This is an illustration of what Layer 1 of the Mathematics technical framework could look like.

Mathematics Purpose Statement

The work to evolve the mathematics curriculum has been taken forward by the National Core and Collaboration groups. An initial priority for this work was to clarify the purpose of mathematics within Scotland's Curriculum. This led to the development of a short purpose statement which outlines the vision for the position of mathematics, which is shown below.

In Scotland we strive for all children and young people to develop as fluent mathematical thinkers and learners who can work both independently and collaboratively to reason, investigate, and build connections. This will enable children and young people to make informed decisions, solve problems, and appreciate the mathematical relationships that shape our world.

Mathematics Big Ideas

A fundamental principle of the evolving technical framework is the development of conceptual understanding. The use of Big Ideas provides an opportunity to prioritise understanding in a curriculum area and to promote coherence. Developing Big Ideas was a starting point for the work undertaken by the Mathematics Core and Collaboration Groups.

The Big Ideas for mathematics outlined below reflect the current thinking of these groups.

Quantity, Number, and the Algebraic	Shape and Space	Information, Data and Uncertainty
Properties of Number	Ideas of shape and space allow us to describe, visualise,	Mathematics equips us to sort and interpret information,
Quantity is described through number, and the algebraic	and navigate the physical structure of our world.	manage uncertainty, and make informed decisions.
properties of number allow us to generalise		
relationships between these quantities.		
Quantity is about understanding 'how much' and 'how many'. In everyday life, we rely on our understanding of numbers and how they work. Numbers help us count, order, measure, compare, and express values. Important rules like the commutative, associative, and distributive laws of addition and multiplication are critical in understanding generalisations and making connections. We have developed counting systems that use place value to represent large and small numbers. From this, we can solve problems accurately, fluently and efficiently in different ways by using mental strategies, visual ideas and algorithms. To deepen our understanding of numbers and how they behave, we use algebra to explore patterns and relationships. This helps us generalise how numbers and operations on numbers interact. Algebra extends our understanding as we explore how quantities change, using functions to describe relationships and rates of change, and prepares us for calculus and the solving of increasingly sophisticated problems.	Ideas of shape and space support the development of our visualisation skills, help us understand the effects of transformations, and allow us to make sense of mathematical structures and symmetries. As we navigate the world around us exploring position, movement and direction we develop our spatial reasoning. We can describe location through coordinate geometry which fixes position in two- and three-dimensional space. The properties of two-dimensional shapes and three-dimensional objects play a significant role in their selection and use in a range of contexts and real-life applications. Ideas of shape and space have applications for us both within and outside of the field of mathematics.	Data is everywhere, influencing our decisions and impacting our daily lives. An awareness of different types of data helps us analyse and interpret the information in the world around us. Mathematics supports us in making informed, evidence-based decisions and predictions by critically evaluating information. Probability helps us navigate uncertainty and risk. By providing structured methods, mathematics allows us to collect, organise and represent information accurately and objectively. Statistics help us identify and make sense of patterns and trends, measure variations, and draw reliable conclusions. We can make sense of information by constructing mathematical models to tackle problems and explore solutions. In areas such as finance, making sense of information is essential for interpreting data, managing budgets, assessing risks, and making informed choices.

This is an illustration of what Layer 1 of the Mathematics technical framework could look like.

Mathematics is a Language

Mathematics provides us with a shared, precise language to communicate about the world around us.

The language of mathematics encompasses all mathematical concepts and supports the deepening of conceptual understanding. It allows us to model and communicate solutions to real-world problems. By using mathematical symbols, diagrams and accurate notation we can communicate effectively across disciplines and cultures. The use of precise notation and mathematical language is essential when conveying abstract concepts. As a collaborative practice, mathematics is about discourse, communicating ideas, and posing purposeful questions that promote curiosity and creativity. Precise mathematical language underpins clear and visible thinking, informed decision-making and justification.

Mathematics is Interconnected

Mathematics is a network of interconnected ideas that help us deepen our understanding, solve problems, and make links within and beyond the subject.

Mathematics is a web of connected ideas, relationships and concepts. Among these concepts is 'Patterns and Sequences', which helps us to notice and understand mathematical relationships, whilst 'Proportional Reasoning' involves understanding multiplicative relationships in a variety of contexts. We use different concepts and connections to solve problems in new and unfamiliar situations. Exploring the links between concepts can deepen understanding, develop reasoning, and support decision-making. Connections also extend beyond mathematics itself, linking to a variety of areas of learning including science, technologies and expressive arts. Noticing and communicating the connections is fundamental to sense-making and enhancing an appreciation of mathematics.

Mathematics is Meaning

Mathematics encourages us to be curious, think critically, and reason logically.

Mathematics is more than a collection of facts, rules and procedures. It is a powerful tool for understanding our world, equipping us to think critically and make evidence-based decisions such as assessing risk and managing finances. Mathematics is dynamic and evolving, with new discoveries emerging in the field, often building on its rich history. We use mathematics to make sense of uncertainty and create beauty from logic. Proof establishes the truth of mathematical results, which allows us to approach real-world problems with confidence. While finding solutions is important, value also lies in developing our skills of reasoning, problem solving, and investigating. Being mathematical requires curiosity and empowers us all to ask questions. It invites us to wonder, investigate and challenge assumptions. Mathematics is a deeply human endeavour. It is a story of intrigue and collaboration across centuries and cultures, where each generation builds on the discoveries of the past, for the benefit of humanity.

This is an illustration of what Layer 1 of the Mathematics technical framework could look like.

Mathematics Concepts

The mathematics groups then worked to develop the key concepts that would be the foundations of the mathematics curriculum. Progression in mathematics would be based on deepening understanding of these concepts. A description of each of the proposed concepts has been provided below. These concepts would be the foundation for what learners need to know and be able to do at each level as they progress through the mathematics curriculum. Together the Big Ideas and Concepts will form the first layer of the evolving technical framework.

