & 7 & \\
\hline & , & \\
\hline & \\
\hline & & , & & & & & & - & & & & & & & , & & & & & & & & , & & & & & & & & & & & & \\
\hline & & & & & & & & , & & & & & & \(\square\) & \\
\hline & \\
\hline & 7 & - & & & \\
\hline f & & & & & & & & & 9 & & & & & & & & & h & & & & & & & & & & i & & 7 & & & , & & \\
\hline & & N & & & \(\square\) & \(\nabla\) & , & & 4 & & \\
\hline & 7 & & & & & \(\bigcirc\) & & & & & & & 1 & & & & & , & - & & & & & - & & I & & & 2 & \(\square\) & 1 & 1 & 4 & , & \\
\hline & 1 & - & & & & - & & & & 4 & \(\checkmark\) & & & \(\square\) & - & & & - & & & & & - & - & & 7 & & & 17 & & - & 7 & & N & \\
\hline & & & & & & & & & & 7 & & & & & \(\bigcirc\) & \\
\hline & \\
\hline & \\
\hline & \\
\hline j & & & & & & , & & & & k & & & & & , & & & 1 & \(\checkmark\) & & & & & & , & & & m & & \(\cdots\) & & & & & \\
\hline & & & & & 1 & & & & & & \(\square\) & & & 7 & & & & & & , & , & & & & , & & & & & \(\square\) & N & & & & \\
\hline & & & & 1 & & & & & & \(\square\) & & & 7 & & & & & & & & & & & , & & & & & 7 & & & 1 & & & \\
\hline & & & \(\checkmark\) & & & & & & & & & \(\square\) & & & & & & & & & & & , & - & & & & & & & & & 1 & & \\
\hline & & - & & & & & & & & & 7 & & & & & & & & & & & & & N & & & & & & & & & + & \(\checkmark\) & \\
\hline & - & - & & & & & & & & \(\square\) & & & & & & & & & & & & & & & \(\cdots\) & & & & & & & & \(\cdots\) & & \\
\hline & & & & & & & & & 1 & \\
\hline & & & & & & & & & & & & & & & \(\square\) & & & & & & & & \(\cdots\) & & & \(\square\) & & & & & & & & & \\
\hline \(n\) & & & & \(\bigcirc\) & & & & & & & 0 & & , & , & & & & & & & & P & & , & & & & & & & & & & & \\
\hline & - & & & & & & 1 & & & & & & - & & & , & & & & & & & & & \(\checkmark\) & & & & & & & & & & \\
\hline & 7 & & & & & 7 & & & & & & \(\cdots\) & V & & & & & 4 & & & & & & & & , & & & & & & & & & \\
\hline & - & & & & \(\square\) & & & & & & & & \(\bigcirc\) & & & & & 7 & & & & & & & & & \(\checkmark\) & & & \(\square\) & & & & & \\
\hline & & & & 1 & N & & & & & & & \\
\hline & & & 1 & & & & & & & & & & & & \(\stackrel{ }{ }\) & & & & & & & & & & & & & & , & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & \(\bigcirc\) & & & & & & & & & & & & & & \(\cdots\) & & & & & \\
\hline & \\
\hline
\end{tabular}
3. This time, each shape has to have 2 lines of symmetry (shown as red lines) Carefully copy and complete each shape.

Turn (Rotational) Symmetry
Be able to identify
Look at the shape opposite.
Can you see that it has
NO lines of symmetry?
Can you also see that if you "spin" the shape by \(180^{\circ}\)
(half a turn) around the red dot, it
 will fit back onto its own outline?

We say :- It has " \(\frac{1}{2}\) - turn symmetry". (or Rotational Symmetry "of order 2").

\section*{Exercise 2}
1. Which of the following shapes have half-turn symmetry?
a

b

d

f

9

h

j

k

m

n

0

p

9

\(r\)

t

\section*{Turn Symmetry (continued).}

You should have found in question 1 e that the equilateral triangle does not have \(\frac{1}{2}\)-turn symmetry (Rotating it by a half turn (\(180^{\circ}\)) left it "upside-down").

However, if you rotate it by \(120^{\circ}\) (a third of a turn) it will fit back onto itself.

we say :- It has " \(\frac{1}{3}\)-turn symmetry". (or Rotational Symmetry "of order 3").
2. Look at this shape
a Does it have any lines of symmetry?
It obviously has "half-turn symmetry".
b As well as \(180^{\circ}\), what smaller angle could the shape be rotated by around its centre so that it fitted back onto itself?
c Copy and complete :-
"The shape has \(\qquad\) - turn symmetry, or rotational symmetry of order ...".
3. Some of the following shapes have "turn symmetry".

For each shape, say what kind of "turn" symmetry it has. (\(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{8}\), etc), and state the "order" of rotational symmetry.
a

b

C

d

e

f

3.

h

i

j

k

I

\(n\)

0

\(p\)

9

\(r\)

s

\(t\)

u

\(v\)

\(w\)

\(x\)

4. Draw some shapes of your own to show turn symmetry of :- \(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{8}, \ldots\). .

If we take a given shape and spin it \(180^{\circ}\) around a fixed point, then this new shape, along with the original will form a figure which will have \(\frac{1}{2}\)-turn symmetry.

In this diagram, the dot has to be the centre of symmetry .

a shape using turn symmetry

\section*{Exercise 3}
1. a Make a copy of this rectangle.
b Now rotate it by a \(\frac{1}{2}\) turn around the red dot.

2.

Copy this figure and rotate it by half a turn around the red dot.
3. Do the same here with this triangular shape.

4. Make a copy of each of the following shapes neatly and carefully. Create a shape which has got half turn symmetry by rotating each shape by \(180^{\circ}\) around the red dot :-
a

b

c

4.

9

j

m

e

h

k

n

f

i

I

0

5. Look at the three 8 by 8 squares.

Each has a continuous unbroken line drawn through them dividing the shape into 2 parts in such a way that the shape has half turn symmetry.

a Draw the \(8 \times 8\) square several times and try to find imaginative ways of dividing the shape with one continuous unbroken line such that the shape has half turn symmetry around its centre.
b Use two colours to shade each half in and make a display of the best.
c Try to create some of your own complicated diagrams similar to the diagrams above that show half turn symmetry.

*congruent -
In Mathematics terms, we say :-

"The rectangle tiles the surface". (or tiles the "plane").
two shapes are congruent if they are exactly the same size and shape.

\section*{Exercise 4}
1. a Copy this square (3 by 3) tile onto squared paper. Shade or colour it in as the starter tile.
b Completely surround it with congruent tiles to show that the square will "tile the plane".

2.

a Copy this triangular tile onto squared paper and shade or colour it in.
b Completely surround it with congruent tiles to show that the triangle will "tile the plane".
(Note :- even if you turn a tile upside down it will still be congruent to the original).
3. a Make a copy of this rhombic tile.
b Completely surround it with congruent tiles to show that the rhombus will "tile the plane".

4.

a Copy this kite-shaped tile onto squared paper and shade or colour it in.
b Completely surround it with congruent tiles to show that the kite will "tile the plane".
5. Shown below are various shapes.

Without actually drawing them, decide which shapes are most likely to "tile the plane".
a

b

c

e

f

9

h

i

j

m

\(n\)

0

9

\(r\)

6. This shape is called a V-kite.
a Copy it carefully and shade it in.
b Show, by surrounding it with congruent shapes, that the V-kite tiles the plane.

7. Do the same for each of the following.
(i) Draw each shape and shade it in.
(ii) Surround each shape completely with a set of congruent tiles.
a

b

C

8. This one is a bit trickier.

Draw the tile carefully, shade it in and surround it with a set of congruent tiles.

9. Here is how to create your own FUN tile :-

Step 1 Start with a simple shape that does tile, like a square or rectangle.

Step 2 Draw it onto cardboard.
Step 3 Cut a simple shape (like a triangle) out from the bottom corner.

Step 4 Sellotape the triangle on the top corner in the corresponding position.

Step 5 This now gives a shape that tiles.

Use your piece of card as a template to draw a pattern of "cat faces".
10. Design your own template. Start with a simple shape like a square, rectangle or equilateral triangle. Draw it on card and cut it out.
Use your template to create a repetitive pattern.

\section*{The 3 \({ }^{\prime}\) 's}

\section*{Revisit - Review - Revise}
1. Write down how many lines of symmetry are in each of these shapes :-
a

b

d

e

c

2. Copy these four shapes neatly on to squared paper and complete the diagrams so that the red lines are lines of symmetry :-
a

b

C

d

3. Which, if any, of these shapes have half turn symmetry?
a

d

b

e

c

f

4. Each of the following shapes has rotational symmetry.

Say what kind of turn symmetry, \(\left(\frac{1}{2}, \frac{1}{3}, \ldots\right)\), and state the order of rotational symmetry.
a

b

c

d

e

f

5. Copy these two shapes and give each of them a half turn around the dot.
a

b

6.

a Make a copy of this kite-shaped tile in the centre of a page in your jotter and shade it.
b Show how to completely surround it with congruent tiles.
7. Which of the following shapes will tile the plane?
a

b

c

d

1. For a circle, write down the formula for finding its :- a circumference \(b\) area.
2. a Use the correct formula to calculate the circumferences of these circles :(answers to 3 significant figures)
(i)

(ii)

(iii)

b Now use the correct formula to calculate the areas of the circles.
3. A boy flies a model plane in a circle around his head.

The radius of its circular path is 50 centimetres.
Work out the length of the path of the plane.

4. Four semi-circular rods are used to form the top of a fence 160 centimetres long.
a Calculate the length of one of the semi-circular rods.
b Calculate the length of all 4 rods, plus their bases.

5.

The circumference of this baked potato is 37.68 cm .
Use an appropriate formula to work out its radius.
6. Calculate the perimeter and the area of each of these shapes :-
a

b

C

7.

A large square area of paving with side 6 metres had a quarter circle with radius 3 m cut from it so that a flower bed could be laid.
Calculate the area of the paving which remained.

Remember how to interpret and draw a bar graph \& a line graph

2. The bar graph shows the number of people who donated blood in the transfusion van one week last winter.
a How many people gave blood on :-
(i) Monday
(ii) Tuesday
(iii) Friday
(iv) Thursday?
b How many people gave blood in total that week?
c The transfusion van's heating system broke down one day and the staff were sent home.

Which day was that? Give a reason for your answer.
3. This bar graph shows the number of football tops sold in a shop in Gretna, during the Euro '12 football competition.
a How many Spanish tops were sold?
b What was the least popular strip sold?
c Which two strips sold the same quantity and how many of each was that?
d State an obvious reason for the high

 sales of English tops in this sports shop?

Teams
e How many more England than Germany tops were sold?
f If each top was sold for \(£ 40\), how much money did the shop take in altogether ?
4. Senior classes in a school were asked what they preferred to eat with rice, from a menu.
a How many shell fish dishes were on the menu?
b How many Seniors preferred :-
(i) Chilli Beef
(ii) Prawns
(iii) Pork
(iv) Chicken?
c What was the most liked food with rice?
d How many more seniors chose prawns than pork?
e How many less chose stir fry than chicken?
f How many were asked altogether ?

5. The owner of a small shop asked her 30 loyal customers what kind of tinned soup they liked. The results are shown in the table :-
\begin{tabular}{|cccccc|}
\hline pea/ham & tomato & chicken & lentil & oxtail & minestrone \\
\hline 3 & 9 & 4 & 7 & 1 & 6 \\
\hline
\end{tabular}

Draw and label a neat bar graph to show this information.

6. Kerry's Electrical Store carried out a survey into which TV channel their customers preferred to view. Here are the results of that survey :-
\begin{tabular}{|ccccccc|}
\hline ITV 1 & BBC 1 & Ch 4 & Ch 5 & Sky 1 & Sky Sports & Sky Movies \\
\hline 45 & 30 & 10 & 25 & 50 & 60 & 5 \\
\hline
\end{tabular}

Decide on a suitable scale and draw/label a neat bar graph to illustrate these findings.
7. A patient's temperature was taken every hour from 6 am until 1 pm.

The results are shown in this line graph.

a When was the patient's temperature at its lowest?
b When was it at its highest?
c By how many degrees did it rise between 6 am and 8 am ?
d At which two times did the temperature begin to rise?
e At 9 am, his temperature began to fall.
For how long did this last and by how many degrees did it fall ?
f What was his estimated temperature at 11.30 am ?

8. Two tent companies ...
- The Tent Store (in red) and
- Tents-for-U (in green)
compare their sales.
The comparative line graph gives the sales in hundreds of units.
a State the sales of The Tent Store in :-
(i) April
(ii) July
(iii) October.
b State the sales of Tents-for- \(U\) in :-
(i) March
(ii) June
(iii) September.
c Whose sales were lower in :-

(i) May
(ii) Augus \(\dagger\)
(iii) November?

The Tent Store made a \(£ 30\) profit on each tent.
Tents-for-U made a \(£ 25\) profit on each tent.
d (i) Who made more profit in May?
(ii) How much more did that company make in May?

9. The temperature in a classroom \(\left({ }^{\circ} \mathrm{C}\right)\) was recorded every day at noon for a week. The results are shown in the table :-
\begin{tabular}{|ccccc|}
\hline Mon & Tue & Wed & Thu & Fri \\
10 & 8 & 9 & 10.5 & 4.5 \\
\hline
\end{tabular}

Construct a line graph to show this information.
10. Construct a line graph for the following data which shows the number of ice creams sold from Napoli's ice cream van from February till November 2012.
\begin{tabular}{|l|cccccccccc|}
\hline Month & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov \\
\hline Sales & 100 & 200 & 600 & 1000 & 1200 & 1000 & 900 & 500 & 100 & 50 \\
\hline
\end{tabular}

Make your vertical scale go up in 200's.
11. This table shows 6 months of car sales from two different car dealers, Arnold Clunk and Reg Barney.
Construct a comparative line graph to show this information.
\begin{tabular}{|l|cccccc|}
\hline & Jul & Aug & Sep & Oct & Nov & Dec \\
\hline Clunk's & 100 & 250 & 300 & 250 & 400 & 200 \\
Barney's & 300 & 200 & 350 & 450 & 100 & 150 \\
\hline
\end{tabular}

\section*{Spreadsheets and Databases}

Access to a computer would help with this topic, but tables could be drawn up and completed manually.

Be able to
understand

\section*{spreadsheets \&} databases

A spreadsheet is simply a computerised table of values that can be used to do calculations on these values or entries.

This is cell D3. The boxes in the table are called cells.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & A & B & C & D & E \\
\hline 1 & & & & & \\
\hline 2 & & & & & \\
\hline 3 & & & & & \\
\hline 4 & & & & & \\
\hline 5 & & & & & \\
\hline
\end{tabular}

\section*{Example :-}

A group of 4 First Year pupils are comparing their marks in three of their maths tests.
David Smith scored \(62 \%, 81 \%\) and \(79 \%\). Brian Jones scored \(63 \%, 59 \%\) and \(91 \%\).
Bobby Young scored \(71 \%, 83 \%\) and \(65 \% \quad\) Allan Taylor scored \(73 \%, 76 \%\) and \(79 \%\).
Cell A1 is used for the 1st name and cell B1 is used for the 2nd name, etc.
The first 3 lines of the table would look like this :-
\begin{tabular}{|c|c|c|c|c|c||}
\hline & A & B & C & D & E \\
\hline \hline \(\mathbf{1}\) & First & Second & Test 1 & Test 2 & Test 3 \\
\hline \(\mathbf{2}\) & & & & & \\
\hline \(\mathbf{3}\) & David & Smith & 62 & 81 & 79 \\
\hline
\end{tabular}

\section*{Exercise 2}
1. a Open up a new spreadsheet or draw up a spreadsheet table and fill in the relevant cells to show the test marks for all 4 boys.
b Keep your table for later or print out and save your spreadsheet for later. (Spreadsheet 1).
2. A glazier is cutting a series of rectangular panes of glass for six customers.

He is going to calculate the area and cost of each piece eventually.
a Open a new spreadsheet or draw up a table with the headings:
cell A1 - Customer cell B1 - length (cm) cell C1 - breadth (cm)
b Fill in the following customer details, starting in cell A3:
\begin{tabular}{ll}
Mr Davies - 60 cm by 80 cm & Mrs White -90 cm by 120 cm \\
Mr Gordon -210 cm by 160 cm & Mrs Wylie -75 cm by 160 cm \\
Mr Rivers - 130 cm by 110 cm & Mrs Jones -80 cm by 150 cm.
\end{tabular}
c Your spreadsheet should look like this.
d Save this for later.
e Take a printout of your spreadsheet and save it. (Spreadsheet 2).
\begin{tabular}{|c|c|c|c|}
\hline & A & B & C \\
\hline \(\mathbf{1}\) & Customer & Length (cm) & breadth (cm) \\
\hline 2 & & & \\
\hline 3 & Mr Davies & 60 & \(\ldots .\). \\
\hline
\end{tabular}

A spreadsheet is particularly useful for doing multiple calculations.
Example :-
Look back at your Spreadsheet 1 and imagine we wish to find each boy's average.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & A & B & C & D & E & F \\
\hline 1 & First & Second & Test 1 & Test 2 & Test 3 & Average \\
\hline 2 & & & & & & \\
\hline 3 & David & Smith & 62 & 81 & 79 & \\
\hline
\end{tabular}

Add on a 6th column to your table and type in Average in cell F1.
Now we can get the computer to calculate the average of David's 3 test results as follows :-
- In cell F3, type in "=(C3 + D3 + E3)/3" and press return. When you do this, 74 should appear.
- Click on cell F3, copy it and paste it into cell F4. Cell F4 should now be 71 for Brian.
- Repeat the copying and pasting into cells F5 and F6 to complete the table.

\section*{Exercise 3}
1. a Complete the above spreadsheet or fill in the 6th column of your table by doing the calculations manually.
b Explain how a computer generated spreadsheet might save you time.
(Hint :- Think about finding the average of a whole class or year group).
2. a In Spreadsheet 2 (or Table 2), add a 4th column and in cell D1, type AREA.
b In cell D3, type in the calculation needed to work out the area of Mr Davies' sheet of glass. (Remember to begin your calculation with = and use cells B1 and C1). Check it works.
c Click on cell D3, copy it and paste it into cells D4, D5, D6, D7, and D8 to complete the table.
3. A fruit shop computerises its pricing.
a Open a new spreadsheet or table and enter the headings:
cell A1 - fruit, cell B1 - weight (kg) and cell C1-cost / kg
b Fill in Mr Stevenson's fruit order, starting at cell A3.
Mr Stevenson :- \(\quad 2.5 \mathrm{~kg}\) of apples
1.5 kg of oranges
0.5 kg of grapes

3 kg of bananas
0 kg of pears
0.75 kg of peaches.
c Add the heading COST in cell D1.
d In cell D3, type \(=\) B3 * C3.
e Copy and paste to complete the table.
\begin{tabular}{|c|c|c|c|c|}
\hline & A & B & C & D \\
\hline\(y n n n n n\) & fruit & weight kg & cost per kg & COST \\
\cline { 1 - 1 } \(\mathbf{2}\) & & & & \\
\cline { 1 - 1 } 3 & apples & 2.5 & \(£ 1.52\) & \\
\hline
\end{tabular}
f In cell D10, type = D3 + D4 + D5 + D6 + D7 + D8 to obtain the total for the bill.
4. Bloggs Engineers employs six workers. They wish to calculate the weekly wages of their workforce.
\begin{tabular}{|lccc|c}
\hline Name & Basic hours & Overtime hours* & Basic Rate of Pay* & \\
Fred & 40 hours & 6 hours & \(£ 6.50 /\) hour. & * Overtime pay is at \\
Tom & 38 hours & 4 hours & \(£ 6.20 /\) hour. & "time and a half" or \\
Gina & 36 hours & 5 hours & \(£ 4.80 /\) hour. & 1.5 times basic pay. \\
Alex & 39 hours & 4 hours & \(£ 5.10 /\) hour. & \\
Sara & 40 hours & 2 hours & \(£ 6.40 /\) hour. \\
Dave & 32 hours & 0 hours & \(£ 5.30 /\) hour. \\
\hline
\end{tabular}
a Open a new spreadsheet or draw up a new table and enter these headings in the cells :cell A1 - Name, cell B1 - Rate of pay, cell C1 - Basic Hrs, cell D1-Overtime Hrs.
b Now enter the details for the 6 workers starting at cell A3.
c Add on the following headings :- cell E1-basic pay, cell F1-O'time pay, cell G1-Total pay,
d Insert calculations in cells E3 and F3 find basic and overtime pays. Cell G3 = cell E3 + cell F3.
e In cell G10, insert a calculation that will find the total wage bill for Bloggs Engineers.
5. a Open up a new spreadsheet. In the spreadsheet, starting at cell \(C 3\), type in the 5 headings :Customer, Item 1, Item 2, Item 3, and Total.
b Fill in the following three customers' details starting at cell C5 :-
\[
\begin{array}{llll}
\text { Mr Jones - } £ 3.85, & £ 9.62, & £ 4.75 \\
\text { Mrs Paton - } £ 6.94, & £ 5.73, & £ 11.64 \\
\text { Mr Wilson - } £ 9.85, & £ 7.24, & £ 1.68
\end{array}
\]
c Instead of entering = D5 + E5 + F5 into cell G5 to find the sum, try the following instead :Click on cell G5 and type in =SUM(click on cells D5, E5 and F5 in turn, close the bracket and press return. Did it work?
d Copy cell G5 and paste into cells G6 and G7.
e Use a similar =SUM(....) to find the total of cells G5, G6 and G7, and paste into cell G9.
6. Go back and open the spreadsheet from Question 4.
a Extend the spreadsheet to include two new headings in cells H1 and I1 :-
"Deductions" and "Net Pay".
b In the appropriate cells, add in the 6 employees' details:
\begin{tabular}{|lcccccc|}
\hline Employee & Fred & Tom & Gina & Alex & Sara & Dave \\
Deductions & \(£ 92.40\) & \(£ 75.30\) & \(£ 57.79\) & \(£ 52.72\) & \(£ 68.77\) & \(£ 31.42\) \\
\hline
\end{tabular}
c Use a standard function, or devise your own to calculate Fred's net pay from his gross pay and his deductions, and copy your formula down to find the net pay of the other five.
7. Devise some spreadsheets of your own for questions involving topics such as profit and loss, hire purchase, bank interest, discounts, etc.

