Functions and Graphs

1. For each pair of functions write a formula for i) $f(g(x))$ and ii) $g(f(x))$.
a) $f(x)=x+5, g(x)=x^{2}$
b) $f(x)=x^{3}, g(x)=x+2$
c) $f(x)=3 x, g(x)=\cos x$
d) $f(x)=3^{x}, g(x)=x-2$
2. Each of the following functions, $f(x)$, has an inverse. Find a formula for the inverse function $f^{-1}(x)$.
a) $f(x)=3 x+4$
b) $f(x)=5 x-1$
c) $f(x)=4-2 x$
d) $f(x)=\frac{x}{x-1}$
3. a) Draw the graph of the function $f(x)=y=\log _{7} x$ for $0<x<10$ and on the same diagram sketch its inverse.
b) State the inverse function.
4. Functions k and h are defined on the set of real numbers by $\mathrm{k}(x)=\frac{2 x-5}{3}$ and $h(x)=\frac{3 x+5}{2}$. Find $k(h(x))$. What can you say about functions k and h ?
5.

The graph of $y=f(x)$ is shown below.

Sketch the graph of $y=4-f(x+1)$, showing the effect on the four labelled points.
6. Sketch the graph of $y=3 \sin \left(2 \theta-\frac{\pi}{3}\right)+1$ for $0<\theta<2 \pi$.
7. The functions f and g, defined on a suitable domain, are given by $f(x)=\frac{1}{x^{2}-16}$ and $g(x)=x-3$.
a) Find $k(x)=f(g(x)$, in its simplest form.
b) State a suitable domain for k.

