Ex 16 Vectors

1. The diagram below show 2 directed line segments \mathbf{u} and \mathbf{v} .

Draw the resultant of

a) 3**u** + **v**

- b) 2u + 2v
- 2. Vector $\boldsymbol{a} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$ and vector $\boldsymbol{b} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$

Calculate |2a + 3b|.

3. In the diagram OACB is a parallelogram

$$\overrightarrow{OA} = \boldsymbol{a}$$
 and $\overrightarrow{OB} = \boldsymbol{b}$

In terms of a and b find

- (i) \overrightarrow{OC}
- (ii) \overrightarrow{BA}
- (iii) \overrightarrow{CA}

4. In the diagram below vectors \boldsymbol{a} and \boldsymbol{b} are represented by \overrightarrow{PR} and \overrightarrow{RQ} respectively.

- (a) Express \overrightarrow{PQ} in terms of a and b.
- (b) S is the midpoint of PQ. Express \overrightarrow{QS} in terms of a and b.

5. Three vectors are defined as
$$\overrightarrow{AB} = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}$$
, $\overrightarrow{CD} = \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix}$ and $\overrightarrow{EF} = \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}$.

Find:

(a)
$$|\overrightarrow{AB}|$$

(b)
$$|\overrightarrow{CD}|$$

(c)
$$|\overrightarrow{EF}|$$

6. Two forces acting on a rocket are represented by vectors u and v.

$$u = \begin{pmatrix} 2 \\ -5 \\ -3 \end{pmatrix}$$
 and $v = \begin{pmatrix} 7 \\ 4 \\ -1 \end{pmatrix}$.

Calculate |u+v|, the magnitude of the resultant force.