\title{
Interpreting and Drawing Pie Charts
}
1. The pie chart shows the results of a survey into favourite sandwiches bought from a snack bar.
a Write down the fraction (/10) of people who chose :-
(i) Prawn
(ii) Tuna
(iii) Ham
(iv) Chicken Mayo.
b List the sandwiches in order, from most popular to least popular.
c If 300 people were asked, how many of them liked :-
(i) Tuna
(ii) Ham
(iii) Prawn
(iv) Chicken Mayo ?

2. This pie chart, showing the sale of sausages in a supermarket one Saturday, has been divided into 20 equal parts.

Supermarket Sausage Sales
a What percentage does each part stand for?
b What percentage represents :-
(i) Beef
(ii) Pork
(iii) Other
(iv) Vegetarian?

4000 sausages were sold altogether that day.
c How many of the sausages sold were :-
(i) Pork
(ii) Vegetarian
(iii) Beef
(iv) Other?

3. 24 cooks were asked to name their favourite pie filling.
a What fraction of them voted for mince pie? \(\frac{90}{360}\) simplified
b What fraction of them voted for :-
(i) Rhubarb
(ii) Steak
(iii) Cherry
(iv) Apple?
c Of the 24 cooks, how many voted for:-
(i) Mince
(ii) Rhubarb
(iii) Steak
(iv) Cherry?
d How many did that leave voting for apple pie?

Favourite Pie Filling

4. To make her home-made Macaroni Bake, Jenny uses only four ingredients as follows :-
- 40\% macaroni pasta
- 30\% tomato soup
- 20\% diced ham
- 10\% cheese

Draw a pie chart to show this information.

5.

On a Mediterranean cruise, it was discovered that :-
- \(35 \%\) of those on the ship were aged 20-65 years old
- \(40 \%\) were senior citizens
- \(20 \%\) were under 20 years old

a If the remainder on board were crew members what percentage was that?
b Copy (or trace) the blank pie chart and complete it showing the above information.
6. The information given below shows the most popular answers to the question :"If you were given money to renovate one room in your house, which room would you choose" ?
- \(45 \%\) said "kitchen"
- \(25 \%\) said "bathroom"
- of the others, half said "bedroom" and half said "living room".

Draw a pie chart to illustrate this, using a "pie" like this one.

7.

There were 60000 people at Hampden Park, Glasgow.
- 30000 were supporting Queens Park
- 15000 were Alloa Athletic supporters
- 12000 were neutral supporters

- the remainder were football officials and stewards.
a Copy (or trace) the blank pie chart and complete it to show the above information.
b What do you think is meant by "neutral" supporter?
a pie chart

When drawing a pie chart, it is sometimes easier to add columns to the table for calculations.
\begin{tabular}{|c|c|}
\hline Type of Vehicle & Number \\
\hline Car & 36 \\
Taxi & 24 \\
Bus & 20 \\
Motorcycle & 10 \\
\hline
\end{tabular}

- Step 1 is to add up the Numbers column to get a total (in this case 90).
- Step 2 is to express each "Number" as a fraction of this total. (e.g. \(\frac{36}{90}\)).
- Step 3 is to find that fraction of \(360^{\circ}\) each time (e.g. \(\frac{36}{90} \times 360=144^{\circ}\)).
- Step 4 is finally to draw the pie chart using the angles in the table and a protractor.

\section*{Exercise 5}
1. a Copy and complete the table showing a group of 180 people's favourite vegetable.
b Construct a pie chart using a pair of compasses, a ruler and a protractor and the table information.
\begin{tabular}{|c|c|c|c|}
\hline Vegetable & Number & Fraction & Angle \\
\hline Lettuce & 90 & \(\frac{90}{180}\) & \(\frac{90}{180} \times 360=180^{\circ}\) \\
Carrot & 60 & \(\frac{60}{180}\) & \(\frac{60}{180} \times 360=\ldots .{ }^{\circ}\) \\
Turnip & 20 & \(\overline{180}\) & \(\overline{180} \times 360=\ldots . .^{\circ}\) \\
Cabbage & 10 & \(\overline{180}\) & \(\overline{180} \times 360=\ldots .{ }^{\circ}\) \\
\hline TOTAL & 180 & 1 & \(360^{\circ}\) \\
\hline
\end{tabular}
2. a Copy and complete this table which shows the number of grades a class obtained in their maths test.
b Construct an accurate pie chart showing this information.
\begin{tabular}{|c|c|c|c|}
\hline Grades & Number & Fraction & Angle \\
\hline A & 3 & \(\frac{3}{45}\) & \(\frac{3}{45} \times 360=24^{\circ}\) \\
B & 21 & \(\frac{21}{45}\) & \(\frac{21}{45} \times 360=\ldots . . .^{\circ}\) \\
C & 17 & \(\overline{45}\) & \(\overline{45} \times 360=\ldots . . .^{\circ}\) \\
D & 4 & \(\overline{45}\) & \(\overline{45} \times 360=\ldots . . .^{\circ}\) \\
\hline TOTAL & 45 & 1 & \(360^{\circ}\) \\
\hline
\end{tabular}
3. a Copy and complete the table showing motorists' favourite colour of car.
\begin{tabular}{|c|c|c|c|}
\hline Car Colour & Number & Fraction & Angle \\
\hline Red & 7 & \(\frac{7}{30}\) & \(\frac{7}{30} \times 360=\ldots . .^{\circ}\) \\
Silver & 4 & & \(\times 360=\ldots . .^{\circ}\) \\
Blue & 6 & & \(\times 360=\ldots \ldots . .^{\circ}\) \\
Black & 13 & & \(\times 360=\ldots . .^{\circ}\) \\
\hline TOTAL & 30 & & \(360^{\circ}\) \\
\hline
\end{tabular}

b Construct an accurate pie chart showing this information.
4. For each table below, copy it (adding new columns to show your working) and construct an accurate pie chart to show the information.

5. The table shows the results of a survey asking people's favourite English holiday resort.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Torquay & Brighton & York & Blackpool & York & Blackpool & Brighton & Torquay \\
\hline Blackpool & York & Brighton & Blackpool & Brighton & Blackpool & York & Blackpool \\
\hline Brighton & Blackpool & Southport & Torquay & Brighton & Southport & Blackpool & Blackpool \\
\hline York & Brighton & Southport & Blackpool & Blackpool & Torquay & Southport & York \\
\hline Brighton & Blackpool & Blackpool & Blackpool & Brighton & Blackpool & Brighton & Torquay \\
\hline
\end{tabular}
a Copy and complete the table below :-
\begin{tabular}{|l|l|l|l|l|}
\hline Hotel & Tally Mark & Number & Fraction & Angle \\
\hline Blackpool & & & & \\
\hline Torquay & & & & \\
\hline York & & & & \\
\hline Brighton & & & & \\
\hline Southport & & & & \\
\hline \hline
\end{tabular}
b Using a pair of compasses, a ruler and a protractor, construct an accurate pie chart for this information.

Be able to calculate
the range and
the mean from
a set of data spread out a set of numbers are.

Example :-
The set of numbers \(4,2,5,7,7,12,17,8,6,9\), \(\Rightarrow\) Range \(=17-2=15\).

The Mean (or average) of a set of scores is found by :-
- adding all the scores together
- then dividing by how many scores there are.

Example :- Find the mean of:- \(10,8,1\) and 9.
\[
\text { Mean }=\frac{10+8+1+9}{4}=\frac{28}{4}=7
\]

\section*{Exercise 6}
1. Calculate the range and the mean of :-

a \(7,12,9,4\)
b \(\quad 10,27,15,19,24\)
c £7, £6, £13, £27, £26, £5
d \(11 \mathrm{~cm}, 24 \mathrm{~cm}, 38 \mathrm{~cm}, 30 \mathrm{~cm}, 16 \mathrm{~cm}, 37 \mathrm{~cm}\)
e \(\quad 9.1,7.2,6.7,9.6,9.9,6.8,10.4,4.3,7.1\)
\(f \quad 4.87,9.76,8.93,15.86,4.58\).
2. George spends his 4 month summer break from art school cleaning the floors and windows in his local gallery.
For this, he gets paid a total of \(£ 1303 \cdot 56\).
What does that average out at per month ?

3. Ten branches of Mason's Stores place bubble gum machines outside each shop.

They find that they contain the following number of bubble gums :-
50, 52, 54, 52, 55, 51, 53, 50, 54, 54.
a Work out the range.
b Calculate the mean number of bubble gums.
c The Bubble Gum Company claim that each of their machines should contain an average of 53 bubble gums.

Should Mason's complain to this company? (Explain)
4. The journey times (in minutes) of a selection of trains travelling from Hillington East to Glasgow Central are shown below :-
\begin{tabular}{|lllllllllllllllll|}
\hline 5 & 8 & 9 & 8 & 6 & 7 & 10 & 7 & 7 & 5 & 9 & 5 & 7 & 8 & 8 & 20 & 5 \\
\hline
\end{tabular}

a What is the range of these times ?
b Calculate the mean time for the journeys (correct to 1 decimal place).
c One train took much longer than the mean time - which one ? - suggest a reason.
5. Competitive golfers use the mean when calculating their average number score for a tournament.

The winner of the latest competition scored a total of 273 for his 4 rounds.
Monty finished in second place, 3 shots behind.
a What was Monty's total score ?
b What was Monty's average score per round?
c If his average score per round had been 68, would he have won the tournament? Explain.
6. In an ice-skating competition the marks given by the judges of eight countries were as follows :-
\begin{tabular}{|llllllll|}
\hline 6.7 & 6.7 & 6.3 & 6.5 & 6.1 & 6.9 & 6.5 & 6.7 \\
\hline
\end{tabular}
a What was the range and the mean mark?
b How many marks above the mean was the highest mark awarded?
7. Algi's say that their tins of sardines have the same number of fish in them. The weight of each tin is almost the same, but the number of sardines in each tin does tend to vary.

Here are the number of sardines which were found in tins bought by sardine lovers :-
\begin{tabular}{|lllllllllllll|}
\hline 8 & 5 & 10 & 5 & 9 & 6 & 8 & 8 & 6 & 8 & 16 & 6 & 9 \\
\hline
\end{tabular}
a Calculate the mean number of sardines per box and also state the range.
b Relative to the mean, comment on the large number of sardines in one particular tin.
8. Anders likes fish and chips. He spent 6 days in his native Norway, eating his favourite dish in various chippies each day and recording how much he paid in £'s.

When he came to Scotland for 4 days he still insisted on fish and chips each day. Again, he recorded the price of his daily meal in different chippies.

The costs are shown in the table :-

\begin{tabular}{|lcccccc|}
\cline { 3 - 6 } \multicolumn{1}{c|}{} & Anders' Fish \& Chips & & \\
\hline Norway & \(£ 9.50\) & \(£ 10.80\) & \(£ 8.60\) & \(£ 9.80\) & \(£ 8.30\) & \(£ 7.72\) \\
Scotland & \(£ 4.50\) & \(£ 4.75\) & \(£ 4.80\) & \(£ 4.95\) & \\
\hline
\end{tabular}
a Calculate the mean cost for fish \& chips in each country.
b How much cheaper, on average, is fish \& chips in Scotland than in Norway?

In the previous exercise, you learned how to find the range of a set

Don't Forget the Mean ...
Mean - Add all the data together and divide by the number of pieces of data.

We now look at two further measures of average, - the median and the mode.
\begin{tabular}{rl}
Median - & \begin{tabular}{l}
The middle number, \\
(must put the numbers in order first).
\end{tabular} \\
\hline
\end{tabular}

Mode - The number that occurs most.
\(2,3,3,3,3,5,6,7,8,9,17\)
Median \(=5\)
the numbers are in order.
\[
\begin{gathered}
2,3,3,3,3,5,6,7,8,9,17 \\
\text { Mode }=3
\end{gathered}
\]

Mode
there are four 3's

\section*{Exercise 7}
1. Find the range and the mode for each set of data :-
a
\(2,3,4,5,6,7,8,8,9\)
b \(12,23,14,55,12,14,32,11,14\)
c \(1 \cdot 8,2 \cdot 2,2 \cdot 4,1 \cdot 5,2 \cdot 2,6 \cdot 1,2 \cdot 9\)
d \(80,6,80,6,80,6,80,6,80,6,80\)
e \(129,208,111,122,19,118,122\)
f \(\frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{4}{5}, \frac{3}{4}, \frac{1}{2}, \frac{3}{4}, \frac{1}{4}\).
2. Find the median for each set of data :- (Remember to put the numbers in order first).
a \(4,7,3,1,0,5,2,8,6\)
b \(12,22,15,17,28,10,16\)
c \(3 \cdot 6,4 \cdot 2,3 \cdot 3,4 \cdot 4,3,3 \cdot 7,4 \cdot 2\)
d \(152,163,106,214,185,160,198\).

If there is not a single middle number, take the mean of the middle two numbers. Example :-
\(2,2,4,5,6,7,8,10\)
The median is \((5+6) \div 2=5 \cdot 5\)
3. Find the median for the following :-
a
\(5,12,8,9,13,8\)
b \(5,7,8,16,4,18,13,9,11,10\)
c \(10,6,7,5,3,6,2,9\)
d \(1.2,1.3,0.7,1.6,2.2,1.5,0.8,1\).
4. Look at the data set shown opposite :-
\(a\) Find the range. b Find the mean, median and mode.
8, 9, 59,
\(10,12,4\),
c Which average is best suited to this data set?
\(5,6,4\).
d Explain why you think the other two averages are less suitable.
5. The weights of six women are shown :-
\begin{tabular}{|llllll}
65 kg & 75 kg & 88 kg & 65 kg & 72 kg & 74 kg. \\
\hline
\end{tabular}
a Find the range of their weights.
b Calculate the mode and median weights.

c Choose which is the better average of those two and explain why.
6. Cindy buys 10 jars of jelly beans. The number of beans in each is listed below :-
\[
\text { 108, 107, 109, 106, 108, 107, 108, 111, 105, } 111 .
\]
a Calculate the mean, median and mode.

b How many jars contain more than the mean number of jelly beans?
7. The heights of six men are shown opposite.
- Morag says
" the average height is 167 cm. ."
- Maureen says -
" the average height is 178 cm ."
\begin{tabular}{lll}
167 cm & 167 cm & 176 cm \\
178 cm & 183 cm & 197 cm
\end{tabular}
- Mary says - " the average height is 177 cm ."
a Explain why, technically, all three statements could be correct.
b Which of the three would be least likely to be used?
8. Thirty pupils in Primary Seven were given a 30 word spelling test. The teacher was to set a "pass" mark. Here are the marks out of 30 :-
\begin{tabular}{|llllllllll|}
\hline 18 & 21 & 23 & 19 & 24 & 25 & 17 & 20 & 18 & 18 \\
17 & 22 & 20 & 25 & 22 & 19 & 16 & 21 & 22 & 16 \\
18 & 23 & 24 & 19 & 15 & 18 & 24 & 23 & 30 & 29 \\
\hline
\end{tabular}

a Rewrite the marks in order, starting at the lowest.
b Calculate the mean, median and mode and also find the range.
c If you were the teacher, what would your pass mark have been? Give a reason!
9. The mean price of a 300 ml tube of toothpaste in 2 shops is \(£ 1 \cdot 32\). If Superchem is selling it at \(£ 1 \cdot 28\), what must Semidrug's price be ?

10.

The mean age of these three diners is 42 .
Henry is aged 46. Barry is 40.
What must Evelyn's age be?
11. In a putting competition, the mean score for the first nine contestants was 27. The next person to complete the course pulled the mean down to 26 .
What must that 10th person have scored?

A stem and leaf diagram is yet another way of displaying information.

This ordered stem and leaf diagram shows the ages of people who joined Ferguston Bowling Club this summer.

The key explains what each number in the diagram represents.

The first line reads \(21,24,26\) and 29 years old.
\(c\)
Age in Years
\begin{tabular}{|l|lllll}
\hline 2 & 1 & 4 & 6 & 9 & \\
3 & 3 & 6 & 8 & & \\
4 & 3 & 3 & 3 & 4 & 6
\end{tabular}
\begin{tabular}{|l|lllll}
\\
5 & 0 & 2 & 6 & 9 & \\
6 & 0 & 4 & 5 & 5 & 8 \\
\hline
\end{tabular}
stem

\section*{Exercise 8}
1. From the above table, it can be seen that those in their thirties are aged 33,36 and 38 .
a Write down the ages of those in their :-
(i) forties
(ii) fifties.
b What is the age of the oldest person to join?
c How many people who joined are aged :-
(i) 43
(ii) 57 ?
d How many people are over the age of 45?
e How many people joined altogether in the summer?
2. The ages of people waiting in a queue at a theme park are shown in the stem and leaf diagram opposite.
a How many people in the queue are in their
(i) thirties
(ii) fifties?

Key :-
2| 7 means 27
b What age is the youngest person?
Age in Years
c What is the difference in ages between the youngest and oldest person (range).
d Which age appears most often (mode).
e How many people are in the queue at the theme park?
\(f\) Why are there no leaves in the 4th line?
3. This stem and leaf diagram shows the response when a group of young ladies were asked how long (minutes) they spent each day on keeping fit.

a Write a key for this diagram.
c What's the modal time?
b How many were asked?
d Find the median.

\section*{Keep Fit Time}
\begin{tabular}{|l|llllll|}
\hline 0 & 7 & 8 & 8 & 8 & 8 & 9 \\
1 & 0 & 3 & 5 & & & \\
2 & 3 & 3 & 3 & 4 & 6 & 9 \\
3 & 5 & 5 & & & & \\
4 & 0 & 0 & 0 & 2 & 5 & 5 \\
\hline
\end{tabular}
4. A group of children were asked how many burgers they had eaten in the past month. The stem and leaf graph shows the results.

Burgers
a Write down each amount in order, smallest number first.

Key:-
\(3 \mid 6\) means 36
b What amount of burgers appears most often (mode).
c How many children ate no burgers?
d How many children were asked?
\begin{tabular}{|l|lllll|}
0 & 0 & 0 & 1 & 6 & \\
1 & 1 & 4 & 4 & 4 & \\
2 & 0 & 1 & 1 & 2 & 5 \\
3 & 6 & 9 & & & \\
4 & 0 & 0 & 3 & & \\
\hline
\end{tabular}
e Work out the median number of burgers eaten.
5. The race times, in minutes, for the under-fifteen Bishopton Fun Run were recorded in an unordered stem and leaf diagram.

