## Ex 20 Surds

Simplify the following: 1.

(g) 
$$\frac{\sqrt{96}}{\sqrt{3}}$$

(a) 
$$\sqrt{20}$$
 (b)  $\sqrt{54}$  (c)  $\sqrt{700}$  (d)  $\sqrt{640}$  (e)  $\sqrt{2} \times \sqrt{98}$  (f)  $\sqrt{2} \times \sqrt{6}$  (g)  $\frac{\sqrt{96}}{\sqrt{3}}$  (h)  $\sqrt{\frac{8}{27}}$ 

2. Expand the brackets:

(a) 
$$(1 + \sqrt{3})(1 + \sqrt{3})$$

(a) 
$$(1+\sqrt{3})(1+\sqrt{3})$$
 (b)  $(1+\sqrt{5})(2+\sqrt{5})$  (c)  $\sqrt{2}(5+\sqrt{8})$ 

(c) 
$$\int 2(5 + \int 8)$$

3. Rationalise the denominator:

(a) 
$$\frac{3}{\sqrt{2}}$$

(b) 
$$\frac{5}{3\sqrt{7}}$$

(c) 
$$\frac{2}{3-\sqrt{5}}$$

(a) 
$$\frac{3}{\sqrt{2}}$$
 (b)  $\frac{5}{3\sqrt{7}}$  (c)  $\frac{2}{3-\sqrt{5}}$  (d)  $\frac{\sqrt{2}}{6+\sqrt{2}}$ 

Calculate the missing sides in each of the following triangles. Leave 4. your answer in surd form.

(a)



(b)



A rectangle has sides measuring  $(2 + \sqrt{2})$ cm and  $(2 - \sqrt{2})$ cm. 5. Calculate the exact value of:

- a) The rectangles area
- b) The length of the diagonal.