Counting and unitsing form port of our earliest engagement with methematics. Counting generally begins or ally there moves on to establishing the total number of individual objects in a collection. This develops into more sophisticated counting strategies, such as counting on and unitsing, where items are grouped and counted in quantities that differ from one. Types of Number Types of Number Structure of Number Structure of Number A mathematical development progresses, new types of numbers are needed to solve increasingly sophisticated problems. Whole numbers, integers and rational numbers are commonly used within everyday contexts. Further mathematical study includes working with irrational and complex numbers. Number on the presented and partitioned in various ways, such as through the development of early number bonds, place-value, multiples, factors, powers, and roots. Subtising (instandly recognising the number of items in a small group without counting) is a key foundation in understanding how numbers are structured. Understanding the structure of number can enable flexible and efficient manipulation to support accorate calculations. Additive and multiplicative strategies (linking to subtraction and diveloping early number bonds, to creating multisteps obstitutions to grobiblems in everyday and mathematical contents. Estimation, Error and Accuracy Estimation, Error and Accuracy Estimation is used when it is not essential or possible to find an exact number or measurement. Numerical calculations and measurement and mathematical contents. Estimation is used when it is not essential or possible to find an exact number or measurement. Numerical calculations and measurements and be approximated by rounding to numbers that are easier to engage and expressed with a degree or loterance, associated sele accuracy for the context. Comparison allows us to necognise that quantities and measurements are either equal or unequal. If quantities are unequal, then one quantity is greater than the other. The langu	Concept	Description
Unitising Unitis		•
counted in quantities that differ from one. As mathematical development progresses, new types of numbers are needed to solve increasingly sophisticated problems. Whole numbers, integers and rational numbers are commonly used within everyday contexts. Further mathematical study includes working with irrational and complex numbers of nonders and the problems. Whole numbers are an articular discussions and the problems are presented and partitioned in various ways, such as through the development of early number for items in a small group without counting is a key foundation in understanding how numbers are structured. Understanding the structure of number can enable flexible and efficient manipulation to support accurate calculations. Additive and multiplicative strategies (linking to subtraction and division) and the understanding of their associated symbols, are developed as they are applied to a greater range of numbers. These operations range in complexity from finding the total of two collections and developing anyly number bonds, to creating multistips solutions to problems in everyday and mathematical contexts. Estimation is used when it is not essential or possible to find an exact number of measurement. Numerical calculations and measurements can be approximated by rounding to numbers that are easier to compute mentally, helping to develop a sense of reasonableness. Approximations introduce errors, which can be measured and expressed with a degree of trolerance, ensuring appropriate levels of accuracy for the context. Comparison Proportional Reasoning Proportional Reasoning Amoney and Finance Proportional reasoning menutes recognising and applying the relationship between two or more quantities and technical plane and decisions, and enables products are comparison and provides	Counting and	
Types of Number As mathematical development progresses, new types of numbers are needed to solve increasingly sophisticated problems. Whole numbers, integers and retional numbers are commonly used this revenue of Number Structure of Number Structure of Number Structure of Number Structure of Number Additive and multiplicative strategies (linking to subtraction and development of early number bonds, place-value, multiplies, factors, powers, and roots. Subtitising (instantity recognising the numbers and curiate calculations. Additive and multiplicative strategies (linking to subtraction and division) and the understanding of their associated symbols, are developed as they are applied to a greater range of numbers. These operations associated symbols, are developed as they are applied to a greater range of numbers. These operations range in complexity from finding the total of two collections and developing early number bonds, to creating multi-step activations and measurements can be approximated by rounding to numbers. These operations range mentally, helping to develop a sense of reasonableness. Approximations introduce errors, which can be mentally, helping to develop a sense of reasonableness. Approximations introduce errors, which can be measured and expressed with a degree of tolerance, ensuring appropriate levels of accuracy for the context. Comparison Comparison Comparison Comparison Comparison allows us to recognise that quantities and measurements are either equal or unequal. If quantities are unequal, then one quantity or measurement is greater than the other. The language of comparison appears in a range of contexts, and decisions are other made based on comparisons. Proportional reasoning involves recognising and applying the relationship between two or more quantities that change in proportion to each other. This is often represented using ratios, fractions, percentages, or quantities and measurements are proportionally appropriate to a continue the sequence, and to present a sense of co	Unitising	more sophisticated counting strategies, such as counting on and unitising, where items are grouped and
Structure of Number Operations on Number Operations on Number Additive and multiplicative structure of number can enable flexible and efficient manipulation to support accurate calculations. Additive and multiplicative structure of number can enable flexible and efficient manipulation to support accurate calculations. Additive and multiplicative structure of number can enable flexible and efficient manipulation to support accurate calculations. Additive and multiplicative structure of number can enable flexible and efficient manipulation to support accurate calculations are developed as they are applied to a greater range of numbers. These operations range in complexity from finding the total of two collections and developing early number bonds, to creating multistep associated symbols, are developed as they are applied to a greater range of numbers. These operations range in complexity from finding the total of two collections and developing early number bonds, to creating multistep associated symbols, are developed as they are applied to a greater range of numbers. These operations range in complexity from finding the total of two collections and developing early number bonds, to creating multistep associated symbols, are developed as they are applied to a greater range of numbers. These operations are associated calculations and measurements are easier to compute mentally, helping to develop a sense of reasonableness. Approximations introduce errors, which can be measured and expressed with a degree of tolerance, ensuring appropriate leaves of accurate and expressed with a degree of tolerance, ensuring appropriate leaves of accurate and expressed with a degree of tolerance, ensuring appropriate leaves of accurate and expressed with a degree of tolerance, ensuring appropriate leaves of accurate an		
Comparison Compar	Towns of Normals are	
Number can be represented and partitioned in verticus ways, such as through the development of early number bonds, place-vaculus, multiples, factors, powers, and roots. Subtrising (instantly reciping the factors) with the provided of the	Types of Number	
number bonds, place-value, multiples, factors, powers, and roots. Subfishing (instantly recognising the number of items in a small group without counting) is a key foundation in understanding who numbers are structured. Understanding the structure of number can enable flexible and efficient manipulation to support accurate calculations. Additive and multiplicative strategies (linking to subtraction and division) and the understanding of their associated symbols, are developed as they are applied to a greater range of numbers. These operations range in complexity from finding the total of two collections and developing early number bonds, to creating multi-step solutions to problems in everyday and mathematical contexts. Estimation, Error and Accuracy Estimation, Error and Accuracy Additive and expressed with a degree of tolerance, ensuring appropriate levels of accuracy for the context, and decisions and measurements are easier to compute mentally, helping to develop a sense of reasonableness. Approximations introduce ensure, which can be measured and expressed with a degree of tolerance, ensuring appropriate levels of accuracy for the context, and decisions are often made based on ornaqual. If quantities are unequal, then one quantity or measurement is greater than the other. The language of comparison appears in a range of contexts, and decisions are often made based on penatrons. Proportional Reasoning Proportional reasoning involves recognising and applying the relationship between two or more quantities that change in proportion to each other. This is often represented using ratios, fractions, percentiges, or equations, and enables predictions to be made, problems to be solved, and logical conclusions to be drawn. Finance involves recognising the value of coins and notes, different payment methods and sources of incommendations and proportion to each other. This is often represented using ratios, fractions, percentiges, or equations, and enables predictions to be made, problems to be solved, and logi		