If this unordered diagram was rearranged to form an ordered stem and leaf diagram the first line would read as :-
\[
\begin{array}{l|lllll}
2 & 1 & 278
\end{array}
\]
a Write out the 2nd line in order.

b Redo the stem and leaf diagram with all the lines in order.
c Find the modal time, the median time and the range of times.
d How many of the under-fifteens took over an hour to complete the fun run?
6. HVM have only 12 computer games left in their sale. Their prices are shown in a table.
Copy the diagram with the stem and put in the leaves to make it an ordered stem and leaf diagram.
\begin{tabular}{|cccc|}
\hline\(£ 7\) & \(£ 22\) & \(£ 16\) & \(£ 12\) \\
\(£ 33\) & \(£ 8\) & \(£ 20\) & \(£ 19\) \\
\(£ 14\) & \(£ 23\) & \(£ 8\) & \(£ 25\) \\
\hline
\end{tabular}

(Remember to give it a key).
7.
\begin{tabular}{|cccccc|}
\hline 12 & 17 & 46 & 46 & 37 & 11 \\
8 & 16 & 29 & 30 & 46 & 49 \\
14 & 50 & 20 & 33 & 47 & 14 \\
24 & 35 & 47 & 23 & 18 & 5 \\
\hline
\end{tabular}

A teacher recorded the marks (out of 60) for a History test.
Construct an ordered stem and leaf graph using the information.

8. This table shows how long (in seconds) a group of teenagers were able to hold their breath under water.
a Construct an ordered stem and leaf diagram.
\begin{tabular}{|lllllll|}
\hline 15 & 25 & 12 & 30 & 42 & 61 & 19 \\
51 & 37 & 23 & 48 & 57 & 18 & 23 \\
16 & 48 & 26 & 61 & 37 & 19 & 61 \\
35 & 26 & 43 & 21 & 54 & 60 & 15 \\
\hline
\end{tabular}

b How many managed over 30 seconds?
c Find the range, mode and median time.
9. For the two sets of data below :-
a Construct an ordered stem and leaf diagram
c Write down the mode
b Find the range
d Calculate the median.
(i)
\begin{tabular}{|llllllllllll|}
\hline 126 & 151 & 162 & 173 & 102 & 132 & 166 & 157 & 170 & 111 & 116 & 128 \\
112 & 133 & 126 & 165 & 117 & 123 & 150 & 160 & 128 & 143 & 140 & 151 \\
131 & 128 & 164 & 156 & 121 & 168 & 140 & 153 & 162 & 167 & 104 & 175 \\
\hline
\end{tabular}
(ii)
\begin{tabular}{|cccccccccccc|}
\hline 3.5 & 2.4 & 4.7 & 1.8 & 5.7 & 4.5 & 1.2 & 4.0 & 5.3 & 6.2 & 6.8 & 4.2 \\
2.9 & 2.7 & 1.4 & 2.4 & 6.5 & 5.2 & 1.1 & 4.5 & 2.3 & 3.4 & 5.1 & 0.6 \\
5.0 & 2.8 & 4.8 & 2.3 & 5.2 & 4.7 & 5.2 & 6.3 & 2.5 & 5.8 & 5.9 & 1.1 \\
\hline
\end{tabular}
10. This question shows a back-to-back stem and leaf diagram, giving the age and gender of people at a wedding.
a Explain what you think - \(99 \begin{array}{lllllll}9 & 3 & 1 & 6 & 8 \text { means. }\end{array}\)
b How many males at the wedding are aged :-
(i) 19
(ii) 33
(iii) 50 ?
c Find the modal age and median age of :-
(i) the males
(ii) the females.

Age of People
\begin{tabular}{|c|c|}
\hline Male & Female \\
\hline 99631 & 268 \\
\hline 8302 & 05 \\
\hline 87331 & 46667 \\
\hline 322224 & 01358 \\
\hline 8325 & 015 \\
\hline
\end{tabular}
d How many people were at the wedding?
11. The table below gives the ages of a few men and women when they got married.
\begin{tabular}{|lllllllll|}
\hline Men & 23 & 35 & 45 & 32 & 19 & 23 & 33 & 37 \\
Women & 22 & 18 & 19 & 23 & 27 & 27 & 30 & 29 \\
\hline
\end{tabular}

a Draw an ordered back to back stem and leaf diagram to represent this information.
b Find the modal and median ages of :-
(i) the men
(ii) the women.
12. a Draw an ordered back to back stem and leaf diagram showing the details about the heights (in centimetres) of the players in two football teams.
\begin{tabular}{|lllllllllllll|}
\hline Pollock & 148 & 156 & 172 & 181 & 160 & 157 & 164 & 132 & 184 & 146 & 157 & 139 \\
Ashfield & 182 & 174 & 138 & 145 & 175 & 162 & 159 & 175 & 167 & 173 & 144 & 150 \\
\hline
\end{tabular}
b Find the modal and median heights of :- (i) Pollock (ii) Ashfield.
c Write a few sentences comparing the mode and the median of both teams.

\section*{Conducting a Survey Properly}

A statistician is a mathematician who specialises in research into various aspects of human life and very often has to carry out surveys.

Discuss :-
When setting up a survey, preparation is very important.
Have you avoided bias in your survey? (What is bias?)
Will you use a tally box or a questionnaire?
Will you use discrete (countable) or continuous (measurable) data.
What form will the final information take?
How will you analyse and present your results?

\section*{Exercise 9}
1. Barry is to conduct a survey asking whether or not a local weekend disco should be closed down.
Explain why he should not ask the following groups :-
a The staff of the disco.
b People leaving the disco at 3 a.m. on Saturday morning.

2. Construct a questionnaire to allow several responses to the following surveys :-
a How much would you spend each week on magazines ?
b On average, how many hours sleep do you get each weekend ?
c Approximately how many kilometres do you travel to school each day ?
3. Describe each sentence below using either the words discrete or continuous.
a The number of pets each person has in a class.
b The distances pupils walk to school.
c The temperatures at noon everyday for a week.
d Time taken by runners in a 100 metre race.
4. Conduct a survey by asking the class how many pets they have.

Use in your final results three separate methods of displaying the information.
5. a Conduct a survey of your choosing, using a group of 50 people.

b Your survey should be of a numerical nature. (Not favourite colour etc.).
c Use three separate graphical methods of displaying your information.
d Analyse your data (mean, median, mode, range) and give a written report.
e Explain why you chose your subject matter and any other relevant details.

\section*{The 3 g's}
1. A survey was carried out in a sweetie shop, where children were asked to name their favourite Hiribo jelly sweet
a How many chose Jelly Frogs ?
b How many more chose Jelly Worms than Jelly Gummy Bears?
c How many less chose Jelly Fried Eggs than Jelly Babies?
d How many were asked altogether ?

2.

The line graph shows the number of bikinis sold by two swimwear companies over a period of 10 months.
Swimsport's sales are shown in red.
Paddlepro's sales are in green.
a In which month did sales peak for both companies? Why this month?
b Who sold more bikinis in May how many more?
c Which company had the biggest fall in sales between two months - which two months was that?
d Overall, who sold more bikini's over the period?
e Suggest a reason for an increase in sales by both companies later in the year.
3. In a garden centre survey, 240 people were asked which method they preferred to get rid of weeds in their garden. The results are shown in the pie chart.
a What angle at the centre is taken up by Watering Can ?
b How many people preferred :-
(i) to use a spray
(ii) to burn the weeds ?
c How many preferred to put weedkiller down using a watering can?

How to do away with weeds

4. Joe went online to find the price he would have to pay to renew the two front tyres on his car.

He found 20 garages around where he lives which had the tyres he needed in stock.
Here were the prices:- £153 £168 £174 £200 £190 £180 £200 £168 £174 £187
£180 £196 £153 £174 £185 £190 £163 £202 £181 £174
a Construct an ordered stem-and-leaf diagram, including a key.
b What is the modal price of the tyres?
c Determine the median price.
5. The table shows the eye colour of children in a Secondary 1 class.
\begin{tabular}{||c|c|c|c|}
\hline Eye colour & Number & Fraction & Angle \\
\hline Brown & 10 & \(\frac{10}{30}\) & \(\frac{10}{30} \times 360=\ldots .{ }^{\circ}\) \\
Blue & 12 & & \(\times 360=\ldots . . .^{\circ}\) \\
Green & 7 & & \(\times 360=\ldots . . .^{\circ}\) \\
Grey & 1 & & \(\times 360=\ldots . . .^{\circ}\) \\
\hline TOTAL & \(?\) & & \(360^{\circ}\) \\
\hline
\end{tabular}
a How many children are in the class?
b Copy and complete the table.
c Construct a neat accurate pie chart to show the information.
6. Thistle Holidays are promoting end of season short holidays.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multirow{3}{*}{ Month } & \multicolumn{5}{|c|}{ For 4 Nights } & \begin{tabular}{c}
Over \\
4 Nights
\end{tabular} \\
\cline { 2 - 7 } & 2 adults & \begin{tabular}{c}
Each \\
extra \\
adult
\end{tabular} & \begin{tabular}{c}
Each young \\
adult \\
\(13-16\)
\end{tabular} & \begin{tabular}{c}
Each child \\
aged \\
\(5-12\)
\end{tabular} & \begin{tabular}{c}
Each child \\
aged \\
\(0-4\)
\end{tabular} & \begin{tabular}{c}
Each additional \\
night per family
\end{tabular} \\
\hline Oct & \(£ 195\) & \(£ 68\) & \(£ 50\) & Free & Free & \(£ 20\) \\
Nov & \(£ 175\) & \(£ 60\) & \(£ 40\) & \(£ 15\) & Free & \(£ 15\) \\
Dec & \(£ 299\) & \(£ 80\) & \(£ 60\) & \(£ 30\) & Free & \(£ 35\) \\
\hline
\end{tabular}

Calculate the cost of :-
a A 4 night holiday for 3 adults and 2 children aged 3 and 14 in November.
b A 5 night holiday for 2 adults, a 13 and 15 year old and a 6 year old in December.
c Suggest a reason why December prices are a bit higher.
7. Find the range of these numbers :- \(87,29,58,25,88,19,39,15,18\).
8. Determine the mode for these lengths (metres) :-
\[
8 \mathrm{~m}, ~ 9 \mathrm{~m}, ~ 8 \mathrm{~m}, ~ 10 \mathrm{~m}, ~ 9 \mathrm{~m}, ~ 8 \mathrm{~m}, ~ 8 \mathrm{~m}, ~ 9 \mathrm{~m}, 12 \mathrm{~m}, ~ 9 \mathrm{~m}, 12 \mathrm{~m}, ~ 9 \mathrm{~m}, 12 \mathrm{~m} .
\]
9. Find the median temperature :-
\[
5^{\circ} \mathrm{C},-4^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C}, 8^{\circ} \mathrm{C},-6^{\circ} \mathrm{C}, 6^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C},-18^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C}, 3^{\circ} \mathrm{C}
\]
10. Calculate the mean weight (grams) :-
\[
60 \mathrm{~g}, 50 \mathrm{~g}, 150 \mathrm{~g}, ~ 80 \mathrm{~g}, 100 \mathrm{~g}, 110 \mathrm{~g}, ~ 40 \mathrm{~g}, ~ 70 \mathrm{~g} .
\]
11.

The contents of ten boxes of marbles are examined. The boxes have the following number of marbles :-
\[
16,18,14,17,15,16,15,15,18,16
\]
a Why is the manufacturer's claim wrong?
b An eleventh box is examined. How many marbles would need to be in that box in order for the manufacturer's claim to then be considered to be correct?
12. Shown is the number of cartons of juice bought by two mums over a number of weeks.
\begin{tabular}{|llllllllll|}
\hline Tina & 3 & 5 & 3 & 3 & 3 & 6 & 4 & 3 & 7 \\
\hline Anne & 2 & 4 & 4 & 5 & 2 & 3 & 4 & 4 & 5 \\
\hline
\end{tabular}
a Write down the modal amount bought by each mum.
b Give a reason why it is unfair to compare their purchases by using the mode.
13. Here are the prices shown by ten garages for a litre of petrol.

\section*{\(£ 1 \cdot 45, £ 1 \cdot 50, £ 1 \cdot 55, £ 1 \cdot 46, £ 1 \cdot 50, £ 1 \cdot 51, £ 1 \cdot 53, £ 1 \cdot 55, £ 1 \cdot 45, £ 1 \cdot 50\).}

Find the mode, the median and the mean price.

The mean age of 5 boys is 15 years old.
Four of the them are aged \(13,14,16\) and 19.
What is the age of the other one?
1. Write down the formula for finding :-
a Distance, given the speed you were travelling at and the time taken.
b Average Speed, given distance travelled and time taken.
c Time, given distance travelled and the speed you were travelling at.
2. Daphne took 2 hours to type 4800 words.

What was her typing speed, in words per minute.

3.

A train, travelling at a steady speed of \(160 \mathrm{~km} / \mathrm{hr}\) took \(8 \frac{1}{2}\) hours to complete its journey.

How far had it travelled?
4. A coach travelled the 448 km from Dundee to Birmingham at an average speed of \(80 \mathrm{~km} / \mathrm{hr}\).
How long did the journey take, in hours and minutes?

5.

A tall ship travelled 4.5 miles downwind in 15 minutes.
What speed did it average ?
6. Express:-
a 4 hours 36 minutes in hours only b 3.8 hours as hours and minutes
c 30 metres per second as kilometres per hour.
7. The graph shows Old Mac's bike journey from Potsby to Kinslay via Tore and back.

a At what time did Mac's journey begin?
b How far is it from :-
(i) Potsby to Tore
(ii) Tore to Kinslay?
c How long did it take him from Tore to Kinslay ?
d How far did he travel in the last half hour of the trip?
e Calculate his average speed from Potsby to Tore.
f Work out his average speed from Kinslay back to Potsby.

Time

Probability

\section*{Making a Choice}

Be able to judge sensibly when
making a choice
For discussion :- Which of these events are fair and which are not fair?
- When playing the game of Noughts and Crosses, the same player always starts first.

- The fastest runner, who enters a race, is asked to run further than the others.
- You toss a coin to decide which team bats first in a game of cricket.
- A bag contains 3 red balls and 7 green balls.

You must pick a red ball to win.
- A man races a child in a 50 metre swimming pool.

\section*{Exercise 1}
1. Liz and Ted, are playing a game of Rock - Paper - Scissors.
a Make a list of the 3 possible choices Liz could make.

b There are 9 possible combinations for each game. What are they?
c Play the game with a partner 18 times. Record how many times each player wins.
d If it is a game of chance, how many times should each child win?

\section*{Probability Expressed in Ratio Form}

The probability of an event happening is a measure of how likely it is that it will occur.
\(P\) (Probability) = the number of favourable outcomes compared to the number of possible ways it can occur.

If you are rolling a 6 sided dice, the probability of rolling a 4 is found as follows :-
1 possible way it can roll (4) - compared to 6 possible ways it can happen (1,2,3,4,5,6).
The probability is 1 in 6 . This can be written as \(\quad P(4)=1\) in 6 .
The probability of rolling an even number using the same dice is :-
3 ways that the number can be even \((2,4,6)\) - compared to the 6 possible outcomes.
The probability is 3 in 6 . We can simplify this to \(P(\) even \()=1\) in 2 .

\section*{Exercise 2}
1. A jar has 1 green, 5 red and 4 blue marbles in it.

If a marble is chosen at random, find these probabilities :-
a P (green)
b \(\quad P(\) red \()\)
c \(P\) (blue)
d \(P\) (black).
2. 2 coins are tossed at the same time.

One possibility is there will be two heads showing \((\mathrm{H}, \mathrm{H})\).
a List all 4 possible ways the two coins could land.
b What is the probability of two heads showing? \((H, H)\).
c What is the probability of two tails showing?

d What is the probability of a head and a tail showing?
e What is the probability of any other combination showing?
3. These number cards are placed in a box and taken out at random.
a Which number has the greatest chance of being chosen? Why?
b Which number has the least chance of being chosen? Why?
c What is the probability that the card with 3 on it will be chosen?

d If you take 4 cards from the box are you guaranteed of choosing at least one 5?
4. Roll a 6 sided dice 30 times and record the results.
a Draw a graph to show how often each number shows.
b What does your graph show?
c How many times do you think each number 1 to 6 should turn up in the 30 throws of your dice?
d Compare your results to the others in your class. What did you find?

5. In a bowl of fruit there are 3 oranges, 2 apples and 5 bananas.
a One is chosen at random. Find :-
(i) P (an orange)
(ii) P (an apple)
(iii) \(\mathrm{P}(\mathrm{a}\) banana)
(iv) P (a pear).
b If, when I choose one of the fruits I always put it back each time, how many times would I expect to get :-
(i) an orange from 10 picks
(ii) an apple from 50 picks
(iii) a banana from 100 picks
(iv) a pear from 30 picks?

6. When a red dice and a green dice are rolled a combination of pairings \((1,1)(1,2)(1,3)(1,4)(1, \ldots)\left(1, _\right)\) can be set up to show all the possible outcomes. \((2,1)(2,2)(),(),(),(\),
a Copy the first few combinations shown and complete the list to show them all.
(,)
........
If the two numbers in each combination are then added we get all the totals from 2 to 12 .
b How many different combinations of pairings can you get?
c Copy the table and complete it to show all the possible totals of the combinations.
The probability of a total score of 3 is :- 2 in 36. (there are 2 ways out of 36 possible combinations).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Dice 1 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & 2 & 3 & 4 & & & \\
\hline 2 & 4 & & & & & \\
\hline & 4 & & & & \\
\hline 4 & & & & & & \\
\hline 5 & & & & & & \\
\hline 6 & & & & & & \\
\hline
\end{tabular}

This simplifies to :- 1 in 18.
d What is the most likely total to get when you roll 2 dice? Why?
e What is the least likely total? Why?

\(f \quad\) What is the probability, (simplify as far as possible), of scoring a total of :-
(i) 2
(ii) 4
(iii) 7
(iv) 10
(v) 1 ?

9 What is the probability of scoring :-
(i) a total higher than 8
(ii) a double e.g. \((2,2)\) ?
7. A six-sided dice is rolled and a four-sided spinner is spun at the same time.
a Write down all possible combinations of pairings. How many are there?
\[
(1,1)(1,2)(1,3)(1,4) \text { etc......... }
\]

b Construct a table, similar to question 1, to show all the possible totals of the combinations.
c What is the probability, (simplify as far as possible), of scoring a total of :-
(i) 3
(ii) 5
(iii) 7
(iv) 8 ?
d What is the probability of scoring :-
(i) a total lower than 6
(ii) a total higher than 8?
8. A five-sided spinner and an eight-sided spinner are spun at the same time.
a Write down all possible combinations of pairings.
b Construct a table to show all the possible totals of the combinations.
c What is the probability, (simplify as far as possible), of scoring a total of :-
(i) 6
(ii) 10
(iii) 12
(iv) 13
(v) more than 11 ?

We can also use fractions between 0 and 1 to show the probability that something will happen.

This spinner has 8 coloured sections, equal in size.

The probability that it will land on blue is given by :-
\[
\begin{array}{ll}
\mathrm{P} \text { (blue) }=\frac{\text { number of blue sections }}{\text { total number of sections }}=\frac{4}{8}=\frac{1}{2} \\
\mathrm{P} \text { (purple) }=\frac{\text { number of purple sections }}{\text { total number of sections }} & =\frac{1}{8} \\
\mathrm{P}(\text { green })=\frac{\text { number of green sections }}{\text { total number of sections }} & =\frac{3}{8}
\end{array}
\]

* Note that the probability it will land on any colour \(=\frac{8}{8}=1\) (a certainty).

The probability that it will land on an orange colour section \(=0\) (an impossibility).

\section*{Exercise 3}
1. A bag contains 5 yellow balls and 10 red balls.

A ball is chosen at random. What is the probability that it will be yellow?

2.

A box of chocolates has 8 strawberry creams and 12 coffee creams.
If a chocolate is chosen at random, what is the probability that it will be a coffee cream?
3. A six sided dice numbered 1 to 6 is rolled.
a What is the probability it will show a two? Record it as \(P(2)=\ldots\)
b What is the probability it will show a four ? \(P(4)=\ldots\)
c What is the probability it will show an odd number ? \(P(\) odd \()=\)...

d What is the probability it will show a number bigger than 1 ? \(P(>1)=\)...
e What is the probability it will show an eight ? \(P(8)=\)...
4. The names of 12 boys and 18 girls are put into a draw for the remaining school disco ticket.

