Functions and Graphs

- 1. For each pair of functions write a formula for i) f(g(x)) and ii) g(f(x)).
 - a) f(x) = x + 5, $g(x) = x^2$
 - b) $f(x) = x^3$, g(x) = x + 2
 - c) f(x) = 3x, g(x) = cosx
 - d) $f(x) = 3^x$, g(x) = x 2
- 2. Each of the following functions, f(x), has an inverse. Find a formula for the inverse function $f^{-1}(x)$.

a) f(x) = 3x + 4 b) f(x) = 5x - 1 c) f(x) = 4 - 2x d) $f(x) = \frac{x}{x-1}$

- 3. a) Draw the graph of the function $f(x) = y = \log_7 x$ for 0 < x < 10 and on the same diagram sketch its inverse.
 - b) State the inverse function.
- 4. Functions k and h are defined on the set of real numbers by $k(x) = \frac{2x-5}{3}$ and $h(x) = \frac{3x+5}{2}$. Find k(h(x)). What can you say about functions k and h?

5.

The graph of y = f(x) is shown below.

Sketch the graph of y = 4 - f(x+1), showing the effect on the four labelled points.

- 6. Sketch the graph of y = 3sin($2\Theta \frac{\pi}{3}$) + 1 for $0 < \Theta < 2\Pi$.
- 7. The functions f and g, defined on a suitable domain, are given by $f(x) = \frac{1}{x^2 16}$ and g(x) = x 3.
- a) Find k(x) = f(g(x)), in its simplest form.
- b) State a suitable domain for k.