number of items in a small group without counting) is a key foundation in understanding how numbers are structured. Understanding the structure of number can enable flexible and efficient manipulation to support accurate calculations. Additive and multiplicative strategies (linking to subtraction and division) and the understanding of their can be associated symbols, are developed as they are applied to a greater range of numbers. These operations range in complexity from finding the total of two collections and developing early number bonds, to creating multistep solutions to problems in everyday and mathematical contexts. Estimation, Error and Accuracy Estimation is used when it is not essential or possible to find an exact number or measurement. Numerical Estimation is used when it is not essential or possible to find an exact number or measurement. Numerical calculations and measurements be approximated by rounding to numbers that are easier to compute mentally, helping to develop a sense of reasonableness. Approximations introduce errors, which can be measured and expressed with a degree of tolerance, ensuring appropriate levels of accuracy for the context. Comparison allows us to recognise that quantities and measurements are either equal or unequal. If quantities are unequal, then one equantity or measurements are either equal or unequal. If quantities are unequal, then one equantity or measurement is greater than the other. The language of comparison appears in a range of contexts, and decisions are often made based on comparisons. Proportional Reasoning Money and Finance Patterns and Proportional reasoning involves recognising and applying the relationship between two or more quantities that the context of the proportion of the proportion to each other. This is often represented using ratios, fractions, percentages, or equations, and enables predictions to be made, problems to be solved, and logical		
Structured. Understanding the structure of number can enable flexible and efficient manipulation to support accurate calculations. Additive and multiplicative strategies (linking to subtraction and division) and the understanding of their associated symbols, are developed as they are applied to a greater range of numbers. These operations range in complexity from finding the total of two collections and developing early number bonds, to creating multistep solutions to problems in everyday and mathematical contexts. Estimation, Error and Accuracy Estimation, Error and Accuracy Comparison Comparison Comparison Comparison Comparison at the structure of the structure of the structure of the structure and expressed with a degree of tolerance, ensuring appropriate levels of accuracy for the context. Comparison Compariso		
Additive and multiplicative strategies (linking to subtraction and division) and the understanding of their associated symbols, are developed as they are applied to a greater range of numbers. These operations range in complexity from finding the total of two collections and developing early number bonds, to creating multistep solutions to problems in everyday and mathematical contexts. Estimation is used when it is not essential or possible to find an exact number or measurement. Numerical calculations and measurements can be approximated by rounding to numbers that are easier to compute mentally, helping to develop a sense of reasonables to find an exact number or measurement. Numerical calculations and measurements can be approximated by rounding to numbers that are easier to compute mentally, helping to develop a sense of reasonables need to promise the sense of reasonables. Approximations introduce errors, which can be measured and expressed with a degree of tolerance, ensuring appropriate levels of accuracy for the context. Comparison Quantities are unequal, then one quantity or measurements are either equal or unequal. If quantities are unequal, then one quantity or measurement is greater than the other. The language of comparison appears in a range of context, and decisions are often made based on comparisons. Proportional teasoning involves recognising and applying the relationship between two or more quantities that change in proportion to each other. This is often represented using ratios, fractions, percentages, or comparison and proton to each other. This is often represented using ratios, fractions, percentages, or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular Sequences. Patterns and Patterns and Position and Movement Position and Movement Measures Measures Length, rea, volume, mass, angle, time, and temperature can be described and measurements. The toeption of an object or point can be communicated using appropriate languag	Number	
Operations on Number associated symbols, are developed as they are applied to a greater range of numbers. These operations range in complexity from finding the total of two collections and developing early number bonds, to creating multistep solutions to problems in everyday and mathematical contexts. Estimation, Error and Accuracy and Accuracy Estimation is used when it is not essential or possible to find an exact number or measurement. Numerical contexts are used and expressed with a degree of tolerance, ensuring appropriate levels occuracy for the context. Comparison Comparison allows us to recognise that quantities and measurements are either equal or unequal. If quantities are unequal, then one quantity or measurements is greater than the other. The language of comparison appears in a range of contexts, and decisions are often made based on comparisons. Proportional reasoning involves recognising and applying the relationship between two or more quantities and the change in proportion to each other. This is often represented using ratios, fractions, percentages, or equations, and enables predictions to be made, problems to be solved, and logical conclusions to be drawn. Finance involves recognising the value of coins and notes, different payment methods and sources of income. Understanding key principles such as borrowing, saving, budgeting, interest calculations, pay deductions, and investments help us to assess risk and make informed financial plans and decisions. Finance inks closely with other concepts such as Operation on Number, Comparison and Probability. Patterns and Sequences Patterns and Sequences Patterns, which occur in both nature and everyday life, are situations where actions, objects, colours, shapes, and continue the sequence, and to predict other elements within it. Position and Movement and directions can be described using appropriate language and measurements. The location of an object or point can be communicated using appropriate language or notation. Alocus of points o		
in complexity from finding the total of two collections and developing early number bonds, to creating multi- step solutions to problems in everyday and mathematical contexts. Estimation, Error and Accuracy Estimation is used when it is not essential or possible to find an exact number or measurement. Numerical calculations and measurements can be approximated by rounding to numbers that are easier to compute mentally, helping to develop a sense of reasonableness. Approximations introduce errors, which can be measured and expressed with a degree of tolerance, ensuring appropriate levels of accuracy for the context. Comparison allows us to recognise that quantities and measurements are either equal or unequal. If quantities are unequal, then one quantity or measurement is greater than the other. The language of comparison appears in a range of contexts, and decisions are often made based oncomparisons. Proportional Reasoning Proportional reasoning involves recognising and applying the relationship between two or more quantities that change in proportion to each other. This is often represented using ratios, fractions, percentages, or equations, and enables predictions to be made, problems to be solved, and logical conclusions to be drawn. Finance involves recognising the value of coins and notes, different payment methods and sources of income. Understanding key principles such as borrowing, saving, budgeting, intered calculations, pay deductions, and investments help us to assess risk and make informed financial plans and decisions. Finance links closely with other concepts such as Operation on Number. Comparison and Probability. Patterns and Sequences Sequences Patterns and Sequence, and to predict other elements within it. Position and Movement Occurrence of the communicated using appropriate language and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Carresian plane can be used to define algebraically a geometric	Onevetiene en	,
Step solutions to problems in everyday and mathematical contexts.		