If a name is chosen at random, what is the probability that it will be :-
a aboy's name
b a girl's name?

5.

A 12 sided spinner is spun until it stops on a number.
Find the following probabilities :-
a \(P(7)\)
c \(\quad P\) (multiple of 4)
b \(\quad P\) (even)
d \(\quad P\) (two digit number)
e \(P\) (prime number).
6. At a school fete, people throw a 50 pence coin onto a grid to win a prize.
If a coin actually lands on a square on the board, what is the probability the person :-
a will lose
b will win a prize
c will win \(£ 1\)
d will win \(£ 5\)
e will end up with less than their initial stake ?
\begin{tabular}{|c|c|c|c|}
\hline lose & \(£ 1\) & lose & \(£ 1\) \\
\hline lose & \(25 p\) & \begin{tabular}{c}
lose \\
£5
\end{tabular} & \(£ 1\) \\
\hline lose & \(20 p\) & lose \\
\hline lose & \(50 p\) & lose & \(75 p\) \\
\hline
\end{tabular}
7. In a word game, letters are chosen at random from the word :-

Work out the following probabilities :-
a \(P(T)\)
b \(P(E)\)
c \(\quad \mathrm{P}\) (vowel)
d \(P\) (not a vowel).
8. A pack of standard playing cards contains 52 cards (see below).

A card is chosen at random. What is the probability that it will be :-
\begin{tabular}{lllll}
a black & b & red & c & a spade \\
d an ace & e & King of hearts & f & a face card \\
g smaller than 6 & h & red or black & i & a joker?
\end{tabular}
9.

A farmer has 4 white, 6 black and 20 brown cows in a shed that need to be milked.

What is the probability the first cow through the gate will be :-
a white
b brown
c not black?
10. A plastic bag holds 13 cans of diet cola and 12 cans of regular cola.
a If a can is chosen at random, what is the probability that it will be diet cola?
b If that diet cola can is not put back into the bag, what is the probability that the next can chosen will be regular cola?

11. A bag contains 5 discs, numbered 1,2,3,4 and 5 . Mandy takes a disc at random from the bag.

She notes the number and puts the disc back.
She shakes the bag and picks again.
She adds this number to the first number.
a Copy and complete the table to show all possible totals.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1st No. & 1 & 2 & 3 & 4 & 5 \\
\hline 2nd No.
\end{tabular}
b Calculate the probability that Mandy's total is :-
(i) 8
(ii) 10
(iii) 1
(iv) 3 or 4 .
12. Three \(2 p\) coins are tossed at the same time.
a Write down all possible combinations of the outcomes.
b How many are there in total?

(HHH), (HTH),
c Write down the probability that there will be :-
(H T T), \(\qquad\)
(i) three heads
(ii) 2 of one kind and one of the other
(iii) only one tail
(iv) 3 coins all the same.
13. The probability of choosing a page from a newspaper with no adverts in it is known to be 0.15 .

If there are 60 pages in this newspaper, how many pages
 don't have any adverts?
14. Andy was told that the probability of him choosing a white chocolate truffle, his favourite, from a box of continental truffles was 0.4.

When he counted, he discovered there were 8 white truffles in the box. How many truffles were there in the box altogether?

\section*{Extended Probability 1 - Independent Events}

Be able to work
out probability in independent events
Two events are independent if the fact that \(A\) occurs does not affect the probability of \(B\) occurring.
- Landing on a Head when tossing a coin and rolling a 6 on a dice.

- Choosing a Queen from a pack of cards, replacing it, and then choosing an Ace.

Example :- A cupboard contains 4 pairs of shoes - brown, black, red and white. Without looking, you reach into the cupboard and choose a pair. You put that pair back into the cupboard and choose a second pair. What's the probability that you will choose a brown pair both times?
```

P(brown) = \frac{1}{4}=>P(\mathrm{ brown \& brown ) = P(brown) }\timesP(\mathrm{ brown ) = 支 }\times\frac{1}{4}=\frac{1}{16}

```

Rule :- When 2 events, \(A\) and \(B\), are independent, the probability of both occurring is :-
\[
P(A \text { and } B)=P(A) \times P(B)
\]

\section*{Exercise 4}
1. A coin is tossed at the same time as a 6-sided dice is rolled.

Find the probability of a tail and the number 4 appearing.

2. A card is chosen at random from a pack of 52 cards.

It is then replaced and a second card is chosen.
What is the probability of choosing a King and then a Ten ?
3. A jar contains 3 red, 5 green, 2 blue and 6 yellow marbles.

A marble is chosen at random from the jar.
After replacing it, a second marble is chosen.

What is the probability of choosing a green followed by a yellow marble?
4. A Xmas tree has 6 green baubles, 3 red baubles, 5 white baubles and 7 yellow. Two baubles are chosen from the tree, with replacement.

What is the probability that both baubles chosen are red?

5. Four cards are chosen from a standard pack of 52 playing cards with replacement.

What is the probability of choosing four Clubs in a row?
6. Spin a spinner numbered 1 to 9 and also toss a coin.

What is the probability of getting an Even number on the spinner and a Head on the coin?

\title{
Extended Probability 2 - Dependent Events
}

\section*{Dependent Events}

Two events are dependent if the outcome of the first affects the outcome of the second so that the probability is changed.

Example :- A card is chosen at random from a pack of 52 playing cards.

Without replacing it, a 2nd card is chosen.
What is the probability that the first card chosen is a Queen and the 2nd card chosen is an Ace?
\(P(\) queen on 1 st pick \()=\frac{4}{52}\)
\(P\) (ace on 2nd pick without queen on 1 st pick) \(=\frac{4}{51}\)
\(P(\) queen \& ace \()=\frac{4}{52} \times \frac{4}{51}=\frac{16}{2652}=\frac{4}{663}\)

Rule :- When 2 events, \(A\) and \(B\), are dependent, the probability of both occurring is :-
\[
P(A \text { and } B)=P(A) \times P(B \text { without } A)
\]

\section*{Exercise 5}
1. Two cards are chosen at random from a pack of 52 cards without replacement.

What is the probability they are both hearts?
2. Two cards are chosen at random from a pack without replacement.

What is the probability that the first card is a four and the second card is a nine?
3. Three cards are chosen at random from a pack without replacement.

What is the probability of choosing a Jack, a Queen and a King in that order?
4.

A school buys 20 printers, but 4 are faulty.
Three printers are randomly chosen and tested.
What is the probability all three are the ones which don't work if the first and second ones are not replaced after being tested?
5. In a Higher English exam, 5 out of 25 students got an " \(A\) " pass.

If three students are picked out at random without replacement, what is the probability that all three got an " \(A\) " in the exam?

6.

A school survey found that 7 out of 10 pupils walk to school.
If four pupils are selected at random without replacement, what is the probability that all four walk to school?

\section*{The 3 g's}

\section*{Revisit - Review - Revise}
1. A plastic bag contains 7 chillies, 9 beetroot and 11 carrots.
a If one of these is picked at random, what is the probability it will be a beetroot?
b If it is a beetroot and is not put back into the bag, what

2. A group of over forty's were asked how they dried their hair.

The results are shown in the table.
What is the probability, (simplest form), that a person chosen at random from this sample will :-
a use a hair dryer
b be male and use a towel?

\begin{tabular}{|l|c|c|}
\hline Mender & Towel & Dryer \\
\hline Female & 20 & 90 \\
\hline Male & 60 & 30 \\
\hline
\end{tabular}
3. In a baker's shop, the probability that an iced doughnut will remain in stock by the end of the day is known to be 0.2 .

One day, there were 10 iced doughnuts left at closing time.
How many must there have been in the shop that day to begin with ?

4.

The probability of your purchase being stuck in a vending machine is 0.004 . If a vending machine is used 5000 times per year, how many times should you expect to be unlucky and have a need to complain?
5. Two five-sided spinners were spun at the same time.

By writing out all the combinations, calculate the probability of getting :-

a a double 2
b a total of 6 or less from both spinners.
6.

A purse contains 2 fifty pence coins, 4 twenty pence coins and a few ten pence coins.

One of the coins is chosen at random.

The probability of a 10 p coin being chosen is \(\frac{1}{4}\). How many 10 pences must there be in the purse?
7. A jar contains 20 red, 30 green, 10 blue and 5 yellow jelly beans.

A jelly bean is chosen at random from the jar.
After replacing it, a second bean is chosen.
What is the probability of choosing a red and then a yellow jelly bean?

\section*{Revision of ALL GFE Level 3 Work}

Revise all work covered in CfE
sign.
Do NOT use a calculator except where you see the

a \(\quad 2.4156\)
1. Round to 3 decimal places :-
2. Round to 2 significant figures :-
a \(\quad 9.867\)

Level 3

b 0.008499 .
b
4648720.
3. How many significant figures does the number 0.009200 have?
4. By rounding, find an approximate answer to \(78450 \div 179\).
5. A farmer's crop of 70 kg of potatoes is sealed into 3.5 kg plastic bags.

He sells the bags at \(£ 1.50\) each. How much money will he make?

6. A \(42^{\prime \prime}\) TV set was on sale for \(£ 480 \cdot 00\). I bought it using a hire purchase agreement :-
- I paid an initial deposit of \(25 \%\) of the cash price
- I then made 10 payments of \(£ 39 \cdot 50\) each
a How much did it cost me paying it up this way?
b How much would I have saved if I had paid cash ?

7. Find:-
a \(\quad 41 \times 300\)
b \(\quad 66400 \div 80\).
8. What is the answer to :-
a \(5+2 \times 3\)
b \(\quad 15-10 \div 5+3\) ?
9. Find:-
\begin{tabular}{llll}
a & \((-10)-4\) & b & \(15-(-12)\) \\
d & \((8) \times(-4)\) & e & \((-45) \div(-5)\)
\end{tabular}
c \(69+(-70)\)
d \((8) \times(-4)\)
e \((-45) \div(-5)\)
\(f \quad(-1)^{7}\).
10. Find the lowest common multiple of :-
a 8 and 6
b 4,5 and 6 .
11. Find the highest common factor of :-
a 24 and 42
b 21,42 and 63 .
12. List all the prime numbers between 50 and 80 .
13. As a product of its prime factors, 60 can be written as \(2 \times 2 \times 3 \times 5\).

Write the number 56 as a product of its prime factors.
14. Find:-
a \(5^{2}\)
b \(20^{2}\)
c \(3^{3}\)
d \(\quad 54\)
e \(\sqrt{64}\)
f \(\sqrt{900}\).
15. Change to a decimal :-
a \(\frac{3}{5}\)
b \(3 \%\).
16. Change to a percentage :-
a 0.2
b \(\frac{3}{4}\).
17. Find:-
a \(50 \%\) of \(£ 170\)
b \(20 \%\) of \(£ 3.50\)
c \(\quad 12 \frac{1}{2} \%\) of \(\$ 40\).
18. A greenhouse is priced at \(£ 1200\).

In a sale, a discount of \(5 \%\) is given.
How much would I pay for the greenhouse in the sale?

19.

The Gaiety Theatre was having a refit and the seating capacity was increased by \(30 \%\).

The old theatre had an original audience of 450 .
How many can the revamped theatre hold?
20. Find:-
\[
\text { a } \quad \frac{1}{4}+\frac{1}{3}
\]
b \(\quad 2 \frac{3}{4}+3 \frac{5}{8}\)
c \(6 \frac{1}{3}-4 \frac{3}{5}\).
21. Change :- a \(3 \frac{5}{6}\) to a top heavy fraction b \(\frac{21}{4}\) to a mixed number.
22. If a lift takes 33 seconds to climb 6 floors, how long will it take to climb 1 floor?
23. 1 chocolate chip cookie costs 45 p. I got a pack of 8 for \(£ 3\).

Had I received a discount? (Explain).

24. 5 trips to the dump with my car when clearing out my loft took 2 hours 5 minutes.

How much longer would an extra 3 trips take?
25. Which is the better buy here?

The 700 ml bottle of olive oil or the 2 litre can? (Explain).

26.

Georgio is a waiter in a hotel and earns \(£ 12\) per hour.
He was called in at the weekend to help at a wedding.
Overtime is paid at time and a half.
Over the weekend, he put in 12 hours overtime.
How much was he paid for his weekend overtime work?
27. Avril is a primary teacher. Her gross monthly pay is \(£ 2350\). Her monthly deductions are Income Tax - £370, National Insurance - £115 and Graduated Pension - £108. What is Avril's net monthly pay ?

28. a A truck covers 260 miles in 4 hours. What is the truck's average speed ?
b The Hubble telescope travels round the earth at \(7.5 \mathrm{~km} / \mathrm{second}\). How far will it fly in 8 seconds at this speed?

c A car is towed at a steady speed of \(40 \mathrm{~km} / \mathrm{hr}\). How long will it take it to cover a distance of 90 km ?

29. Shown is a graph indicating how far a plane travels as it flies from Edinburgh to Athens in Greece.

Calculate the average speed of the plane.

30. Calculate the area of each of these shapes :-
a

b

\(\square\)
32.

The diameter of this circular wooden lid is 20 cm . Calculate the area of the lid.
33. Calculate the capacity of this water tank in litres.

Calculate the area of this shape.
35. Write the next two numbers in the following sequences :-
a \(187,178,169,160, \ldots, \ldots\)
b
\(2,6,12,20, \ldots, \ldots\)
c \(1,1,2,3,5,8,13, \ldots, \ldots\)
36. This table shows the height of a tomato plant over a 5 day period.
\begin{tabular}{|l|ccccc|}
\hline No. of day's \((d)\) & 1 & 2 & 3 & 4 & 5 \\
\hline Height in \(\mathrm{cm}(H)\) & 15 & 21 & 27 & 33 & 39 \\
\hline
\end{tabular}

Use the table to devise a formula connecting \(H\) and \(d\).

37. Simplify :-
\[
\text { a } \quad 8 x-3 y-5 x+10 y
\]
b \(\quad 5 a \times 4 b\).
38. Multiply out brackets :a \(2 m(3 m-2 n)\)
b \(\quad-4(3 x-5 y)\).
39. Simplify fully :- \(\quad 9 t+6 s-3(t-4 s)\).
40. If \(p=13, q=4\) and \(r=-3\), find the value of \(\frac{p-r}{2 q}\).
41. Solve :-
a \(3 x-2=16\)
b \(\quad 6 x+5=3 x+29\)
c \(4(2 x-3)=x+2\)
d \(\frac{1}{2} x-9=13\).
42. Solve these inequalities:- a \(5 x-2>28\)
b \(\quad \frac{1}{3} x+7 \leq 22\).
43.

a Write down a formula for the area (\(A\)) of this shape in terms of \(a, b, c\) and \(d\).
b Evaluate the formula given :\(a=3 \cdot 5, b=4 \cdot 5, c=3\) and \(d=6\).
44. Find the value of the angle marked * in each of these figures :-

b

c

45. What is the compass direction for the 3 figure bearing \(225^{\circ}\) ?
46. As the captain of a ship sails on a bearing of \(050^{\circ}\), he notices another ship going in the exact opposite direction. On what bearing must the 2nd ship be heading?
47. This drawing of Cologne Cathedral was done to a scale :-

1 cm represents 40 metres.
What is the real height of the cathedral?

48.

Shown is an umbrella and a photograph of it. Calculate the scale factor and use it to determine the span (\(h \mathrm{~cm}\)) of the blue nylon part of the umbrella.
49.

50. State (yes or no) which of these shapes would tile a flat surface?

b

c

d

e

51. Here are the bank balances of a group of students. £50, £20, -£10, £50, -£20, £110, £80, £20, -£50, £50.
a What is the range of the bank balances ?
c What is the median balance ?
52. Jen's mean mark out of 3 tests was 58.

She scored 62 in English and 36 in French.
What must Jen's mark have been in her Maths test?
b What is the modal balance? (the mode).
d What is the mean balance?

53. Four finals in the Olympics were being shown on TV at the same time. The pie chart shows which sport a group of women chose to watch.
a What fraction of the women chose to watch the 100 m race?
b If 180 women took part in the survey, how many of them watched the 100 m race?

54.

This pack contains 1 yellow, 3 blue, 5 red and 6 green pencils. What, in its simplest form, is the probability the first pencil chosen from the pack is green?
55. From a group of people, the number wearing glasses is noted.

The probability of choosing one from the group who is actually wearing glasses is 0.25 .

In fact, 5 from the group were wearing glasses.

How many were not wearing glasses?
56. Copy this shape and rotate it by a half turn around the red dot.

\title{
answers to Book 3b
}

Answers to Chapter 0 (page 1)
\begin{tabular}{llllll}
1. & a 4000 & b 200000 & & \\
2. & a 68000 & b 0.99 & & \\
3. & a 127000 & b 0.0622 & & \\
4. & a & 3 & b 2 & c & 5 \\
5. & a 16000 & b 800000 & c 60 \\
& d 300 & e 300 & c 0.2 \\
6. 8499 & & & & \\
7. & a 930 & b 846000 & c 161200 \\
& d 220 & e 2000 & f 1400 \\
8. & a 10 & b 17 & c 4
\end{tabular}
9. \(a(7+2) \times 4=36\)
b \(15 \div(5-2)=5\)
c \((7+8) \div(2+3)=3\)
10. 2 adults and 6 children
11. a \(105^{\circ}\) b \(15^{\circ}\)
\begin{tabular}{|c|c|c|c|}
\hline & . a \(59^{\circ}\) & b \(45^{\circ}\) & \\
\hline & d \(70^{\circ}\) & e \(139^{\circ}\) & \\
\hline & f \(50^{\circ}\) & \(g 68^{\circ}\), & \\
\hline & h \(73^{\circ}, 73^{\circ}\) & i \(40^{\circ}\), & \\
\hline & . a -3 & b 2 & \\
\hline & d 10 & e -3 & f 10 \\
\hline & 90 & h -3 & \\
\hline & a 0 & b 1 & c 38 \\
\hline & . a -20 & b 21 & c -5 \\
\hline & d 4 & e -36 & f -15 \\
\hline & 90 & h -48 & i 15 \\
\hline & j 26 & & \\
\hline & . a \(25^{\circ} \mathrm{C}\) & b -160 & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\text { 17. } \begin{aligned}
& M(-4,-3), N(4,4), P(5,-2), Q(-1,-4) \\
& R(-4,4), S(-3,0), T(2,2), V(1,-2)
\end{aligned}
\]}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{18. a see diagram} \\
\hline \multicolumn{4}{|c|}{b \(\mathrm{D}(3,-2)\)} \\
\hline \multicolumn{4}{|r|}{c \(A^{\prime}(-1,0), B^{\prime}(-3,-4), C^{\prime}(1,-2), D^{\prime}(3,2)\)} \\
\hline
\end{tabular}
19. a \(0.2, \frac{1}{5} \quad\) b \(0.05, \frac{1}{20}\)
c \(0.36, \frac{9}{25}\) d \(0.75, \frac{3}{4}\)
e \(0.666 \ldots, \frac{2}{3} f 0.005, \frac{1}{200}\)
\begin{tabular}{llll}
20. a \(35 \%\) & b \(4 \%\) & c \(70 \%\) \\
d \(27.5 \%\) & e \(150 \%\) & f \(33 \frac{1}{3} \%\) \\
21. a \(£ 48\) & b \(£ 24\) & \\
c \(£ 3000\) & d \(\$ 1200\) & \\
22. \(£ 180\) & & \\
23. a \(£ 57.80\) & b 620 kg & c \(£ 10.66\) \\
d \(£ 66\) & e \(£ 4730\) & f \(£ 4.20\) \\
g \(£ 900\) & & \\
24. a & (i) \(£ 1914.75\) & (ii) \(£ 22977\)
\end{tabular}
b 78 sheep
\begin{tabular}{|c|c|c|}
\hline 25.a \(2 d\) & b \(p^{2}\) & c 32c \\
\hline d \(5 x+4 y\) & \(e t^{3}\) & f \(35 a b^{3}\) \\
\hline g 5 m & h \(12 n\) & \\
\hline 26. a 19 & b 20 & c -40 \\
\hline d 48 & e 2 & 2 \\
\hline 9 10 & h 4 & \\
\hline 27. a \(5 x+15 y\) & b 3m2-15m & \\
\hline c \(-4 h+12\) & d \(-10 q+2 q^{2}\) & \\
\hline 28.a \(5 x\) & b 12b-12 & c 3d-4 \\
\hline d \(12 x-6\) & e + + 3 & f \(4 \mathrm{~g}-4\) \\
\hline 29.a 13.4 & b 6 & \\
\hline 30. a \(P=4 a+2\) & + \(c\) & \\
\hline b 67 & c 15 & \\
\hline
\end{tabular}
31. a \(64 \mathrm{~cm}^{2}\) b \(66 \mathrm{~cm}^{2}\) c \(210 \mathrm{~mm}^{2}\)
a \(1260 \mathrm{~mm}^{2}\) b \(336 \mathrm{~cm}^{2}\) c \(216 \mathrm{~cm}^{2}\)
32. a 32 cm b 35 cm c 72 mm
d 154 mm e 100 cm f 64 cm
33. a \(125 \mathrm{~cm}^{2}\) b \(270 \mathrm{~cm}^{2}\) c \(49.5 \mathrm{~cm}^{2}\)
34. a \(\frac{2}{10}, \frac{3}{15} \quad b \quad \frac{6}{22}, \frac{9}{33}\)
35. a \(\frac{3}{4}\)
b \(\frac{7}{12}\)
c \(1 \frac{2}{15}\)
d \(\frac{23}{30}\)
36. a \(\frac{11}{5}\)
b \(\frac{29}{6}\)
37. a \(1 \frac{1}{6}\)
b \(5 \frac{3}{5}\)
38. a \(7 \frac{4}{5}\)
b \(4 \frac{3}{4}\)
c \(3 \frac{11}{12}\)
d \(3 \frac{5}{8}\)
e \(4 \frac{7}{20}\)
f \(3 \frac{11}{12}\)
g \(2 \frac{17}{30}\)
h \(4 \frac{5}{8}\)
39. \(2 \frac{5}{12}\) litres
40. a 18.84 cm b 47.1 cm
41. 12 inches
42. 30 cm
43. a 89.25 cm b 62.13 mm c 26.42 m
44. a \(3850 \mathrm{~mm}^{2}\) b \(56.7 \mathrm{~cm}^{2}\) c \(2.54 \mathrm{~m}^{2}\)
45. a \(56.5 \mathrm{~cm}^{2}\) b \(44.2 \mathrm{~cm}^{2}\) c \(578 \mathrm{~cm}^{2}\)
46. \(27: 18=3: 2\)
\begin{tabular}{rll}
47. a \(2: 3\) & b \(4: 3\) & c \(1: 3\) \\
d \(3: 4\) & e \(2: 3\) & \\
g \(2: 3\) & h \(17: 19\)
\end{tabular}
48. 40
49. 45
\(50.8000 \mathrm{~cm}^{3}\)
51. 12.5 cm
52. a 3.5 litres b 0.2 litre c 0.03 litre
53. a 2500 ml b 3150 ml c 800 ml
54. a \(4200 \mathrm{~cm}^{3}\) b \(41.6 \mathrm{~m}^{3}\)
55. a \(1728000 \mathrm{~cm}^{3}\)
b 1728 litres
56. a 60 km b 5 hrs c 350 mph
57. a 200 km b 40 mph c 5 hr 15 mi
58. a 9.30 b 15 mins c 200 mph d slowed him down - graph is less steep e 120 mph

