Ex 25 Trigonometry Graphs

Section A (Non-calculator)

1 A straight line is represented by the equation $x+y=5$ Find the gradient of this line.

2 Algebraically, find the point of intersection of the straight lines with equations $x+2 y=-5$ and $3 x-y=13$

Section B (Knowledge)

3 For $0 \leq x \leq 360$, on separate diagrams sketch the graphs of :
(a) $y=\cos x^{\circ}$
(b) $y=\cos 2 x^{\circ}$
(c) $y=2 \cos x^{\circ}$

4 For $0 \leq x \leq 360$, on the same diagram sketch the graphs of $y=\sin x^{\circ}$ and $y=2+\operatorname{Sin} x^{\circ}$.

Section C (Reasoning)

6 Three pipes are stored on horizontal ground as shown in the diagram below.

Each pipe has a circular cross-section with radius 2 metres.
Calculate the height, h metres of the stacked pipes. (Ignore the thickness of the pipes.)

Give your answer in metres, correct to two decimal places.

Ex 25 Trigonometry Graphs

Section A (Non-calculator)

1 A straight line is represented by the equation $x+y=5$ Find the gradient of this line.

2 Algebraically, find the point of intersection of the straight lines with equations $x+2 y=-5$ and $3 x-y=13$

Section B (Knowledge)

3 For $0 \leq x \leq 360$, on separate diagrams sketch the graphs of :
(a) $y=\cos x^{\circ}$
(b) $y=\cos 2 x^{\circ}$
(c) $y=2 \cos x^{\circ}$

4 For $0 \leq x \leq 360$, on the same diagram sketch the graphs of $y=\sin x^{\circ}$ and $y=2+\operatorname{Sin} x^{\circ}$.

Section C (Reasoning)

6 Three pipes are stored on horizontal ground as shown in the diagram below.

Each pipe has a circular cross-section with radius 2 metres.
Calculate the height, h metres of the stacked pipes. (Ignore the thickness of the pipes.)

Give your answer in metres, correct to two decimal places.