Estimation, Error and Accuracy Bestimation, Error and Accuracy mentally, helping to develop a sense of reasonableness. Approximations introduce errors, which can be measured and expressed with a degree of tolerance, ensuring appropriate levels of accuracy for the context. Comparison allows us to recognise that quantities and measurements are elucial. If quantities are unequal, then one quantity or measurement is greater than the other. The language of comparison allows us to recognising and applying the relationship between two or more quantities that change in proportion to each other. This is often represented using ratios, fractions, percentages, or equations, and enables predictions to be made, problems to be solved, and logic aconclusions to be drawn. Finance involves recognising the value of coins and notes, different payment methods and sources of income. Understanding key principles such as borrowing, saving, budgeting, interest calculations, pay deductions, and investments help us to assess risk and make informed financial plans and decisions. Finance links closely with other concepts such as Operation on Number, Comparison and Probability. Patterns, which occur in both nature and everyday life, are situations where actions, objects, colours, shapes, or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Movements and directions can be described using appropriate language and measurements. The location of an object or point can be communicated using appropriate language and measurements. The location of an object or point can be communicated using appropriate language and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity.	Number	
calculations and measurements can be approximated by rounding to numbers that are easier to compute mentally, helping to develop a sense of reasonableness. Approximations introduce errors, which can be measured and expressed with a degree of tolerance, ensuring appropriate levels of accuracy for the context. Comparison allows us to recognise that quantities and measurements are either equal or unequal. If comparison allows us to recognise that quantities and measurements are either equal or unequal. If comparison appears in a range of contexts, and decisions are often made based on comparisons. Proportional reasoning involves recognising and applying the relationship between two or more quantities that change in proportion to each other. This is often represented using ratios, fractions, percentages, or equations, and enables predictions to be made, problems to be solved, and logical conclusions to be drawn. Finance involves recognising the value of coins and notes, different payment methods and sources of income. Understanding key principles such as borrowing, saving, budgeting, interest calculations, pay deductions, and investments help us to assess risk and make informed financial plans and decisions. Finance links closely with other concepts such as Operation on Number, Comparison and Probability. Patterns and Sequences Patterns and Sequences Patterns, which occur in both nature and everyday life, are situations where actions, objects, colours, shapes, or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Position and Movement Movement Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to		
measured and expressed with a degree of tolerance, ensuring appropriate levels of accuracy for the context. Comparison allows us to recognise that quantities and measurements are either equal or unequal. If quantities are unequal, then one quantity or measurement is greater than the other. The language of comparison appears in a range of contexts, and decisions are often made based on comparisons. Proportional Reasoning Proportional reasoning involves recognising and applying the relationship between two or more quantities that change in proportion to each other. This is often represented using ratios, fractions, percentages, or equations, and enables predictions to be made, problems to be solved, and logical conclusions to be drawn. Finance involves recognising the value of coins and notes, different payment methods and sources of income. Understanding key principles such as borrowing, saving, budgeting, interest calculations, pay deductions, and investments help us to assess risk and make informed financial plans and decisions. Finance links closely with other concepts such as Operation on Number, Comparison and Probability. Patterns, which occur in both nature and everyday life, are situations where actions, objects, colours, shapes, and the predict other elements within it. Patterns, which occur in both nature and everyday life, are situations where actions, objects, colours, shapes, and the sequence, and to predict other elements within it. Movement Position and Movement Measures Measures Measures Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language or posterious and can be used to define algebraically a geometric entity. Two-dimensional shapes and three-dimensional objects can be described understand the world aro	Estimation, Error	·
Comparison allows us to recognise that quantities and measurements are either equal or unequal. If quantities are unequal, then one quantity or measurement is greater than the other. The language of comparison appears in a range of contexts, and decisions are often made based on comparisons. Proportional reasoning involves recognising and applying the relationship between two or more quantities that change in proportion to seeh other. This is often represented using ratios, fractions, percentages, or equations, and enables predictions to be made, problems to be solved, and logical conclusions to be drawn. Finance involves recognising the value of coins and notes, different payment methods and sources of income. Understanding key principles such as borrowing, saving, budgeting, interest calculations, pay deductions, and investments help us to assess risk and make informed financial plans and decisions. Finance links closely with other concepts such as Operation on Number, Comparison and Probability. Patterns, which occur in both nature and everday life, are situations where actions, objects, colours, shapes, or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes sequence, to copy and continue the sequence, and to predict other elements within it. Movements and directions can be described using appropriate language and measurements. The location of an object or point can be communicated using appropriate language and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Properties of Shapes and Solids Finance invalves and directions are properties. These properties have used to the invaling a properties have used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, class	and Accuracy	
quantities are unequal, then one quantity or measurement is greater than the other. The language of comparison appears in a range of contexts, and decisions are often made based on comparisons. Proportional Proportional reasoning involves recognising and applying the relationship between two or more quantities that change in proportion to each other. This is often represented using ratios, fractions, percentages, or decisions and enables predictions to be made, problems to be solved, and logical conclusions to be drawn. Finance involves recognising the value of coins and notes, different payment methods and sources of income. Understanding key principles such as borrowing, saving, budgeting, interest calculations, pay deductions, and investments help us to assess risk and make informed financial plans and decisions. Finance links closely with other concepts such as Operation on Number, Comparison and Probability. Patterns and or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Position and Movement Alocus of point can be described using appropriate language and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Heasures Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and analysed by their geometrically properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transform		
Proportional Reasoning Proportional reasoning involves recognising and applying the relationship between two or more quantities that change in proportion to each other. This is often represented using ratios, fractions, percentages, or equations, and enables predictions to be made, problems to be solved, and logical conclusions to be drawn. Finance involves recognising the value of coins and notes, different payment methods and sources of income. Understanding key principles such as borrowing, saving, budgeting, interest calculations, pay deductions, and investments help us to assess risk and make informed financial plans and decisions. Finance links closely with other concepts such as Operation on Number, Comparison and Probability. Patterns and Patterns, which occur in both nature and everyday life, are situations where actions, objects, colours, shapes, or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular stern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Position and Movement Measures Measures Measures Measures Length, area, volume, mass, angle, time, and temperature can be described and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language in the push of describes and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellati	Comparison	
Proportional Reasoning Proportional reasoning involves recognising and applying the relationship between two or more quantities that change in proportion to each other. This is often represented using ratios, fractions, percentages, or ductions, and enables predictions to be made, problems to be solved, and logical conclusions to be drawn. Finance involves recognising the value of coins and notes, different payment methods and sources of income. Understanding key principles such as borrowing, saving, budgeting, interest calculations, pay deductions, and investments help us to assess risk and make informed financial plans and decisions. Finance links closely with other concepts such as Operation on Number, Comparison and Probability. Patterns, which occur in both nature and everyday life, are situations where actions, objects, colours, shapes, or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Movements and directions can be described using appropriate language and measurements. The location of an object or point can be communicated using appropriate language and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes,	Companson	