Answers to Chapter 1 (page 8)
Exercise 1 (Page 8)
\begin{tabular}{|c|c|c|c|}
\hline & a 49 & b 25 & c 36 \\
\hline & d 64 & e 49 & f 81 \\
\hline & g 100 & h 1 & i 400 \\
\hline & j 1 & k 64 & | 1/4 \\
\hline & m 64 & n 27 & - 125 \\
\hline & p 216 & q 1 & r 1000 \\
\hline & s -1 & + 4 & u 1/8 \\
\hline & \(\checkmark 16\) & w 729 & \(\times 1024\) \\
\hline 2. & a 169 & b 289 & c 441 \\
\hline & d 676 & e 1369 & f 10000 \\
\hline & g 361 & h 90000 & i 841 \\
\hline & j 2601 & k 1849 & | 3364 \\
\hline & m 512 & n 1728 & - 6859 \\
\hline & p 15625 & q -729 & r 1/343 \\
\hline & s 1296 & + 823543 & u 256 \\
\hline & v 59049 & w 1000000 & \(\times 320000\) \\
\hline & a \(90.25 \mathrm{~cm}^{2}\) & b \(324 \mathrm{~cm}^{2}\) & \\
\hline & c \(729 \mathrm{~cm}^{2}\) & d 148.84 c & \\
\hline 4. & a 41 & b 145 & c 149 \\
\hline & d 85 & e 313 & f 38 \\
\hline & g 200 & h 841 & \\
\hline & a \(1,3,5,7\), & 9, 11, 13 & \\
\hline & b Odd Numb & bers. 15 & \\
\hline & c \(17,39,20\) & & \\
\hline & a 390625 & b same & \\
\hline 7. & a 256 & b 7776 & c 100000 \\
\hline & d 262144 & e 729 & f 2187 \\
\hline & g 1679616 & h 2401 & i 1 \\
\hline & j 0 & k 128 & | 14641 \\
\hline & m 19683 & n 2441406 & \\
\hline & - 10000000 & & \\
\hline & p 10000000 & 0000 & \\
\hline & 16 & \(r-3125\) & \\
\hline
\end{tabular}

Exercise 2 (Page 10)
\begin{tabular}{|c|c|c|}
\hline 1. a 3 & b 5 & c 7 \\
\hline d 8 & e 9 & f 10 \\
\hline 2. a 4 & b 1 & \\
\hline c 20 & d 30 & \\
\hline 3. a 20 & b 30 & c 11 \\
\hline d 19 & e 15 & f 16 \\
\hline g 13 & h 17 & i 1.2 \\
\hline j 4.5 & & \\
\hline 4. a \(4 \cdot 12\) & b \(5 \cdot 10\) & c 5.83 \\
\hline d 8.43 & e 9.75 & f 10.44 \\
\hline g 13.64 & h 24.49 & i 27.39 \\
\hline j 31.62 & & \\
\hline 5. 18 mm & & \\
\hline 6. a 3 & b 4 & c 5 \\
\hline d 10 & e 100 & \\
\hline
\end{tabular}

Answers to Review Ex 1 (page 12)

Answers to Chapter 2 (page 13)

\section*{Exercise 1 (Page 13)}
1. \(a € 558\) b 4423.5
c 5863.5 d 38502
2. \(a 1512.8\) b 11992.6
c 15896.6 d 104383.2
3. \(a € 15.50 \quad b € 1215.20\)
c € 3224 d € \(€ 30504\)
4. a \(£ 774.19\) b \(£ 881.14\)
c £138.25 d £23936.17
5. Ellen - £437•10, Kara - £414.19 (\(\sqrt{ }\)), Louise - £442
6. a \(£ 259.68\) or \(£ 238.71\) - \(\$ 370\) cheaper
b \(£ 300\) or \(£ 350\) or \(£ 345-3909\) Rand
7. a £163.23 approx
b yes - has \(€ 360\)
8. €119.04 approx
9. €744
10. Yes - by \(£ 24.36\) approx
11. a \(£ 483.87\)-> \(\$ 750\)
b divide by 13.03 then multiply by 9.83
c 1966 Yen
12. a €2480 b 4915 Yen c 4278 Rup
13. £5660 approx

\section*{Exercise 2 (Page 15)}
1. \(\mathrm{Sm}-£ 2 \cdot 40 / 100 \mathrm{~g}\), Lge \(-£ 2 \cdot 20 / 100 \mathrm{~g}(\sqrt{ })\)
2. \(5 m-35 p / 50 g(\sqrt{\prime}) L g e-40 p / 50 g\)
3. \(5 m-22 p / 25 g\), Lge \(-20 p / 25 g(\sqrt{ })\)
4. \(5 \mathrm{~m}-£ 1 \cdot 20 / 100 \mathrm{ml}\), Lge \(-95 \mathrm{p} / 100 \mathrm{ml}(\sqrt{ })\)
5. 4 nights - \(£ 75 /\) night, 5 nights - £66/night (\(J\))
6. 5 nights - \(£ 88 /\) night, 7 nights - £84/night (5)
7. Small-£13/litre, Big-£11/litre (\(\sqrt{ }\))
8. Small-£2/kg, Medium-£1.80/kg,

Large - £1•60/kg
a Large b Small
9. 6-£1.70 each, \(16-£ 1.70\) each, \(24 £ 1.70\) each
Choose any of them. All same per ball
10. Texico-£1.53/I, Jeet-£1.49/I (J)
11. Brown-£15•40/m², White - \(£ 14 / \mathrm{m}^{2}(\sqrt{2})\)
12. a Jake at \(£ 2 \cdot 40 /\) pie
b Alan at £1.40/bovril
13. Various

\section*{Exercise 3 (Page 17)}
1. a PlumbMan-£168,

PlumbServices - £166 (\(\sqrt{ }\))
b PlumbMan - £328, (\(\sqrt{ }\)),
PlumbServices - £334
2. a Jay's - £241, Kay's - £211 (\(\sqrt{ }\)) b Jay's - £349, Kay's - £267
3. \(B G-£ 165\), Vigin - \(£ 165\) - Both the same
4. a £145 b £140-could save £5
5. ElectroFix - £298.50,

Spark - £286-Yes
6. a £50 b £30
c (i) \(£ 170\)
(ii) \(£ 350\)
7. a \(£ 40\)
b £20
c (i) £140
(ii) \(£ 260\)
8. \(a / b\)

9. Various

\section*{Exercise 4 (Page 19)}
1. a Yen Rate offers 0.15 Yen/£ more b 600 Yen
2. X-Rate-49100, X-Money - 50300, Xpound - 48980
Will get 1320 Baht more with X-Money than Xpound.
3. a Glasgow Bank b £4
4. a Contract is for a year.

Can change provider easier.
5. a Car Loan b £989 c £301
6. a £119.30
b NRGEE - £123.00, Power 3 - £120.40 ScotPow (\((5)\)
c \(£ 1 \cdot 10\) over Power 3
d Power 3 for gas and ScotPow for Electricity
e £111.70-saved a further \(£ 7.60\)
f NRGEE Elec + Power 3 Gas - £128.80
- £17-10 less
7. a Power 3 Elec + SP Gas \(=£ 1395 \cdot 50\)
b \(£ 1505 \cdot 60-10 \%=£ 1355.04\).
She should accept.
8. a Q-Moble - no need for lots of call mins, 5000 texts and only \(£ 30\) per month or possibly Small Talk
b/c Discussion based on many factors
d e.g. cost of phone, calls per minute over limit, text costs, upgrade availability.
9. Various

\section*{Exercise 5 (Page 21)}
1. a You are borrowing money and if you clear your Credit card debt within a certain period (might be 1 or 2 months), you don't pay interest. On other hand you are tempted to overspend and can easily get into debt.
b Debit Card uses your money. When used, funds are taken from your bank immediately and this might cause you to be overdrawn. You could end up paying \(£ 20\) or \(£ 30\) evry time in bank charges, you use it if you are overdrawn. On the other hand, if you stay within budget, you are not charged interest.
2. a Annual Percentage Rate
b MNBA has lower APR
c \(3.0 \%\) and \(2.5 \%\)
d Amix-£36, MBBA - £30
3. APR Int for year with MNBA \(=£ 750\)

APR for 9 months AMIX = £675-(\((5)\)
4. a \(£ 202.50\) b \(£ 2430\)
c The interest at the end of each month is added on to the debt and the new interest the following month is worked out on this larger debt. Also, you are charged an admin fee for not paying.
5. £681•50!!
6. Discussion and presentation

Answers to Review Ex 2 (page 22)
\begin{tabular}{|c|c|c|}
\hline 1. a 9.7 & b 0.7 & \\
\hline 2. a 12.52 & b 0.90 & \\
\hline 3. a 1.006 & b 0.010 & \\
\hline 4. a 5000 & b 70000 & \\
\hline 5. a 0.0040 & b 5500000 & \\
\hline 6. a 125000 & b 0.0380 & \\
\hline 7. a 4 & b 3 & c 6 \\
\hline 8. a 10000 & b 600000 & c 60 \\
\hline d 300 & e 400 & \(f 0.2\) \\
\hline 9. a 45000 & b 50000 & \\
\hline 10. 4749 & & \\
\hline 11. 2000 miles & & \\
\hline 12. a 680 & b 36900 & c 1020000 \\
\hline d 190 & e 12 & f 72 \\
\hline 13. a 3 & b 18 & c 13 \\
\hline
\end{tabular}
14. a \((6+2) \times 3\) b \(18 \div(3+6)\)
c \((2+3) \times(5-3)\)
15. a 1964,2000 b \(€ 4305\) c 34
16. 5263 or 5264
17. £1845
18. a 48 b 500 grams
19. 5 lollies and 15 mice
20. \(42 p\)

\section*{Answers to Chapter 3 (page 26)}

\section*{Exercise 1 (Page 26)}
1. a \(4,8,12,16,20,24,288,32,36,40\)
b \(3,6,9,12,15,18,21,24\)
c \(5,10,15,20,25,30,35,40,45\)
d \(10,20,30,40,50,60,70\)
2. a \(9,12,15,18,21,24\)
b \(30,36,42,48,54,60\)
c \(24,32,340,48,56,64,72\)
d \(54,63,72,81,90,99\)
3. a \(2,4,6,8,10,12,14,16,18,20\)
b Even numbers
c \(1,3,5,7,9,11,13,15,17,19\) Odd Numbers
4. a The even numbers from 44 to 56
b multiples of 5 from 35 to 60
c multiples of 10 from 120 to 160
d multiples of 6 from 60 to 90
e multiples of 9 from 81 to 117
\(f\) multiples of 20 from 60 to 140
9 multiples of 15 from 15 to 75
h multiples of 50 from 600 to 800
i multiples of 13 from 39 to 91
j multiples of 250 from 500 to 1500
5. a \(3,6,9,12,15,18,21, \ldots . . .33,36\)
b \(4,8,12,16,20,24, \ldots \ldots .44,48\)
c \(12,24,36 \quad\) d 12
6. a \(4,8,12,16,20,24, \ldots . . .36,40\)
b \(6,12,18,24,30,36, \ldots .54,60\)
c 12, 24, 36, d 12
7. a \(5,10,15,20,25, \ldots \ldots55,60\)
b \(3,6,9,12,15,18, \ldots . . .42,45\)
c \(15,30,45\) d 15
8. a 10 b 6 c 36
d 12 e 18 f 20
\(\begin{array}{llll}9 & 30 & \text { h } 56 & \text { i } 30\end{array}\)
\(\begin{array}{lll}j & 72 & k 36\end{array}\)
9. a 30 b 24 c 40
d 10 e 42
f \(18 \quad g 120\)
10. 120 (about 4 months)
11. 180 seconds or 3 minutes

\section*{Exercise 2 (Page 28)}
1. \(1,2,5,10\)
2. \(1,2,4,7,14,28\)
3. \(1,2,3,6,9,18\)
4. \(1,2,4,5,10,20\)
5. a \(1,2,4,8\)
b \(1,2,3,4,6,8,12,24\)
c \(1,3,9,27\)
d \(1,2,11,22\)
e \(1,2,3,5,6,10,15,30\)
f 1,31
\(g 1,2,4,8,16,32\)
h \(1,2,5,10,25,50\)
i 1,67
j \(1,2,4,5,8,10,20,40\)
k \(1,3,5,9,15,45\)
l \(1,2,3,4,5,6,10,12,15,20,30,60\)
7. a \(1,3,9\) b \(1,7,49\)
c \(1,2,3,4,6,9,12,18,36\)
d \(1,2,4\) e \(1,5,25\)
f \(1,2,4,8,16,32,64\)
g 1, 2, 4, 8, 16
h \(1,2,4,5,10,20,25,50,100\)
They all have an ODD number of factors
8. \(a\) yes \(b\) square no's
c factors match up in pairs except for the middle one which only matches up with itself.
9. 1 row of 36,2 rows of 18,3 rows of 12 , 4 rows of 9,6 rows of \(6+\) reverse
10. a \(1,2,3,4,6,12\)
b \(1,2,3,6,9,18\)
c \(1,2,3,6\) d 6
11. a \(1,3,5,15\)
b \(1,2,4,5,10,20\)
c 1,5 d 5
12. a 3 b 4 c 10
\(\begin{array}{lll}d & \text { e } 12 \text { f } 20\end{array}\)
917 h 6
13. a 1 b 1
c \(1 \quad d 1\)
14. a 4 b \(\quad\) b
15. \(1,2,3,4,5,6,8,9,10,12\),
\(15,18,20,24,30,36,40\),
\(45,60,72,90,120,180,360\)
16. 1000
17. Various - Babylonian, Egyptian, Julian...

\section*{Exercise 3 (Page 30)}
1. \(1,2,5,10\). It has more than 2 factors

2 1, 3. It has exactly 2 factors
3. 4. No
4. It has only 1 factor, not 2 .
5. a 1,5-Yes
b \(1,2,4,8,16\) - No
c \(1,3,5,15-\mathrm{No}\)
d 1,17-Yes
e 1,23-Yes
f 1, 3, 9, 27-No
g 1,29-Yes
h 1,5, 7, \(35-\) No
i 1, 2, 4, 11, 22, 44 - No
j 1,47-Yes
k 1, 3, 17, 51 -No
l 1, 2, 31, 62 - No
6. \(20,42,33,36,40,49,50\)
7. Yes - it has 2 factors, 1 and 2
8. a forever \(b\) a millisecond-2
9. \(\mathrm{a}-\mathrm{g}\)
\begin{tabular}{|cccccccccc|}
\hline\(x\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 \\
51 & 52 & 53 & 54 & 55 & 56 & 51 & 58 & 59 & 60 \\
61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 \\
71 & 72 & 73 & 74 & 75 & 76 & 7 & 78 & 79 & 80 \\
81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\
91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 \\
\hline
\end{tabular}

> h \(2,3,5,7,11,13,17,19,23,29,31\) \(\quad 37,41,43,47,53,59,61,67,71,73\) \(79,83,89,97\)
10. a-e See Grid
f \(101,103,107,109,113,127,131\), \(137,139,149,151,157,163,167\), \(173,179,181,191,193,197,199\)
11. Various results
12. a ends in a \(5(\div 5)\)
b even \((\div 2)\)
\(c\) ends in a \(0(\div 10)\)
\(d\) each dig(it and hence the number itself) can be divided by 3
13. Project

\section*{Exercise 4 (Page 32)}
1. \(2 \times 2 \times 3 \times 5\)
2. a \(3 \times 3 \times 5\)
b \(2 \times 2 \times 3 \times 3\)
c \(3 \times 3 \times 11\)
3. a \(2 \times 2 \times 2 \times 2\)
b \(2 \times 3 \times 3\)
c \(2 \times 2 \times 5\)
d \(3 \times 3 \times 3\)
e \(2 \times 3 \times 5\)
f \(2 \times 3 \times 3 \times 3\)
g \(3 \times 3 \times 5\)
h \(2 \times 2 \times 2 \times 2 \times 3\)
i \(2 \times 2 \times 17\)
j \(2 \times 7 \times 7\)
k \(2 \times 2 \times 5 \times 5\)
l \(2 \times 3 \times 3 \times 3 \times 3\)
4. \(a / b\) Always get \(2 \times 2 \times 3 \times 5\)

\section*{Answers to Review Ex 3 (page 34)}

\begin{tabular}{llll}
& d \(£ 24 \cdot 31\) & e \(£ 7650 \quad f 5580 \mathrm{mg}\) \\
& g \(£ 3 \cdot 75\) & h \(\$ 225\) \\
6. & a \(£ 774\) & b 87 washes \\
7. & a \(£ 26 \cdot 10\) & b 144150 km \\
8. & 663 \\
9. & Chas \(-£ 20572 \cdot 50\) \\
& Tania \(-£ 20020\) \\
& Donna- \(£ 19776\) \\
10. \(£ 79\)
\end{tabular}

