Further Calculus

Marks

1. Differentiate the following expressions with respect to x.

(a)
$$y = 3x^2 - 7x + 3\cos x$$

(b)
$$y = (1+2x)^3$$

2. Differentiate the following expressions with respect to x.

(a)
$$\frac{1}{2(3x^2+4)^2}$$

(b)
$$\frac{3}{x} - \sin(2x), x \neq 0$$

- 3. The function g is defined on a suitable domain by $g(t) = (\sin t + \cos t)^3$. Find a formula for g'(t).
- 4. Find the following indefinite integrals.

(a)
$$\int 3\cos x \, dx$$

(b)
$$\int \frac{dx}{(3x+2)^3}, \ x \neq -\frac{2}{3}$$

(c)
$$\int 2\cos(3+4x) + \frac{3}{x^2} dx, x \neq 0$$

5. Find the exact value of
$$\int_{0}^{\frac{\pi}{2}} \sin x + (2x + \pi)^{3} dx$$
.

- 6. Find the equation of the tangent to the curve with equation $y = \sin 3x + 3$ at the point where $x = \frac{\pi}{3}$.
- 7. An expression is such that $\frac{dy}{dt} = \sin\left(t \frac{5\pi}{6}\right) + \cos\left(t \frac{2\pi}{3}\right)$. Given that y = 4 when $t = \frac{5\pi}{6}$, find an expression for y in terms of t.