that change in proportion to each other. This is often represented using ratios, fractions, percentages, or equations, and enables predictions to be made, problems to be solved, and logical conclusions to be drawn. Finance involves recognising the value of coins and notes, different payment methods and sources of income. Understanding key principles such as borrowing, saving, budgeting, interest calculations, pay deductions, and investments help us to assess risk and make informed financial plans and decisions. Finance links closely with other concepts such as Operation on Number, Comparison and Probability. Patterns and Sequences or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Position and Movement and directions can be described using appropriate language and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animal		
Finance involves recognising the value of coins and notes, different payment methods and sources of income. Understanding key principles such as borrowing, saving, budgeting, interest calculations, pay deductions, and investments help us to assesses risk and make informed financial plans and decisions. Finance links closely with other concepts such as Operation on Number, Comparison and Probability. Patterns and Patterns, which occur in both nature and everyday life, are situations where actions, objects, colours, shapes, or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Position and Movement Movement and elements and be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Length, area, volume, mass, angle, time, and temperature can be described and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symm	•	
income. Understanding key principles such as borrowing, saving, budgeting, interest calculations, pay deductions, and investments help us to assesses risk and make informed financial plans and decisions. Finance links closely with other concepts such as Operation on Number, Comparison and Probability. Patterns and Patterns, which occur in both nature and everyday life, are situations where actions, objects, colours, shapes, or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Position and Movement Movement and directions can be described using appropriate language and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are	Keasoning	equations, and enables predictions to be made, problems to be solved, and logical conclusions to be drawn.
deductions, and investments help us to assess risk and make informed financial plans and decisions. Finance links closely with other concepts such as Operation on Number, Comparison and Probability. Patterns, which occur in both nature and everyday life, are situations where actions, objects, colours, shapes, or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Movement and directions can be described using appropriate language and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions and Expressions and Expressions and Expressions and each of the equality of the equation is a mathematical sentence that includes the equa		
Finance links closely with other concepts such as Operation on Number, Comparison and Probability. Patterns, which occur in both nature and everyday life, are situations where actions, objects, colours, shapes, or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Position and Movement Movements and directions can be described using appropriate language and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by implifying th	Money and Finance	
Patterns and Sequences Patterns and or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Position and Movement Measures Mea		
Patterns and Sequences or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence, and to predict other elements within it. Movements and directions can be described using appropriate language and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that i		
Continue the sequence, and to predict other elements within it. Position and Movements and directions can be described using appropriate language and measurements. The location of an object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation is nuknown number (represented by a symbol or letter), it can be solved	Patterns and	
Movement Movement Movement Movement Movement Movement Measures Me	Sequences	pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and
An object or point can be communicated using appropriate language or notation. A locus of points on a Cartesian plane can be used to define algebraically a geometric entity. Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements may be true in all cases, true in some cases or pever true. It can be demonstrated that		
Cartesian plane can be used to define algebraically a geometric entity. Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements may be true in all cases true in some cases or never true. It can be demonstrated that such a statement is true in all	Position and	
Length, area, volume, mass, angle, time, and temperature can be described and measured using appropriate language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases true in some cases or pever true. It can be demonstrated that such a statem	Movement	
Language, scales and units of measurement. These measurements help us to describe and understand the world around us and can be used to perform associated calculations. Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases true in some cases or pover true. It can be demonstrated that such a statement is true in all		
Two-dimensional shapes and three-dimensional objects can be described, classified and analysed by their geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases. True in some cases, or never true. It can be demonstrated that such a statement is true in all cases.	Measures	
geometrical properties. These properties have relevance to their use in everyday and mathematical contexts. Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases true in some cases, or never true it can be demonstrated that such a statement is true in all		world around us and can be used to perform associated calculations.
Some shapes, or combinations of shapes, can be placed without overlaps or spaces to cover a plane (tessellation). Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements may be true in all cases true in some cases or never true. It can be demonstrated that such a statement is true in all		
Symmetry Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases, true in some cases, or never true, it can be demonstrated that such a statement is true in all	•	
Symmetry Symmetry refers to ways in which an object, often a shape, is unchanged by transformations such as translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases, true in some cases, or never true. It can be demonstrated that such a statement is true in all	Snapes and Solids	
translation, reflection, rotation, and scaling. Examples of symmetry can be found in the world around us in plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases, true in some cases, or never true. It can be demonstrated that such a statement is true in all		
plants, flowers, animals, and buildings. A wide range of mathematical structures, relationships, and representations, for example, in number, algebra and statistics, have their own symmetries (or asymmetries). Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases, true in some cases, or never true, it can be demonstrated that such a statement is true in all	Symmotry	
Expressions are mathematical phrases which include variables (quantities that can take on a range of values) which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statement is true in all	Symmetry	
which are often represented by a symbol or letter. They can be written in equivalent forms, for example by simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases, true in some cases, or never true. It can be demonstrated that such a statement is true in all		
simplifying through collecting like terms, or through factorising. The use of variables allows generalisations to be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases, true in some cases, or never true. It can be demonstrated that such a statement is true in all		
Expressions and Equations be made about numbers, patterns, and mathematical relationships. An equation is a mathematical sentence that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases, true in some cases, or never true. It can be demonstrated that such a statement is true in all		
that includes the equals sign to show both sides have the same value/balance. Each side of the equation can include numbers and/or symbols. If an equation includes an unknown number (represented by a symbol or letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases, true in some cases, or never true. It can be demonstrated that such a statement is true in all		
letter), it can be solved to find the value(s) for which the equation is true. Inequations are mathematical statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases, true in some cases, or never true. It can be demonstrated that such a statement is true in all		
statements indicating that one expression is not strictly equal to another. Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be true in all cases, true in some cases, or never true, it can be demonstrated that such a statement is true in all		
Mathematical reasoning can be used to justify the solutions to problems. Mathematical statements may be		
true in all cases, true in some cases, or never true, it can be demonstrated that such a statement is true in all		
functification and		· · · · · · · · · · · · · · · · · · ·
L cases through a logical, mathematical argument. To show that a statement is not always true, just one	Justification and	
counterexample is needed. A proof can be expressed by using physical objects, creating appropriate	Proof	
diagrams, or algebraically using mathematical notation.		diagrams, or algebraically using mathematical notation.