\section*{Answers to Chapter 4 (page 36)}

\section*{Exercise 1 (Page 36)}
1. a start at 2 and go up by 3
b start at 7 and go up by 6
c start at 25 and go down by 5
d start at 98 and go down by 17
e start at 3 and times by 3 each time
\(f\) start at 1 and times by 6
9 start at 200 and divide by 2
h start at 192 and divide by 4 ...
i start at 1 and times by 4
j start at \(11 / 2\) and go up by \(1 / 2\)...
k start at 53/4 and go down by \(1 / 2\)...
I start at 1 and double each time
m start at 200 and subtract 100 ...
n start at 108 and divide by 3
o start at 2 then up 1 , down 1 , up 1
2. a 17,20 b 31,37 c 5,0
d 30,13 e 243,729 f 1296,7776
\(g 12 \cdot 5,6 \cdot 25 \mathrm{~h} 3 / 4,3 / 16\) i 256,1024
\(\begin{array}{lll}j & 31 / 2,4 \quad \text { k } 33 / 4,31 / 4 \mid 16,32\end{array}\)
\(m-200,-300 n^{4 / 3}, 4 / 9 \quad 02,1\)
3. a 15,17 b 21,25 c 18,16
d 22,10 e 27,81 f 32,64
\(\begin{array}{lll}g & 12,6 & \text { h } 1,0 \cdot 1\end{array}\) i 21,26
\(\begin{array}{lll}j 13,21 & k 13,18 \quad \mid & 42,56\end{array}\)
\(41,4,9,16,25,36,49,64,81,100,121\), \(144,169,196,225,256,289,324\), 361, 400
5. a triangle with \(1+2+3+4+5\) circles b 4 c 5
d (i) 66 (ii) 78 (iii) 91
e 69th number \(=68\) th number +69
f \(1,3,6,10,15,21,28,36,45,55,66\), \(78,91,105,120,136,153,171,190\) 210
6. a 1 11 121 1331 14641 15101051 1615201561
b start and end each row with 1. All other numbers found by adding the 2 numbers abpove together
c 172135352171 18285670562881 193684126126843691 1104512021025221012045101
d various - natural numbers, triangular
7. \(a 5^{2}-4^{2}=25-16=9=5+4\)
\(6^{2}-5^{2}=36-25=11=6+5\)
\(7^{2}-6^{2}=49-36=13=7+6\)
\(8^{2}-7^{2}=64-49=15=8+7\)
b \(11^{2}-10^{2}=121-100=21=11+10\)
c \(26^{2}-25^{2}=676-625=51=26+25\)
d \(101^{2}-100^{2}=10201-10000=201\)
\(=101+100\)
e \((n+1)^{2}-n^{2}=(n+1)+n\)
8. a 4 b 9 c 16 d \(25 \quad e\) the square numbers
9. a 15 and 21
b (i) 100
(ii) 10000
10. a \(1,3,6,10\)
\(b\) triangular numbers
c \(1 / 2 n(n+1)\)
d \(1 / 2\) of \(1000 \times 1001=500500\)
\(1120 \times 19 \div 2=190\)
12. \(1+4+9+16+\ldots .+64=204\)
13. \(10 \times 7 \div 2=35\)
(A decagon is a 10 sided shape)

\section*{Exercise 2 (Page 38)}
1. a \(12,16,20,24\)
b \(D=4 \times C\)
c (i) 80
(ii) 15
2. a \(6,12,18,24,30\), etc
b \(B=6 \times T\)
c \(54 \quad\) d 12
3. a (i) \(160,200,240\)
(ii) \(P=40 \times C\)
b (i) \(20,25,30\),
(ii) \(A=5 \times S\)
c (i) \(96,120,144\),
(ii) \(H=24 \times D\)
d (i) \(24,30,36\),
(ii) \(C=6 \times T\)
e (i) \(16,20,24\),
(ii) \(L=4 \times D\)
\(f\) (i) \(124,155,186\),
(ii) \(C=31 \times R\)

9 (i) \(48,60,72\),
(ii) \(\mathrm{B}=12 \times \mathrm{C}\)
h (i) \(264,330,396\),
(ii) \(E=66 \times B\)
4. a (i) 8,10 ,
(ii) \(y=2 x x\)
(iii) 40
(iv) 30
b (i) 12,15 ,
(ii) \(y=3 x x\) (iii) 60
(iv) 20
5. a \(40,50,60\), b \(r=31 / 3 \times S\)
c (i) 200
(ii) 33
6. \(a\)
(i) 12,15 ,
(ii) \(y=3 x x\)
(iii) \((0,0),(1,3)\) etc (iv) plot points
(v) line through \((0,0)\) and \((5,15)\)
b (i) 16,20 ,
(ii) \(y=4 x x\)
(iii) \((0,0),(1,4)\) etc
(iv) plot points
(v) line through \((0,0)\) and \((5,20)\)
c (i) 20,25 ,
(ii) \(y=5 x x\)
(iii) \((0,0),(1,5)\) etc
(iv) plot points (v) line through \((0,0)\) and \((5,25)\)
d (i) 24, 30,
(ii) \(y=6 x x\)
(iii) \((0,0),(1,6)\) etc
(iv) plot points
(v) line through \((0,0)\) and \((5,30)\)
e (i) 28,35 ,
(ii) \(y=7 x x\)
(iii) \((0,0),(1,7)\) etc (iv) plot points (v) line through \((0,0)\) and \((5,35)\)
\(\begin{array}{ll}f \text { (i) } 4,5, & \text { (ii) } y=1 / 2 \text { of } x \\ \text { (iii) }(0,0),(2,1) \text { etc } & \text { (iv) plot points }\end{array}\)
(iii) \((0,0),(2,1)\) etc
(iv) plot points
(v) line through \((0,0)\) and \((10,5)\)
7. a (i) \(-2, \ldots .3\),
(ii) \(y=x\) (iii) \((0,0),(1,1)\) etc (iv) plot points
(v) line through \((-2,-2)\) and \((3,3)\)
b (i) \(-4, \ldots . .6\),
(ii) \(y=2 x x\)
(iii) \((0,0),(1,2)\) etc
(iv) plot points
(v) line through \((-2,-4)\) and \((3,6)\)
\(\begin{array}{ll}\text { c } \begin{array}{ll}\text { (i) }-6, \ldots ., 9, & \text { (ii) } y=3 x x \\ & \text { (iii) }(0,0),(1,3) \text { etc }\end{array} & \text { (iv) plot points }\end{array}\)
(v) line through \((-2,-6)\) and \((3,9)\)
d (i) \(4, \ldots .-6\),
(ii) \(y=-2 x x\)
(iii) \((0,0),(1,-2)\) etc (iv) plot points
(v) line through \((-2,4)\) and \((3,-6)\)

\section*{Exercise 3 (Page 41)}
1. a \(4,6,8,10,12\),
b \(C=2 \times T+2\)
c 42 d 14
2. \(a \operatorname{a}, 5,7,9,11,13\)
b \(L=2 \times T+1\)
c 61 d 15
3. a \(3,6,9,12,15,18,21\)
b \(S=3 \times P-3\)
c 57 d 30
4. a \(3,5,7,9,11,13\)
b \(T=2 \times S-1\)
c 49 d 66
5. a \(£ 120, £ 140\) b \(C=20 \times D+20\)
c \(£ 300\) d 15 days
6. a (i) \(6,7, \quad\) (ii) \(y=x+2\)
b (i) \(9,11, \quad\) (ii) \(y=2 x+1\)
c (i) \(11,13, \quad\) (ii) \(y=2 x+3\)
d (i) 9,10 , (ii) \(y=x+5\)
e (i) 14,17 , (ii) \(y=3 x+2\)
f (i) \(11,14, \quad\) (ii) \(y=3 x-1\)
9 (i) \(-7,3, \quad\) (ii) \(y=2 x-3\)
h (i) \(-10,6,10\), (ii) \(y=4 x-2\)
i (i) \(-4,1, \quad\) (ii) \(y=x-2\)
j (i) \(4,-6, \quad\) (ii) \(y=-x\)
\(k\) (i) \(4 \cdot 5,5, \quad\) (ii) \(y=0.5 x+2 \cdot 5\)
\(\begin{array}{ll}\text { I (i) } 6 \cdot 1,7 \cdot 3, & \text { (ii) } y=1 \cdot 2 x+1 \cdot 3 \\ \text { (i) } 6,8 & \text { (ii) } y=2 x+2\end{array}\)
7. a (i) 6,8 ,
(ii) \(y=2 x+2\)
(iii) \((-2,-2),(-1,0) \ldots\).
(iv/v) line through \((-2,-2) \&(3,8)\)
b (i) \(4,5,6\) (ii) \(y=x+3\)
(iii) \((-2,1),(-1,2) \ldots\)
(iv/v) line through \((-2,1) \&(3,6)\)
c (i) \(6,8,10\) (ii) \(y=2 x+2\)
(iii) \((-2,0),(-1,2) \ldots\)
(iv/v) line through \((-2,0)\) \& \((3,10)\)
d (i) \(-5,-3,5\), (ii) \(y=2 x-1\)
(iii) \((-2,-5),(-1,-3) \ldots\)
(iv/v) line through \((-2,-5) \&(3,5)\)
e (i) \(-1,0,1\), (ii) \(y=x-2\)
(iii) \((-2,-4),(-1,-3) \ldots\)
(iv/v) line through \((-2,-4)\) \& \((3,1)\)
\(f\) (i) \(7,11, \quad\) (ii) \(y=4 x-1\)
(iii) \((-2,-9),(-1,-5) \ldots\)
(iv/v) line through \((-2,-9) \&(3,11)\)
9 (i) \(6,9,12\) (ii) \(y=3 x+3\)
(iii) \((-2,-3),(-1,0) \ldots\)
(iv/v) line through \((-2,-3) \&(3,12)\)
\(h\) (i) \(-4, \ldots 12,16\) (ii) \(y=4 x+4\)
(iii) \((-2,-4),(-1,0) \ldots\).
(iv/v) line through \((-2,-4) \&(3,16)\)
i (i) \(-4,-2,0\) (ii) \(y=2 x-6\)
(iii) \((-2,-10),(-1,-8) . .\).
(iv/v) line through \((-2,-10) \&(3,0)\)
j (i) -5 ,.. 15,20 (ii) \(y=5 x+5\)
(iii) \((-2,-5),(-1,0)\)...
(iv/v) line through(\(-2,-5\)) \& \((3,20)\)
k (i) \(-2, \ldots, 6,8\) (ii) \(y=x+2\)
(iii) \((-4,-2),(-2,0)\)....
(iv/v) line through \((-4,-2) \&(6,8)\)
I (i) 3,3 , (ii) \(y=0 x+3\) or \(y=3\)
(iii) \((-2,3),(-1,-3)\)...
(iv/v) line through \((-2,3) \&(3,3)\)
horizontal line 3 up from origin

Answers to Review Ex 4 (page 46)
\begin{tabular}{|c|c|c|}
\hline 1. a - 5 & b 4 & c 6 \\
\hline d 10 & e -5 & f 2 \\
\hline 90 & h 8 & \\
\hline 2. a 0 & b 0 & c 90 \\
\hline 3. a -20 & b 14 & c -8 \\
\hline d 4 & e -24 & f -24 \\
\hline 90 & h -24 & \\
\hline 4. a 2 & b 23 & c 0 \\
\hline
\end{tabular}
5. a overdrawn by \(£ 545\)
b +£820
6. \(47^{\circ}\)
\begin{tabular}{llllll}
7 & \(a\) & \(3 p\) & \(b\) & \(m^{2}\) & c \(20 d e\) \\
& d \(8 a-2 b\) & e \(4 p^{3}\) & f \(15 t^{3}\) \\
& 9 & \(4 x\) & h \(6 s\) & \\
8. & a 22 & b 65 & c 49
\end{tabular}
d 32 e 3 f 3
g 16 h 7
9. a \(12 x+8\) b \(42 a-21 b\) c \(g^{2}+5 g\)
d \(12 y^{2}-21 y z e-6 d+30\) f \(-a^{2}+4 a b\)
g \(-10 w+2 w^{2}\) h \(-q^{3}-4 q^{2} r\)
10. a \(3 x+3\) b \(4 m-3\) c \(5 h+2\)
d \(16 g+3\) e \(4 b+3\) f \(6 d-3\)
11. \(10 x+5(x-1)=15 x-5\)
12. a 6 b 3 c 5
13. 224
14. 20
15. a £288 b £324
16. a. \(C=\pi D\)
b 47.1 cm
17. a \(P=4 a+2 b+c\)
b \(79 \mathrm{~cm} \quad\) c 7.4 mm
Answers to Chapter 5 (page 48)

\section*{Exercise 1 (Page 48)}
\begin{tabular}{|c|c|c|c|}
\hline & a 3 & b 10 & c 5 \\
\hline & d 0 & e 7 & f 9 \\
\hline & g 17 & h 50 & -3 \\
\hline & j 7 & k -13 & 45 \\
\hline & m-8 & n 0 & - -22 \\
\hline & p -7 & 90 & r-38 \\
\hline & a 8 & b 9 & c 8 \\
\hline & d 7 & e 9 & f 1 \\
\hline & g 1.5 & h 0 & i 0.25 \\
\hline & j 40 & k 30 & 13.5 \\
\hline & m 3.25 & n 5.8 & - 32/7 \\
\hline & p 6.5 & q 0.25 & r \(92 / 3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 3. a 3 & b 3 & c 9 \\
\hline d 8 & e 10 & f 1 \\
\hline g 5 & h 1 & i 5 \\
\hline j 6 & k 1 & 18 \\
\hline m 7 & n 10 & - 8 \\
\hline p 7.5 & q -1 & r \(2^{2 / 3}\) \\
\hline s -0.5 & + 4.5 & u 3.25 \\
\hline
\end{tabular}

\section*{Exercise 2 (Page 50)}
1. \begin{tabular}{rlrl}
\(a x+1=19\) & b & \(7 x-5\) & \(=16\) \\
\(2 x\) & \(=18\) & & \(7 x\) \\
& \(=21\) \\
\(x\) & \(=9\) & \(x\) & \(=3\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{2.} & a & & b & 8 & & c 12 \\
\hline & d & 7 & e & 6 & & 9 \\
\hline & 9 & 8 & h & 7.5 & & 6 \\
\hline & j & 0.5 & k & 4 & & -1 \\
\hline \multirow[t]{3}{*}{3.} & a & & b & 4 & & c 12 \\
\hline & d & 1 & e & 8.5 & & 4.5 \\
\hline & 9 & 9 & h & -6.5 & & 13 \\
\hline 4. & a & \(3 x=\) & & & & b 10 \\
\hline & a & \(4 x\) & x+ & & & b 41 \\
\hline
\end{tabular}

\section*{Exercise 3 (Page 51)}
\begin{tabular}{|c|c|c|c|c|}
\hline & a & & b 1 & c 9 \\
\hline & d & 8 & e 7 & f 1 \\
\hline & 9 & & h 4 & 7 \\
\hline & j & & k 1.5 & | -2 \\
\hline & a & & b 4 & c 1 \\
\hline & d & 2 & e 7 & f 1 \\
\hline & 9 & & & 2.5 \\
\hline & j & 7 & k 19 & | -5 \\
\hline 3. & a & & b 4 & c 3 \\
\hline & d & 6 & e 2 & \(f 3\) \\
\hline & 9 & & h 6 & i 10.5 \\
\hline & j & & & 4 \\
\hline & m & 3 & n -10 & \\
\hline
\end{tabular}

Exercise 4 (Page 52)
1. \(a x+6=14\) b \(15 x-100=12 x-40\) \(x=8 \quad 3 x=60\)
\(x=20\)

\section*{Exercise 5 (Page 53)}
\begin{tabular}{|c|c|c|}
\hline 1. a \(x>4\) & b \(x<8\) & c \(x \leq 17\) \\
\hline d \(x \geq 5\) & e \(x \leq 12\) & f \(x \geq 14\) \\
\hline 2. \(a x<3\) & b \(x>8\) & c \(x<6\) \\
\hline d \(x \geq 4\) & e \(x \leq 6\) & f \(x>28\) \\
\hline 3. \(a x<6\) & b \(x>4\) & c \(x<3\) \\
\hline d \(x \geq 8\) & e \(x \leq 5\) & \(f x>7\) \\
\hline \(9 x<2.5\) & h \(x \geq 2\) & i \(x \leq 3.5\) \\
\hline j \(x<28\) & k \(x \geq 20\) & | \(x>10\) \\
\hline m \(x<7\) & n \(x \geq 12\) & \(0 x \leq 2\) \\
\hline p \(x \leq-1\) & q \(x>4\) & r \(x<21\) \\
\hline s \(x<3\) & + \(x>2.5\) & u \(x \geq 29\) \\
\hline
\end{tabular}

Answers to Review Ex 5 (page 55)
\begin{tabular}{lllll}
1. a \(20^{\circ}\) & b \(120^{\circ}\) & \\
2. a \(35^{\circ}\) & b \(52^{\circ}\) & c \(22.5^{\circ}\) \\
d \(35^{\circ}\) & e \(35^{\circ}\) & f \(15^{\circ}\) \\
& \(g 50^{\circ}\) & h \(50^{\circ}\) & i \(170^{\circ}\) \\
& \(j 47^{\circ}, 133^{\circ}\) & k \(149^{\circ}, 31^{\circ}\) & i \(54^{\circ}\) \\
& m \(60^{\circ}\) & n \(69^{\circ}, 42^{\circ}\) & o \(72^{\circ}, 72^{\circ}\) \\
p \(76^{\circ}, 80^{\circ}\) & q \(74^{\circ}, 74^{\circ}, 106^{\circ}\) \\
r \(42^{\circ}, 42^{\circ}, 96^{\circ}, 138^{\circ}\)
\end{tabular}

Answers to Chapter 6 (page 56)
Exercise 1 (Page 56)

4. a \(76^{\circ}\) b \(52^{\circ} \quad\) c \(68^{\circ}\)
d \(105^{\circ}\) e \(137^{\circ}\) f \(15^{\circ}, 165^{\circ}\)
5. a

c

6.

7. \(a 75^{\circ}\)
b
\(\xrightarrow{\substack{75^{\circ} \\ 105^{\circ} \\ 75^{\circ} \\ 105^{\circ} \\ 75^{\circ} \\ 105^{\circ}}}\)
8. \(a\)
\[
\begin{aligned}
& \frac{80^{\circ}}{} 120^{\circ} \\
& \hline 120^{\circ} \\
& \\
& \hline 60^{\circ} \\
& \hline
\end{aligned}
\]
b

9
h

i
j

k

Exercise 2 (Page 59)
1. a

e

2. \(a<A T W \&<T W L \quad b<M D R \&<D R Z\)
\(c<T D Q \&<D Q G \quad d<S X C \&<X C P\)
3. \(a j\)
4. a 25
a 25
b 76
d c
d 33 e 82 c 122
5.

6.

