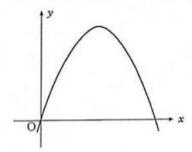

Ex 14 Quadratic Functions

1. Write down the equation representing each parabola. (Each one is in the form $y = kx^2$ or $y = (x + a)^2 + b$)

- 2. Solve the quadratic equation, $x^2 4x + 3 = 0$, by
 - (i) completing the table.
 - (ii) plotting the points and drawing the smooth parabola
 - (iii) reading off the roots from the graph.

x	-1	0	1	2	3	4	5
$y = x^2 - 4x + 3$							


3. Solve the following quadratic equations by factorising:-

a)
$$4x^2 - 36 = 0$$

b)
$$x^2 + 8x + 12 = 0$$

b)
$$x^2 + 8x + 12 = 0$$
 c) $2x^2 - 11x + 12 = 0$

- 4. Solve the following quadratic equation using the formula, correct to 2 decimal places:-
- a) $3a^2 12a + 11 = 0$
- 5. The graph below is part of the parabola with equation $y = 8x x^2$

- a) by factorising $8x x^2$, find the roots of the equation $8x x^2 = 0$
- b) State the equation of the axis of symmetry of the parabola.
- c) Find the coordinates of the turning point.