This is an illustration of what Layer 1 of the Mathematics technical framework could look like.

Types of Data	Data is information such as words, pictures, numbers, facts, figures, or objects. Data can be classified as qualitative (categorical) or quantitative (numerical). Qualitative data can be nominal (no sense of order, for example, breeds of dogs), or ordinal (can be ordered, for example, standard clothing sizes – small, medium, large). Quantitative data can be discrete (separate values that can be counted as whole numbers) or continuous (can take any value within a given range).
Data Collection and Organisation	Data can be collected in different ways such as observations, surveys, interviews, and experiments. Technology plays an ever-increasing role in the collection of data. Care should be taken to avoid bias and sample size should be considered. Data can be classified, grouped, ordered, and counted in different ways to prepare it for analysis. Physical objects can be organised by similar properties, for example, by shape, colour, or size. Quantitative data may be grouped into intervals, sorted in ascending or descending order, or categorised based on shared characteristics. Qualitative data may be organised by key themes or by using a coding system. The purpose of collection will impact on/determine how the data is organised.
Data Representation	Data can be represented using a range of tables, graphs, and charts, the choice of which depends on the type of data collected and the purpose for which it has been collected. Technology can play an important role in the creation of these tables, graphs and charts. Visual representations can become misleading, for example by truncating scales in graphs or exaggerating differences and trends.
Data Analysis and Interpretation	Sets of quantitative data can be analysed by comparing totals and identifying the most and least, calculating averages and measures of spread, and by identifying trends and outliers. Patterns and trends can be analysed in qualitative data, highlighting key points and repeating narratives. Conclusions can then be drawn about what the data shows or does not show. This may include comparing data sets with one another and making choices, decisions, and predictions. Being aware of the different types of bias and the role this can play is key when analysing data.
Probability	Probability helps us predict the behaviour of events where the outcome is uncertain. Appropriate language and notation can be used to describe or calculate the likelihood of an event happening, enabling informed decisions and accurate predictions.
Mathematical Modelling	Mathematical modelling is the process of describing, in mathematical language, how real-world systems behave. This staged process is cyclical in nature, where a problem is analysed, a model is formulated, evaluated, and modified if necessary. An effective mathematical model can support us in making predictions and decisions, and in solving problems.
Functions and Relationships	Operations on numbers can be described by giving the relationship between a number (input) and the corresponding number after the operations have been carried out (output). A function is a relationship where there is exactly one output for every input. Not all relationships are functions. Functions and relationships can be described in different ways, for example, by using arrows mapping inputs to outputs, algebraically using function notation, or graphically using Cartesian axes.