\section*{Exercise 3 (Page 61)}
1. \(a\)

\(e \quad f\)

9

k

2. \(a\)
b

h

k

1. a Rectangle, \(A=I \times b \quad 42 \mathrm{~cm}^{2}\)
b Triangle, \(A=1 / 2 b \times h \quad 24 \mathrm{~cm}^{2}\)
c Square, \(A=12 \quad 121 \mathrm{~mm}^{2}\)
d Parallelogram \(A=b \times h \quad 456 \mathrm{~cm}^{2}\)
e Kite \(\quad A=1 / 2 D \times d \quad 1800 \mathrm{~mm}^{2}\)
\(f\) Rhombus \(A=1 / 2 D \times d 2.4 \mathrm{~m}^{2}\)
9 Trapezium Sum of 2 triangles \(68 \mathrm{~cm}^{2}\)
\(h\) Kite \(\quad A=1 / 2 D \times d 9.6 \mathrm{~cm}^{2}\)
i Triangle, \(A=1 / 2 b \times h \quad 17 \mathrm{~m}^{2}\)
2. \(a \quad 20.4 \mathrm{~m}\) b 330 mm
3. a \(110 \mathrm{~cm}^{2}\) b \(174 \mathrm{~cm}^{2}\) c \(176 \mathrm{~cm}^{2}\)
4. \(9000 \mathrm{~cm}^{3}\)
5. \(2263 \mathrm{~cm}^{3}\)
6. a \(3.51 \quad b 0.271 \quad c 0.021\)
7. a 6750 ml b 2005 ml c 600 ml
8. a \(9000 \mathrm{~cm}^{3}\) b 9 litres
9. 5 cm
10. \(7200 \mathrm{~cm}^{3}\)
11. \(2480 \mathrm{~cm}^{3}\)

\section*{Answers to Chapter 7 (page 66)}

\section*{Exercise 1 (Page 66)}
1. A Square \(B\) Rhombus

C Kite D Parallellogram
E triangle F Rectangle
\(G\) Trapezium H Octagon
I Nonagon J Undecagon
K Decagon L Pentagon
M DodecagonN Heptagon
O Hexagon
2 a 4 b 2 c 3
d 5 e \(9 \quad f 8\)
g 9 h 14 i 12
\(\begin{array}{lll}\text { j } 9 & k 35 & 14\end{array}\)
m4 \(n 2 \quad 04\)
p 7
3. 5 sides - Used to house the American President and his staff

\section*{Exercise 2 (Page 68)}
1. Check drawing
2. Check drawings
3. Check drawings

\section*{Exercise 3 (Page 69)}
1. Check drawing
2. Check drawings
3. Check drawings

\section*{Exercise 4 (Page 70)}
1. Check drawing
2. Check drawings

\section*{Exercise 5 (Page 72)}
1. Check drawing
2. Check drawing
3. Check drawing
4. Check drawing
5. Check drawing
6. Check drawing
7. Check drawing
8. Check drawings

Answers to Review Ex 7 (page 74)
1. \(a^{2 / 6,3 / 9} \quad b^{6 / 8,9 / 12}\)
c \(10 / 16,15 / 24 \mathrm{~d}\) 6/200, \(9 / 300\)
2. \(a^{4 / 5} \quad b^{1 / 2} \quad c^{7 / 12}\)
\(d^{11 / 30} \quad e^{3 / 5} \quad f^{1 / 6}\)
g \(11 / 12 \quad h^{3 / 10} \quad\) i \(7 / 20\)
j \(7 / 30 \quad k^{1 / 5} \quad \mid 3 / 16\)
3. \(a^{47 / 60} b^{41 / 60} \quad c^{31 / 60}\)
4. \(a^{11 / 5} \quad b^{15} / 8\)
c \(23 / 7 \quad d 59 / 10\)
5. a \(2^{3 / 4}\) b \(6^{2 / 3}\)
c \(63 / 5 \quad{ }^{3} 3^{7 / 11}\)
6. a \(25 / 6\) b \(34 / 5\) c \(42 / 3\)
d \(79 / 20\) e \(101 / 4\) f \(3^{1 / 8}\)
\(g 53 / 8\) h \(84 / 15\) i \(17 / 12\)
j \(115 / 28\) k \(35 / 9 \quad \mid \quad 23 / 5\)
7. \(25 / 6\) litres
8. \(51 / 40\) ounces
9. \(31 / 3 \mathrm{~cm}\)

\section*{Answers to Chapter 8 (page 75)}

\section*{Exercise 1 (Page 75)}
\begin{tabular}{llll}
1. & \(a^{3 / 5}\) & \(b^{5 / 18}\) & \(c^{5 / 8}\) \\
2. & \(a^{8 / 15}\) & \(b^{7 / 12}\) & \(c^{4 / 15}\) \\
& \(d^{10 / 21}\) & \(e^{1 / 2}\) & \(f^{1 / 2}\) \\
\(g^{11 / 24}\) & \(h^{1 / 5}\) & \(i^{6 / 25}\) \\
\(j^{3 / 28}\) & \(k^{27 / 400}\) & i \(^{11 / 48}\)
\end{tabular}
3. \(5 / 16\) square metres
4. \(3 / 10\)
5. 3/20 cubic metres
6. a \(42 / 3\)
b 71/12
c \(42 / 3\)
7. a \(8^{1 / 3}\)
b \(11 \frac{1}{5}\)
c \(77 / 12\)
d \(45 / 7\)
e \(33 / 5\)
f \(81 / 4\)
g 77/10
h \(21 / 10\)
i \(65 / 12\)
j \(123 / 5\)
k 38
| \(51 / 5\)
8. 6 square inches
9. \(93 / 8 \mathrm{~kg}\)
10. \(52^{1 / 2} \mathrm{~kg}\)
11. \(16^{2 / 3}\) seconds
12. \(1 / 4\) square metre

\section*{Exercise 2 (Page 77)}
1. a \(2^{1 / 2}\)
b \(1 / 4\)
c \(9 / 10\)
2. a \(14 / 5\)
b 2
c \(1 / 2\)
\begin{tabular}{lll}
d \(3 / 4\) & e \(1 / 2\) & \(f 2 / 3\) \\
g \(11 / 10\) & h \(11 / 3\) & i \(25 / 27\) \\
j \(111 / 24\) & k \(15 / 27\) & i \(12 / 5\)
\end{tabular}
3. \(\begin{aligned} & \text { a } 11 / 3 \text { b } 12\end{aligned}\)
4. a \(17 / 8 \quad\) b \(31 / 3 \quad\) c \(5 / 6\)
5. a \(28 / 9\) b \(1 \frac{1 / 5}{}\) c \(1 \frac{1}{1 / 3}\)
\(d 1^{2} / 7\) e \(113 / 32 \quad f 6\)
\(g^{24 / 55}\) h \(12^{\frac{1}{1} 4}\) i \(3 \frac{1}{3}\)
\(\begin{array}{lll}j 73 / 5 & k & 2 / 5\end{array}\)
6. \(63 / 10\) inches
7. a \(2^{1 / 4} \mathrm{~kg}\) b \(2^{13 / 16} \mathrm{~kg}\)
8. \(2^{3 / 7} \mathrm{~m}\)
9. \(55 / \mathrm{mmins}\)

\section*{Exercise 3 (Page 79)}
1. \(a 44 / 5\)
b \(51 / 4\)
2. a \(29 / 6\)
b \(72 / 7\)
3. 20
4. a \(\begin{array}{lll}5 / 7 & b 11 / 4 & c^{2 / 3}\end{array}\)
d \(42 / 5\)
e \(24 / 15\) f \(65 / 6\)
\(g\) 25/24 h \(3 / 4\)
5. a \(1 / 6 \quad\) b \(8 / 15 \quad\) c \(77 / 10\)
d \(21 / 2\)
e \(2^{7 / 24}\) f \(113 / 32\)
\(g^{71 / 2}\) h \(1 / 9\)
6. \(83 / 4\) stones
7. \(31 / 2 \mathrm{~kg}\)
8. \(153 / 8 \mathrm{~kg}\)
9. \(52 / 5 \mathrm{~cm}\)
10. \(1 / 8\)

Answers to Review Ex 8 (page 81)
1. a \(A(1,3), B(3,3), C(4,2), D(3,1)\), \(E(2,0), F(1,1), G(0,1)\)
b \(G, F \& D \quad c \quad A \& F\) and \(B \& D\)
\(d F \& B \quad e B \quad f(0,2)\)
2.

3. \(a \quad Q(5,-3), R(4,4), S(0,3), T(-3,2)\), \(U(-1,0), V(-3,-1), W(-3,-3), X(-1,-2)\), \(Y(0,-3), Z(2,-1)\)
b \(V \& Z\) and \(W, Y\) and \(Q\)
c \(W \& R \quad d A(2,2) \quad\) e \(B(-3,-2)\)
4.

5. \(a / b / c\)

6.

Answers to Chapter 9 (page 82)

\section*{Exercise 1 (Page 82)}
1. Check drawings
2. Check drawings

Exercise 2 (Page 84)
1. a 34 m b 12 m
2. \(a 27 \mathrm{~m} \quad b 7.5 \mathrm{~m}\)
3. a 190 cm b 110 cm
4. a 100 cm b 75 cm c 125 cm
5. a 216 cm b 117 cm
6. a 7 cm by 3.5 cm
b 28 m by 14 m
c \(6.2 \mathrm{~cm} \times 4=24.8 \mathrm{~m}\)
7. a 4.5 cm b 54 km
c (i) 84 km
(ii) 78 km

\section*{Exercise 3 (Page 86)}
1. Check drawing
2. Check drawings
3. Check drawing
4. Check drawing
5. a 20 m b 2 cm by 12 cm
6. a Check drawing
b \(6.5 \mathrm{~cm} \quad\) c 13 m
7. a Check drawing b 90 cm
8. a \(12 \mathrm{~m}, 3 \mathrm{~m}\) b Check drawing
9. a Check drawing
b 2.7 m
10. Check drawing

Exercise 4 (Page 89)
1. a Check drawing
b \(8.4 \mathrm{~cm} \quad\) c 16.8 m
2. a Check drawing
b 31 m
3. a (i) Check drawing
(ii) 11.6 m
b (i) Check drawing
(ii) 109 m
c (i) Check drawing
(ii) 380 m
d (i) Check drawing
(ii) 1960 m
4. a Check drawing
b 24.6 m
5. a Check drawing
b 70.5 m
6. a Check drawing b 13.6 km
7. a \(1 \mathrm{~km} \quad\) b Check drawing
c 7.2 km

\section*{Exercise 5 (Page 91)}
1. a NE b SW
c NW d N
2. a \(180^{\circ}\) b \(045^{\circ}\) c \(270^{\circ}\)
d \(135^{\circ}\) e \(000^{\circ}\) f \(090^{\circ}\)
\(g 315^{\circ}\) h \(225^{\circ}\)
3. a \(075^{\circ}\) b \(315^{\circ}\) c \(280^{\circ}\)
4. a \(045^{\circ}\) b \(100^{\circ}\) c \(315^{\circ}\)
5. a drawing \(b\) drawing
c drawing d drawing
6. a Check drawing
b \(6.7 \mathrm{~cm} \quad\) c 67 km
7. a Check drawing
b \(11 \mathrm{~cm} \quad\) c 440 km
8. a Check drawing
b 10.7 cm c 53.5 km
9. \(250^{\circ}\)

Answers to Review Ex 9 (page 95)
1. a 79:103 b 58:79
c 103:58 d 79:240
2. \(a \operatorname{2:3}\) b 2:1
c \(4: 1\)
d 5:3 d 1:1
3. a \(1: 100 \quad\) b \(1: 60 \quad\) c \(1: 6\)
\(\begin{array}{lll}d & 1: 20 & \text { e } 1: 365 \text { f } 1: 4\end{array}\)
\(\begin{array}{ll}9 & 1: 4 \quad \text { h } 14: 15\end{array}\)
4. a \(9: 13 \quad\) b \(5: 16 \quad\) c \(13: 10: 9\)
5. a 45 b 24
6. a 15 m b 50 cm
7. a Brian-18, Helen-9
b 3 more

Answers to Chapter 10 (page 96)

\section*{Exercise 1 (Page 96)}
1. Sal-£800, Seth \(-£ 1200\)
2. James - \(£ 8000\), Pauline - \(£ 28000\)
3. a Peter - \(£ 12000\), Paul - \(£ 33000\)
b Anne-£7000, Tom-£5000
c Gary-£2.15, Dennis - \(£ 6.45\)
d Pieter-€4080, Helena-€3060
e Addy - \(£ 650000\), Steve - \(£ 350000\)
4. a \(3: 1\)
b Ed-£1800, Edie-£600
5. \(£ 60000\)
6. £40
7. a £100: £200: £300
b £100: \(£ 300: £ 600\)
c \$120: \$150: \$330
8. a 10 km b 5 km c 35 km
9. 60 mins then 24 mins then 36 mins
10. 120
11. Seb-10I, Tim-5I, Hen-20I
12. small:medium:large \(=2: 8: 10=1: 4: 5\)

Exercise 2 (Page 98)
1. \(£ 1.05\)
\(\begin{array}{lll}\text { 2. } \begin{array}{ll}\text { a 7p } & \text { b } £ 12 \\ \text { d 20p } & \text { e 20p }\end{array} & f \text { f } £ 21\end{array}\)
e 20p
f \(£ 21\)
3. 20 tonnes
4. 6 km

5 €1.10 per \(£\)
6. 2 kg
7. 1.5 per sec
8. 16 miles per day
9. David-£24, Tim-£22 (J)

Exercise 3 (Page 99)
1. \(£ 56.40\)
2. \(£ 8 \cdot 10\)
3. \(\$ 67.50\)
\begin{tabular}{lll}
4. & a \(5.4 \mathrm{~m}^{3}\) & b 625 times \\
5. & a \(£ 4.80\) & b \(£ 20.40\) \\
6. & a 500 & b 3500 \\
& c 30000 & d 1800000 \\
7. & a no & b no \\
& c no & d yes \\
8. & a 300 & b 50 mins \\
9. & a 50 mins & b 54 lines \\
10. & a \(£ 22.50\) & b \(31 / 2\) hrs c 2.8 kg \\
& d \(£ 4.00\) & e \(£ 9.60\) \\
11. & a \(£ 90\) & b \(£ 120\)
\end{tabular}
11. a \(£ 90\)
b \(£ 120\)
Exercise 4 (Page 101)
1. a \(30,60,90,120,150,180\)
b \((1,30), 2,60)\), etc
c (i) see graph (ii) yes
(iii) because 0 pears cost \(0 p\)
2. a \(40,80,120,160,200,240\)
b \((1,40),(2,80)\), etc
c (i) see graph (ii) yes
3. a \(15,30,45,60,75,90\) b see graph
c (i) 120 km
(ii) 97.5 km
4. \(a(1,3), 2,6),(3,8),(4,12)\)
b No. The point \((3,8)\) doesn't lie on line
5. a \(2,4,6,8,10,12\)
b Yes. All lie on line through \((0,0)\)
6. c and f
7. see graphs
8. Investigative work.

Answers to Review Ex 10 (page104)
1. a \(0 \cdot 37,37 / 100\)
b \(0.8,4 / 5 \quad\) c \(0.75,3 / 4 \quad\) d \(0.025,1 / 40\)
2. a \(0.125,12.5 \%\) b \(0.727,72.7 \%\)
c \(0.243,24.3 \%\) d \(0.556,55.6 \%\)
3. \(0.05,0.46,47 \%, 147 / 300,1 / 2\)
4. Eng \(-80 \%\), (\(J\)), Phy \(-70 \%\), Mus \(-75 \%\)
5. a 28.8 kg b 12 m c 5.5 km
\(d £ 217\) e 70p f 0.55 cm
g 326.4 ml h £198.40
6. a \(24 \%\) b 2064
7. a \(£ 31.50\) b \(£ 78.20\)
8. a £9600 b 1782

\section*{Answers to Chapter 11 (page 105)}

Exercise 1 (Page 105)
\begin{tabular}{|c|c|c|}
\hline 1. a 1 & b 2 & c 5 \\
\hline d 1 & e 4 & f 1 \\
\hline 96 & h 4 & i 3 \\
\hline j 1 & k 0 & 14 \\
\hline m 12 & n 2 & \(\bigcirc 0\) \\
\hline P 0 & & \\
\hline
\end{tabular}
2. see symmetric drawings
3. see symmetric drawings

Exercise 2 (Page 107)
\begin{tabular}{|c|c|c|}
\hline 1. a yes & \(b\) no & \(c\) yes \\
\hline d yes & e no & \(f\) yes \\
\hline 9 no & h no & i no \\
\hline j yes & j yes & 1 yes \\
\hline \(m\) yes & \(n\) no & o yes \\
\hline \(p\) no & \(q\) yes & \(r\) yes \\
\hline \(s\) yes & \(t\) yes & \\
\hline 2. a no & b \(90^{\circ}\) & c \(1 / 4,4\) \\
\hline 3. \(a 1 / 4,4\) & b \(1 / 2,2\) & c \(1 / 3\) \\
\hline d \(1 / 6,6\) & e \(1 / 8,8\) & f \(1 / 5,5\) \\
\hline g \(1 / 6,6\) & h \(1 / 3,3\) & i \(1 / 4,4\) \\
\hline \(j\) none, 0 & k 1/4, 4 & 1 none, 0 \\
\hline m 1/4, 4 & n \(1 / 6,6\) & - \(1 / 5,5\) \\
\hline p 1/8, 8 & q \(1 / 8,8\) & r 1/7,7 \\
\hline s \(1 / 12,12\) & + 1/3, 3 & u \(1 / 8,8\) \\
\hline v 1/7, 7 & w \(1 / 6,6\) & \(\times 1 / 3,3\) \\
\hline
\end{tabular}
4. See pupil's drawings

Exercise 3 (Page 110)
1. \(a / b\)

2.

3.

5. Investigation

Exercise 4 (Page 112)
1. \(a / b\)

2.

3.

4.

5.
\begin{tabular}{lll}
a yes & \(b\) yes & \(c\) yes \\
\(d\) no & \(e\) yes & \(f\) yes \\
\(g\) yes & \(h\) yes & i no \\
\(j\) no & \(k\) yes & l yes \\
\(m\) yes & \(n\) yes & 0 no \\
\(p\) yes & \(q\) yes & \(r\) no \\
\(s\) yes & \(t\) yes & \(u\) yes \\
\(v\) yes & \(w\) yes & \(x\) yes
\end{tabular}
6.

7. \(a\)

b

8.

9.

Answers to Review Ex 11 (page117)
1 a \(C=\pi D \quad\) b \(A=\pi r^{2}\)
2. a (i) 31.4 cm (ii) 8.79 cm (iii) 25.1 cm
b (i) \(78.5 \mathrm{~cm}^{2}\) (ii) \(6.15 \mathrm{~cm}^{2}\)
(iii) \(50.2 \mathrm{~cm}^{2}\)
3. 314 cm
4. a 62.8 cm b 411.2 cm
5. 6 cm
6. a \(P=23.42 \mathrm{~cm}\) b \(38.13 \mathrm{~cm}^{2}\)
b \(P=30.71 \mathrm{~cm}\) b \(37.1 \mathrm{~cm}^{2}\)
c \(P=36.84 \mathrm{~cm}\) b \(84.78 \mathrm{~cm}^{2}\)
7. \(28.9 \mathrm{~m}^{2}\)

Answers to Chapter 12 (page 118)

\section*{Exercise 1 (Page 118)}
1. Title, scale, even spaces, etc
2. a (i) 25
(ii) 10
(iii) 35
(iv) 25
b 95 c Wed - zero on graph
3. a 20
b Germany
c Portugal \& Italy - 18
d Gretna is just over Scottish border from England
e 18 more f \(£ 3440\)
4. a 1
b (i) 18
(ii) 38
(iii) 19
(iv) 44
c chicken d 19
e 31 f 132
5. see graph
6. see graph
7. a noon b \(8 a m-9 a m\)
c 2 degrees d 6 am \& noon
e 3 hours \& 2.5 degrees
f 100 degrees
8. a (i) 8000 (ii) 1200 (iii) 200
b (i) 1000 (ii) 800
(iii) 300
c (i) The Tent Store
(ii) Tents- for-U
(iii) Same
d (i) The Tent Store
(ii) \(£ 2500\)
9. see graph
10. see graph
11. see graph

Answers to Chapter 12 (page 121)

