Ex 25 Trigonometry Graphs

Section A (Non-calculator)

- 1 A straight line is represented by the equation x + y = 5 Find the gradient of this line.
- 2 Algebraically, find the point of intersection of the straight lines with equations x + 2y = -5 and 3x y = 13

Section B (Knowledge)

- 3 For $0 \le x \le 360$, on separate diagrams sketch the graphs of : (a) $y = \cos x^{\circ}$ (b) $y = \cos 2x^{\circ}$ (c) $y = 2\cos x^{\circ}$
- 4 For $0 \le x \le 360$, on the same diagram sketch the graphs of $y = \sin x^\circ$ and $y = 2 + \sin x^\circ$.

Section C (Reasoning)

6 Three pipes are stored on horizontal ground as shown in the diagram below.

Each pipe has a circular cross-section with radius 2 metres.

Calculate the height, h metres of the stacked pipes. (Ignore the thickness of the pipes.)

Give your answer in metres, correct to two decimal places.

Ex 25 Trigonometry Graphs

Section A (Non-calculator)

- 1 A straight line is represented by the equation x + y = 5 Find the gradient of this line.
- Algebraically, find the point of intersection of the straight lines with equations x + 2y = -5 and 3x y = 13

Section B (Knowledge)

- 3 For $0 \le x \le 360$, on separate diagrams sketch the graphs of : (a) $y = \cos x^{\circ}$ (b) $y = \cos 2x^{\circ}$ (c) $y = 2\cos x^{\circ}$
- 4 For $0 \le x \le 360$, on the same diagram sketch the graphs of $y = \sin x^\circ$ and $y = 2 + \sin x^\circ$.

Section C (Reasoning)

6 Three pipes are stored on horizontal ground as shown in the diagram below.

Each pipe has a circular cross-section with radius 2 metres.

Calculate the height, h metres of the stacked pipes. (Ignore the thickness of the pipes.)

Give your answer in metres, correct to two decimal places.