Development of a Mathematical Concept

An illustration of the work to evolve the technical framework for mathematics is provided. The illustration focuses on the concept of Patterns and Sequences and is related to the Big Idea of Quantity, Number, and the Algebraic Properties of Number.

In this illustration the second layer gives an overview of what learners need to know about this concept at each level. The third layer clarifies the specific knowledge, skills, procedures and strategies required to develop and deepen understanding of this concept as learners progress within and between levels.

Other concepts will also relate to this Big Idea, such as Structure of Number and Operations on Number. Further content related to Patterns and Sequences will link to other Big Ideas. A glossary will also be produced to support the understanding of key terminology and language.

The evolution of the technical framework (the know-do-understand model) seeks to ensure that learning is not a disconnected collection of facts or processes. Deep learning occurs when children and young people make sense of their learning, can establish connections and apply this learning in meaningful contexts. This connects knowledge and skills to conceptual understanding.

Development of the Patterns and Sequences Concept

Concept description:

Patterns, which occur in both nature and everyday life, are situations where actions, objects, colours, shapes or numbers repeat in a certain order. A sequence is a list or arrangement of elements that follow a particular pattern or rule. Known elements can be used to establish the rule which describes the sequence, to copy and continue the sequence and to predict other elements within it.

Layer 2	 Overview of the development of Patterns and Sequences
Early	Patterns and Sequences:
Larry	The sequence of whole numbers can be seen, copied and continued.
	Month on the second of the sec
	Numbers can be arranged in order of size.
	Whole numbers are either even, where they can be shared into two equal groups, or odd, where they cannot be shared into two equal groups.
First	Patterns and Sequences:
	A number sequence is an ordered list that follows a pattern or rule.
	Numbers in a sequence can be in ascending or descending order.
	The patterns used to generate number sequences can be based on any type of operation on number.
Second	Patterns and Sequences: A square number of items can be arranged in the shape of a square. The sequence of square numbers can be found by multiplying whole numbers by
	themselves.
	A triangular number of items can be arranged in the shape of a triangle. The sequence of triangular numbers (1, 3, 6,) increases by one more each time.
	The next number in a Fibonacci sequence is found by adding together the two previous numbers in that sequence.
Third	Patterns and Sequences:
	An arithmetic sequence is one where the difference between two consecutive terms is always the same.
	An n th term formula describes a sequence and is used to find any number in that sequence using its position.
	The second of th
Fourth	Patterns and Sequences:
	A geometric sequence is one where the ratio of two consecutive terms is always the same.
	Arithmetic sequences can be used to model real-life situations.

Summary of essential vocabulary for learners						
Early	First	Second	Third	Fourth		
Sequence Ascend Descend Odd numbers Even numbers	Pattern Ordered list Multiplicative number patterns Multiples	Decimal fractions Integers Square numbers Arrays Triangular numbers Cube numbers	Term Arithmetic sequence nth term formula Consecutive terms Common difference	Geometric sequence Common ratio Gradient		

Patterns and Sequences Concept

This is an illustration of part of the Mathematics technical framework, specifically the concept of Patterns and Sequences. A detailed glossary will also be produced to support the understanding of key words and phrases.

End of Early Level Beginning of First Level							
Know	Do	Know	Do	Know	Do	Know	Do
Sequences of numbers can be seen in the world around us.	Explore and identify number sequence in everyday situations and real-life experiences. For example, house numbers, page numbers, clocks and calendars.						
	Within the number range 1 to 5 and then 0 to 10:		Within the number range 0 to 20:		Within the range 0 to 100:		Gradually increase the range to 1000.
Number sequences can be copied and continued.	Copy and continue number sequences through a range of songs, stories, rhymes and counting games. Notice and identify missing numerals when shown sequences which ascend or descend in ones. For example, 5, 6, ?, 8. Identify an error made in an ascending or descending number sequence in ones. For example, 4, 5, 6, '8', 9	Number sequences can be copied, continued and extended.	When counting in ones, identify which number(s) comes next in ascending and descending oral and written sequences. For example, 13, 14, 15,? When counting in ones, identify missing numbers from ascending and descending oral and written number sequences. For example, 14, 15,?, 17 Recognise and explain an error made in an oral or written ascending or descending number sequence in ones. For example, 14, 15, 16, '18', 19	A sequence is an ordered list of numbers that follow a specific rule. A number pattern is a rule that numbers follow which can be used to create a number sequence. For example, increasing by 5 each time.	Identify next number(s), missing numbers and errors in number sequences that ascend and descend in ones. When choral counting, using concrete materials or looking at ordered lists of numerals, notice, discuss and identify the pattern and explain the rule. For example, the sequence of 8, 6, 4, 2 has the rule of decreasing by 2 each time. Recognise and explain an error made in an oral or written number sequence. For example, 10, 20, 30, '14', 50.	Skip counting is based on a number pattern. Number sequences can be generated by skip counting.	Identify next number(s), missing numbers and errors in number sequences that ascend and descend in ones. Recognise and extend a sequence of numbers, based or skip counting, by applying the rule. For example, 3, 6, 9, ?, ?. Notice, discuss and identify the pattern within an ordered list an explain the rule. For example, the sequence of 100, 150, 200, 250 (has the rule of skip countir in 50s).
		If a number is even, the total can be shared into two equal groups. If a number is odd number, it cannot be shared equally into two groups.	Identify and demonstrate if a number to 10 is odd or even using concrete materials and visual approaches. For example, pairwise ten frames: Identify the next odd/even number to 10 using mathematical tools to keep track. For example, a number track or number line.	An even number has a ones digit of 0, 2, 4, 6 or 8. An odd number has a ones digit 1, 3, 5, 7 or 9.	Identify odd and even numbers based on the ones digit.		Continue to identify odd and even numbers based on the one digit.