\section*{Exercise 2 (Page 121)}
1. \(a \& b\)
\begin{tabular}{cccc}
1st 2nd & T1 & T2 & T3 \\
David Smith & 62 & 81 & 79 \\
Brian Jones & 63 & 59 & 91 \\
Bobby Young & 71 & 83 & 65 \\
Allan Taylor & 73 & 76 & 79
\end{tabular}
2. \(a-e\)
\begin{tabular}{lcc}
Customer & length & breadth \\
Mr Davies & 60 & 80 \\
Mrs White & 90 & 120 \\
Mr Gordon & 210 & 160 \\
Mrs Wylie & 75 & 160 \\
Mr Rivers & 130 & 110 \\
Mrs Jones & 80 & 150
\end{tabular}
Exercise 3 (Page 122)
1. \(a \& b\)
\begin{tabular}{ccccc}
1st 2nd & T1 & T2 & T3 & Ave \\
David Smith & 62 & 81 & 79 & 74 \\
Brian Jones & 63 & 59 & 91 & 71 \\
Bobby Young & 71 & 83 & 65 & 73 \\
Allan Taylor & 73 & 76 & 79 & 76
\end{tabular}
2. \(a-c\)
Customer length breadth Area
Mr Davies \(6080 \quad 4800\)
Mrs White 9012010800
Mr Gordon 21016033600
\(\begin{array}{lcll}\text { Mrs Wylie } & 75 & 160 & 12000 \\ \text { Mr Rivers } & 130 & 110 & 14300\end{array}\)
Mrs Jones \(80 \quad 150 \quad 12000\)
3. \(a-f\)
\begin{tabular}{cccc}
fruit & weight & cost/lb & COST \\
apples & 2.5 & \(£ 1.52\) & \(£ 3.80\) \\
oranges & 1.5 & \(£ 1.80\) & \(£ 2.70\) \\
grapes & 0.5 & \(£ 1.68\) & \(£ 0.84\) \\
bananas & 3 & \(£ 1.20\) & \(£ 3.60\) \\
pears & 0 & \(£ 1.52\) & \(£ 0.00\) \\
peaches & 0.75 & \(£ 1.92\) & \(£ 1.44\) \\
& & & \(£ 12.38\)
\end{tabular}
4. \(a-e\)
Name BH OH BR BP OP TP
Fred \(40 \quad 6 \quad 6.50 \quad 260.0058 .50 £ 318.50\)
Tom \(38 \quad 4 \quad 6 \cdot 20 \quad 235 \cdot 60 \quad 37 \cdot 20\) £272.80
\(\begin{array}{lllllll}\text { Gina } & 36 & 5 & 4.80 & 163 \cdot 20 & 36 \cdot 00 & £ 208 \cdot 80\end{array}\)
\(\begin{array}{lllllll}\text { Alex } & 39 & 4 & 5.10 & 198.90 & 30.60 & £ 229.50\end{array}\)
Sara \(40 \quad 2 \quad 6 \cdot 40 \quad 256 \cdot 00 \quad 19 \cdot 20 £ 275 \cdot 20\)
Dave \(\begin{array}{llllllllllllllll}32 & 0 & 5.30 & 169 \cdot 60 & 0.00 & £ 169 \cdot 60\end{array}\) \(£ 1474.840\)
5. \(a-e\)
Customer It 1 It 2 It 3 Total
\(\begin{array}{llllll}\text { Mr Jones } & 3.85 & 9.62 & 4.75 & £ 18.22\end{array}\)
Mrs Paton \(6.94 \quad 5.73 \quad 11.64 \quad £ 24.31\)
Mr Wilson \(9.85 \quad 7.24 \quad 1.68 \quad £ 18.77\) £61.30
6. \(a-c\)
Name ... Pay Ded Net
Fred ... £318.50 £92.40 £226.10
Tom ... £272.80 £75.30 £197.50
Gina ... £208.80 £57.79 £151.01
Alex ... £229.50 £52.72 £176.78
Sara ... £275.20 £68.77£206.43
Dave ... £169.60 £31.42 £138.18
7. various

\section*{Exercise 4 (Page 124)}
1. a (i) \(3 / 10\) (ii) \(1 / 5\) (iii) \(1 / 10\) (iv) \(2 / 5\)
b Chicken Mayo, Prawn, Tuna, Ham
c (i) 60
(ii) 30
(iii) 90
(iv) 120
2. a \(5 \%\)
b (i) \(45^{\circ}\)
(ii) \(25^{\circ}\)
(iii) \(10^{\circ}\)
(iv) \(20^{\circ}\)
c (i) 1000
(ii) 800
(iii) 1800
(iv) 400
3. a \(1 / 4\)
b (i) \(1 / 8\)
(ii) \(1 / 6\)
(iii) \(1 / 12\)
(iv) \(3 / 8\)
c (i) 6
(ii) 3
(iii) 4
(iv) 2
d 9
4.

5. a \(5 \%\)

6.

7. \(a\)

b Supported neither team

\section*{Exercise 5 (Page 126)}
1. a \(180^{\circ}, 120^{\circ}, 40^{\circ}, 20^{\circ}\) b

2. \(a \quad 24^{\circ}, 168^{\circ}, 136^{\circ}, 32^{\circ}\)
b

3. a \(84^{\circ}, 48^{\circ}, 72^{\circ}, 156^{\circ}\) b

4. a \(160^{\circ}, 120^{\circ}, 15^{\circ}, 65^{\circ}\)

b \(190^{\circ}, 130^{\circ}, 30^{\circ}, 10^{\circ}\)

5. a Blackpool-15, Torquay - 5, York - 6, Brighton-10, Southport-4 Angles - \(135^{\circ}, 45^{\circ}, 54^{\circ}, 90^{\circ}, 36^{\circ}\)

\section*{Exercise 6 (Page 128)}
1. \(a \quad R-8, M=8\)
b \(R-17, M=19\)
c \(R-£ 22, M=£ 14\)
d \(R-27 \mathrm{~cm}, M=26 \mathrm{~cm}\)
e \(R-6 \cdot 1, M=7.9\)
\(f R-11 \cdot 28, M=8.8\)
2. \(£ 325.89\)
3. a 5
b \(52 \cdot 5\)
c Possibly - the average is 0.5 per machine less than claimed
4. a 15 b 7.9
c See answers
5. a 276 b 69
c Yes At 272 he would have won by 1 shot
6. a \(R-0.8, M=6.55 \quad\) b 0.35
7. \(a \quad M-8, R=11\)
b There are almost double the number but sardines were obviously smaller
8. a Norway - £9.12, Scotland - £4.75
b \(£ 4.37\)

Exercise 7 (Page 130)
1. \(a \quad R-7, M=8\)
b \(R-44, M=14\)
c \(R-4 \cdot 6, M=2 \cdot 2\)
d \(R-74, M=80\)
e \(R-189, M=122\)
f \(R-11 / 20, M=3 / 4\)
2. a 4 b 16
c 3.7 d 163
3. a 8.5 b 9.5
c \(6 \quad d 1.25\)
4. \(a \operatorname{R}-55\)
b Mean-13, Median-8, Mode-4
c Median
d Range distorted by the 59 number Mode should be middle(ish). Not skewed to one end.
5. a \(\mathrm{R}-23 \mathrm{Kg}\)
b Mode -65 Kg , Median -73 Kg
c 73 Kg as Median is middle(ish)
6. a Mean-108, Median-108, Mode-108
b 3 jars
7. a Mean -178 cm , Median -177 cm , Mode-167 cm
All chose a different average
b 167 cm would be least likely
8. a 1516161717181818181819 1919202021212222222323 2324242425252930
b Mean-20•87, Median-20•5, Mode - 18, Range - 15
c 21-as close to the mean as possible possible lower to encourage pupil more higher if the exam was easy
9. \(£ 1 \cdot 36\)
10. Evelyn is aged 40
11. 17

\section*{Exercise 8 (Page 132)}
1. a (i) 434343444647
(ii) 50525659
b 68
c (i) 3
(ii) 0
d 11
e 22
2. \(a\) (i) 6
(ii) 6
b 10
c 47

14 e 21
\(f\) none aged in 40's in queue
3. \(a 2 \mid 3=23\) minutes
b 23 c 8 mins d 23
4. a 001611141414202121

2225273639404043
b 14 c 2
d 19 e 21
5. a \(30,32,33,35,36,38\)
b 2| 12788 \(3 \mid 023568\) 4| 35679
5| 02
\(6 \mid 012\)
c Modal - 28 mins, Median - 38 mins Range - 41 mins
d 2
6. \(0 \mid 788\)

1|2469 key-1|2=£12
2| 0235
3| 3
7. \(0 \mid 58\)

1|1244678
2| 0349 key \(-2 \mid 0=20\)
3| 0357
4| 666779
5| 0
8. a 1| 2555899

2| 133566
3| 0577
4| 2388
5| 147 key \(-5 \mid 1=51\) secs
6| 0111
b 14
c Range - 49 secs
Mode-61 secs
Median- \(32 \cdot 5\) secs
9. (i) \(a\) 10| 24

11|1267
12| 1366888
13| 123
14|003
15|011367
16|02245678
17|035
\[
\text { key }-13 \mid 1=131
\]
b \(73 \quad\) c \(128 \quad\) d 141.5
(ii) a \(0 \mid 6\)
\(1 \mid 11248\)
\(2 \mid 33445789\)
\(3 \mid 45\)
410255778
\(5 \mid 012223789\)
\(6 \mid 2358\)
key \(-4 \mid 4=3.4\)
\(\begin{array}{llll}b & 6.2 & \text { c } 5.2 \quad \text { d } 4.35\end{array}\)
10. a Male - \(13,16,19,19\)

Female - 121618
b (i) 2 (ii) 2 (iii) 0
c (i) Modal-42 Median- 35
(i) Modal-36 Median-36.5
d 38
11. a

9 |1| 89
\(33|2| 23779\)
\(7532|3| 0\)
\(5|4|\)
b (i) Modal-23 Median-32.5
(i) Modal-27 Median-25
12. \(a\)
\[
\begin{array}{rllll}
9 & 2 & |13| & 8 & \\
8 & 6 & |14| & 4 & 5 \\
7 & 6 & 6 & |15| & 0 \\
9 \\
4 & 0 & |16| & 2 & 7 \\
& 2 & |17| & 3 & 4 \\
4 & 1 & |18| & 1 & 2
\end{array}
\]
b (i) Mode -157 cms Median - 157 cms
(i) Mod - no mode Median - 164.5 cms
c Ashfield have a bigger average since median is larger

\section*{Exercise 9 (Page 135)}
1. a Biased in favour of keeping open since increased profits will result
b Possibly drunk and obviously in favour of keeping their club open longer
c Obviously they will have been disturbed often by the noise and rowdiness
2. various
3. a discrete \(b\) continuous
c continuous d continuous
4. Survey
5. Survey

Answers to Review Ex 12 (page139)
1 a \(D=S \times T\) b \(S=D \div T\) c \(T=D \div S\)
2. 40 words per minute
3. 1360 km
4. 5 hr 36 mins
5. 18 miles per hour
6. a 4.6 hrs b 3 hr 48 m c \(108 \mathrm{k} / \mathrm{hr}\)
7. a 9 am
b (i) 30 m
(ii) 15 m
c 30 mins
d 10 m
e 20 mph
f 18 mph

\section*{Answers to Chapter 13 (page 140)}

\section*{Exercise 1 (Page 140)}
1. a Rock Paper or scissors
\[
\begin{gathered}
c \text { R-P, R-S, P-S, R-R, P-P, S-S, P-R, } \\
\text { S-R, S-P d } 1 / 3 \text { of the time }
\end{gathered}
\]

\section*{Exercise 2 (Page 141)}
1. \(a^{1 / 10}\) b \(1 / 2\)
c \(2 / 5\) d 0
2. a \(H H, H T, T H, T T \quad\) b \(1 / 4\) c \(1 / 4 \quad\) d \(1 / 2 \quad\) e 0
3. a 5 b 1
c \(1 / 4 \quad d\) no
4. Practical a graph b same no. c 5 d compare
5. a (i) \(3 / 10\)
(ii) \(1 / 5\)
(iii) \(1 / 2\)
(iv) 0
b (i) 3
(ii) 10
(iii) 50
(iv) 0
6. a 1-1 \(1-2 \quad 1-3\) 1-4 \(1-5\) 1-6 \(\begin{array}{llllll}2-1 & 2-2 & 2-3 & 2-4 & 2-5 & 2-6\end{array}\)
3-1 \(\begin{array}{llllll}3-2 & 3-3 & 3-4 & 3-5 & 3-6\end{array}\)
4-1 4 4-2 4 4-3 4 4-4 4 4-5 \(4-6\)
5-1 5 5-2 5 5-3 5 5-4 5 5-5 5-6
6-1 6-2 6-3 6-4 6-5 6-6
b 36
c \(\begin{array}{cccccc}2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 5 & 6 & 7 & 8 \\ & 4 & 5 & 6 & 7 & 8 \\ & 9 \\ & 6 & 7 & 8 & 9 & 10 \\ & 6 & 7 & 8 & 9 & 10 \\ & 11 \\ & 7 & 8 & 9 & 10 & 11 \\ & 12\end{array}\)
d 7 e 2 or 12 - only one each
f (i) \(1 / 36\) (ii) \(1 / 12\) (iii) \(1 / 6\) (iv) \(1 / 12\) (v) 0
\(g\) (i) \(5 / 18\) (ii) \(1 / 6\)
7. a 1-1 1 1-2 \(1-3\) 1-4
\(\begin{array}{llll}2-1 & 2-2 & 2-3 & 2-4\end{array}\)
\(\begin{array}{llll}3-1 & 3-2 & 3-3 & 3-4\end{array}\)
4-1 4 4-2 4-3 4-4
5-1 \(\quad 5-2\) 5-3 5 5-4
6-1 6-2 6-3 6-4
\(\begin{array}{lllll}\text { b } & 2 & 3 & 4 & 5\end{array}\)
3456
\(\begin{array}{llll}4 & 5 & 6 & 7\end{array}\)
\(\begin{array}{llll}5 & 6 & 7 & 8\end{array}\)
\(\begin{array}{llll}6 & 7 & 8 & 9\end{array}\)
c (i) \(1 / 12\)
(ii) \(1 / 6\) (iii) \(1 / 6\)
(iv) \(1 / 8\)
d (i) \(5 / 12\)
(ii) \(1 / 8\)
8. a \(\begin{array}{lllllllll}1-1 & 1-2 & 1-3 & 1-4 & 1-5 & 1-6 & 1-7 & 1-8\end{array}\) 2-1 \(2-2\) 2-3 \(2-42-5 \quad 2-6 \quad 2-7 \quad 2-8\) 3-1 3 3-2 \(3-3\) 3-4 3-5 3-6 3-7 3-8 4-1 4 4-2 4 4-3 4 4-4 \(4-5\) 4-6 \(4-7\) 4-8 5-1 5 5-2 5 5-3 5 5-4 5 5-5 5-6 5 5-7 5-8 \(\begin{array}{lllllllll}\mathrm{b} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\) \(\begin{array}{llllllll}3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\) \(\begin{array}{lllllcll}4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}\) \(\begin{array}{llllllll}6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}\)
c (i) \(1 / 8\) (ii) \(1 / 10\) (iii) \(1 / 20\) (iv) \(1 / 40\) (v) \(3 / 40\)

\section*{Exercise 3 (Page 143)}
1. \(1 / 3\)
2. \(3 / 5\)

3 a \(1 / 6 \quad b^{1 / 6} \quad c^{1 / 2}\)
d \(5 / 6\) e 0
4. \(a^{2 / 5} \quad b^{3 / 5}\)
5. a \(1 / 12 \quad\) b \(1 / 2 \quad c^{1 / 4}\)
\(\begin{array}{ll}d / 4 & \text { e } 5 / 12\end{array}\)
6. a \(a^{1 / 2} \quad a^{1 / 2} \quad c^{3 / 16}\)
d \(1 / 16 \quad\) e \(5 / 8\)
7. a \(1 / 9 \quad\) b \(1 / 3\)
c \(4 / 9 \quad\) d \(5 / 9\)
8. \(a^{1 / 2} \quad b^{1 / 2} \quad c^{1 / 4}\)
\(\begin{array}{ll}d 1 / 13 & \text { e } 1 / 52 \quad f \quad 3 / 13\end{array}\)
\(g^{5 / 13} \quad\) h \(1 \quad\) i 0
9. \(a^{2 / 15} \quad b^{2 / 3} \quad c^{1 / 5}\)
10. a \(13 / 25 \quad b^{1 / 2}\)
11. a \(2 \begin{array}{lllll}3 & 4 & 5 & 6\end{array}\) \(\begin{array}{lllll}3 & 4 & 5 & 6 & 7\end{array}\) \(\begin{array}{lllll}4 & 5 & 6 & 7 & 8\end{array}\) \(\begin{array}{lllll}5 & 6 & 7 & 8 & 9\end{array}\) \(\begin{array}{lllll}6 & 7 & 8 & 9 & 10\end{array}\)
b (i) \(3 / 25\)
(ii) \(1 / 25\)
(iii) 0
(iv) \(1 / 5\)
12. a HHH HHT HTH HTT THH THT TTH TTT
b 8
c (i) \(1 / 8\) (ii) \(3 / 4\) (iii) \(3 / 8\) (iv) \(1 / 4\)
13. 9
14. 20

Exercise 4 (Page 146)
1. \(1 / 12\)
2. \(1 / 13 \times 1 / 13=1 / 169\)
3. \(5 / 16 \times 3 / 8=15 / 128\)
4. \(1 / 7 \times 1 / 7=1 / 49\)
5. \(1 / 4 \times 1 / 4 \times 1 / 4 \times 1 / 4=1 / 256\)
6. \(4 / 9 \times 1 / 2=2 / 9\)

Exercise 5 (Page 147)
1. \(13 / 52 \times 12 / 51=1 / 17\)
2. \(4 / 52 \times 4 / 51=4 / 663\)
3. \(4 / 52 \times 4 / 51 \times 4 / 50=8 / 16575\)
4. \(4 / 20 \times 3 / 19 \times 2 / 18=1 / 285\)
5. \(5 / 25 \times 4 / 24 \times 3 / 23=1 / 230\)
6. \(7 / 10 \times 6 / 9 \times 5 / 8 \times 4 / 7=1 / 6\)

\section*{Answers to Chapter 14 (page 149)}

\section*{Exercise 1 (Page 149)}
\begin{tabular}{|c|c|c|}
\hline 1. a 2.416 & \multicolumn{2}{|l|}{b 0.008} \\
\hline 2. a 9.9 & \multicolumn{2}{|l|}{b 4600000} \\
\hline \multicolumn{3}{|l|}{3. 4} \\
\hline \multicolumn{3}{|l|}{4. 400} \\
\hline \multicolumn{3}{|l|}{5. £30} \\
\hline 6. a \(£ 515\) & \multicolumn{2}{|l|}{b £35} \\
\hline 7. a 12300 & \multicolumn{2}{|l|}{b 830} \\
\hline 8. a 11 & \multicolumn{2}{|l|}{b 16} \\
\hline 9. a -14 & b 27 & c -1 \\
\hline d -32 & e 9 & f -1 \\
\hline 10. a 24 & \multicolumn{2}{|l|}{b 60} \\
\hline 11. a 6 & \multicolumn{2}{|l|}{b 7} \\
\hline \multicolumn{3}{|l|}{12. \(53,59,61,67,71,73,79\)} \\
\hline \multicolumn{3}{|l|}{13. \(2 \times 2 \times 2 \times 7\)} \\
\hline \multicolumn{3}{|l|}{14. a 25 b 400 c 27} \\
\hline d 625 & \multicolumn{2}{|l|}{e 8 f 30} \\
\hline 15. a \(0 \cdot 6\) & \multicolumn{2}{|l|}{b 0.03} \\
\hline 16. a 20\% & \multicolumn{2}{|l|}{b \(75 \%\)} \\
\hline 17. a £85 & \multirow[t]{2}{*}{b 70p} & \multirow[t]{2}{*}{c \$5} \\
\hline 18. £1140 & & \\
\hline \multicolumn{3}{|l|}{19. 585} \\
\hline 20. a \(7 / 12\) & b 63/8 & c \(1^{11 / 15}\) \\
\hline 21. a \(23 / 6\) & b \(51 / 4\) & \\
\hline
\end{tabular}
22. 5.5 seconds
23. Yes since \(8 \times 45\) p \(=£ 3.60 .60\) p discount
24. 75 minutes
25. bottle - \(90 \mathrm{p} / 100 \mathrm{ml}\) can - 80p/100 ml - better buy
26. £216
27. £1757
28. a 65 mph b 60 km c 2 hr 15 m
29. 300 mph
30. a \(35 \mathrm{~cm}^{2}\) b \(15 \mathrm{~cm}^{2}\)
31. \(C=314 \mathrm{~cm}\)
32. \(314 \mathrm{~cm}^{2}\)
33. \(54000 \mathrm{~cm}^{3}=54\) litres
34. \(55 \mathrm{~cm}^{2}\)
35. a 151,142 b 30,42 c 21,34
36. \(H=6 d+9\)
37. a \(3 x+7 y\) b \(20 a b\)
38. a \(6 m^{2}-4 m n\) b \(-12 x+20 y\)
39. \(6 t+18 s\)
40. 2
41. a 6 b 8
42. \(a x>6 \quad b x \leq 45\)
43. a \(A=10 a+4 b+c d \quad\) b 71
44. a 50 b 120 c 110
45. sw
46. \(230^{\circ}\)
47. 160 m
48. scale factor is \(15,75 \mathrm{~cm}\)
49. a \(P(-1,0) \quad b \quad S(3,-2) \quad c \quad R^{\prime}(5,2)\)
50. a yes b no \(c\) yes
\(d\) yes e yes
51. a \(£ 160\) b \(£ 50\)
c £35 d £30
52. 76
53. a \(5 / 12 \quad\) b 75
54. \(2 / 5\)
55. 15
56.

```


[^0]:    * Available for purchase separately.