Patterns and Sequences Concept

This is an illustration of part of the Mathematics technical framework, specifically the concept of Patterns and Sequences. A detailed glossary will also be produced to support the understanding of key words and phrases.

	End of First Level	Beginning of Second Level					End of Second Level
Know	Do	Know	Do				
Number sequences can be	Within the range 0 to 1000: Identify next number(s), missing numbers and errors in ascending and descending number sequences based on skip counting. For example, 7,14, ?, ?, 35, Notice, discuss and identify the		Within the range to 0 to 10 000: Continue to notice, discuss and		Within the range 0 to 100 000: Continue to notice, discuss and		Within the range -20 to 1 000 000: Notice, discuss and identify the
generated based on addition or subtraction number patterns.	pattern within an ordered list and explain the rule. For example, the sequence of 72, 63, 54, 45 has the rule of subtracting 9 each time.		identify the pattern within an ordered list and explain the rule. For example, the sequence of 800, 1700, 2600, 3500 has the rule of adding 900 each time.		identify the pattern within an ordered list and explain the rule. For example, the sequence of 525, 2100, 8400 has the rule of multiplying by 4 each time.		pattern within an ordered list of integers and explain the rule. For example, the sequence of 23, 11, -1, -13 has the rule of subtracting 12.
Number sequences can be generated based on multiplicative number patterns.	When choral counting in multiples, record the count and explore the links and patterns. For example, notice the links between the multiples of 3 and 6. Recognise and extend a sequence of numbers by applying a multiplicative rule.		Identify the next number(s), missing numbers and errors in ascending and descending number sequences based on additive and multiplicative rules		Continue to identify the next number(s), missing numbers and errors in ascending and descending number sequences based on additive and multiplicative rules		Identify the next number(s), missing numbers and errors in ascending and descending integer sequences based on additive rules
		A square number of items can be arranged in an array with an equal number of rows and columns: A square number is found by multiplying a number by itself. This can be represented using a superscript 2 and is read as "squared". For example, $4 \times 4 = 4^2$ is read as "four squared".	Explain and demonstrate visually or with concrete materials what a square number is. Determine square numbers using arrays and known addition/multiplication facts. Explain and demonstrate visually or with concrete materials if a number is square or not. Calculate and record a range of square numbers. For example, 6 squared 6 ² = 36	Triangular numbers describe the number of items that can be arranged in a triangle. The first row contains 1 item, the second row 2 items, the third row 3 items and so on:	Explore and spot where triangular number patterns appear in real contexts. For example, snooker ball and bowling pin formations. Form triangular number patterns using physical objects. Explain and demonstrate visually or with concrete materials if a number is triangular or not. Explore strategies for calculating triangular numbers. Investigate classic mathematical problems involving triangular numbers. For example, Pascal's Triangle, the handshake problem.	A cube number of items can be arranged as a cube. Couped 2 cubed 3 cubed 5 cubed 5 cubed 5 cubed 5 cubed 5 cubed 6 cu	Determine cubic numbers using physical objects and addition/multiplication facts. Explain and demonstrate visually or with concrete materials if a number is cubic or not. Calculate and record a range of cubic numbers. Explore the history and application of Fibonacci sequences in the context of the natural world.

Patterns and Sequences Concept

This is an illustration of part of the Mathematics technical framework, specifically the concept of Patterns and Sequences. A detailed glossary will also be produced to support the understanding of key words and phrases.

			End of Third Level		End of Fourth Level
Know	Do	Know	Do	Know	Do
The numbers in a sequence are called	Find the first few terms in a number sequence			A geometric sequence is one where the	Identify whether (or not) a sequence is
terms. A sequence can be described by its	given its first term and the rule for finding the next			ratio of two consecutive terms is always the	geometric by looking for a common ratio.
first term and the rule for finding the next	term. For example, starting with a first term 10,			same.	
term.	use the rule add 6 to find the next 4 terms in this				Explore contexts where geometric
	sequence.			The next term of a geometric sequence is	sequences occur. For example, the rice and
				found by multiplying the previous term by	chessboard legend, compound interest,
				this common ratio.	inflation. Continue these sequences to
					solve related problems.
An arithmetic sequence is one where the	Identify whether or not a sequence is arithmetic	A rule can describe how to find a number in	Generate parts of a sequence using its n th	The common difference in an arithmetic	Establish an arithmetic sequence that a
difference between two consecutive terms	by looking for a common difference.	a sequence using its position. This is called	term formula, arithmetic sequences only.	sequence appears in its n th term formula.	physical or pictorial pattern, or real-life
is always the same.		an n th term formula.	For example, $T = 4n + 6$.		situation follows. Determine its n th term
	In context, identify patterns that follow an			When terms in an arithmetic sequence are	formula and use it algebraically or
	arithmetic sequence. For example, the number of		Explore the relationship between the n th	plotted against their position in that	graphically to solve related problems.
	people that can be seated around an increasing		term formula of an arithmetic sequence and	sequence, a straight line is formed with a	
	number of tables:		its common difference. For example, for T =	gradient equal to the common difference.	
			4n + 6, the sequence has a common	(Link with Patterns and Sequences in	
			difference of 4.	Geometry and Measure).	
			Explore the relationship between the n th		
	Continue these sequences to solve related		term formula of an arithmetic sequence and		
	problems.		the sequence of multiples of its common		
	F		difference. For example, for T = 4n + 6, all		
			the terms in the sequence are 6 greater than		
			a multiple of 4.		

Next steps:

The release of these documents will be supported by a national webinar hosted by the National Mathematics Specialist Advisor and Education Scotland.

A podcast and a LinkedIn article featuring members of the Core and Collaboration groups will also be released to support understanding of the documents as well as a link for providing feedback on the initial thinking from the mathematics groups.

Further general CIC updates can be found by following this link: - CIC News Bulletin - Available Now - Curriculum Improvement Cycle