

Higher Biology

Resource Guide

March 2014

Higher Biology Resource Guide

This resource guide has been produced in response to requests from practitioners who attended the NQ Sciences events at Hampden Stadium in December 2013. Those attending felt it would be useful to have a document which helped them navigate to the most relevant resources quickly.

The following pages show the Mandatory Course Key Areas table from the SQA Higher Biology *Course and Unit Support Notes*. An additional fourth column has been included which contains hyperlinks to useful resources. **Please note: Practitioners are not required to use the resources listed – they are only included as helpful suggestions. Practitioners should also refer to the SQA website for the most up to date Course and Unit Support Notes.**

To further assist practitioners - content new to the course from the Higher Still Higher has been highlighted in green and links to useful SQA documentation have been included at the beginning of each unit. The SQA documentation relating to the course is shown here.

SQA Documents	Web link
Course Specification	http://bit.ly/1m6eliD
Course Assessment Specification	http://bit.ly/1j3MdCc
Course and Unit Support Notes (the original document which has been modified in the succeeding pages)	http://bit.ly/1dNxPcq
Assessment Overview published June 2013	http://bit.ly/NUOBPH
Specimen Examination paper and marking scheme	http://bit.ly/1dNydYd
Points of change and areas of stability across National 5 and CfE Higher	http://bit.ly/NUPNT5
Education Scotland learning materials	
Education Scotland Higher Sciences website – Higher Biology	http://bit.ly/1iBdtaC
National Qualifications Glow Portal – Higher Biology	http://bit.ly/1nsZRz6

DNA and the Genome		Unit Specification http://bit.ly/QfTncl	
Mandatory Course key areas	Suggested learning activities	Exemplification of key areas	Useful resources
1 The structure and replication of DNA			GLOW365 resources
(a) Structure of DNA —nucleotides	Case study examining the	All cells store their genetic	Education Scotland – teacher resources.
(deoxyribose sugar, phosphate and	experimental evidence of the	information in the base sequence of	http://bit.ly/1gY0NGh
base), sugar-phosphate backbone,	bacterial transformation	DNA. The genotype is determined	
base pairing (adenine, thymine and	experiments of Griffiths and	by the sequence of bases.	
guanine, cytosine), by hydrogen	identification of DNA as the		Fast talking 'Crashcourse' video clip (13
bonds and double stranded	transforming principle by Avery et		minutes) - best used after learners have
antiparallel structure, with	al., phage experiments of Hershey		had an initial introduction to DNA.
deoxyribose and phosphate at 3'	and Chase, Chargaff's base ratios		http://www.youtube.com/watch?v=8kK2zwj
and 5' ends of each strand.	and the X-ray crystallography of Wilkins and Franklin.		RVOME
			DNA Learning Centre – animation with
(i) Organisation of DNA —	Watson and Crick's double-helix	The DNA found in the linear	descriptive text.
circular chromosomal DNA and	model as an evidence-based	chromosomes of the nucleus of	Gel electrophoresis animation sequence
plasmids in prokaryotes. Circular	conclusion.	eukaryotes is tightly coiled and	
plasmids in yeast. Circular		packaged with associated proteins.	
chromosome in mitochondria	Case study on Meselson and Stahl	Prior to cell division, DNA is	Student activity suggestions
and chloroplasts of eukaryotes.	experiments on DNA replication.	replicated by a DNA polymerase.	Create DNA – cut circles, pentagons and
	DNA gel electrophoresis.	DNA polymerase needs a primer to	rectangles from coloured card. Use wooden
Linear chromosomes in the nucleus	Comparison of DNA extraction	start replication.	spills for sugar-phosphate bonds. Construct
of eukaryotes.	from peas and kiwi fruit (false		large DNA molecules for wall displays.
	positive result in latter as DNA is		
	obscured by pectin).		Education Scotland research/poster activity
			on <u>DNA research scientists</u>

	 Education Scotland activities – Prokaryote or eukaryote? Packing of DNA in eukaryotic chromosomes and simple and clear PowerPoint Key vocabulary sheet National Centre for Biotechnology Education (NCBE) – practical extraction of DNA. Extraction of DNA from peas

(b) Replication of DNA by DNA	Virtual or physical modelling of	DNA is unwound and unzipped to	Anatomy and Physiology –
polymerase and primer.	DNA replication.	form two template strands. This	DNA Replication and Quiz
Directionality of replication on both		process occurs at several locations	
template strands — DNA		on a DNA molecule. DNA	Education Scotland case study – How does
polymerase adds complementary		polymerase can only add DNA	DNA replicate?
nucleotides to the deoxyribose (3')		nucleotides in one direction resulting	Teacher notes
end of a DNA strand. Fragments of		in one strand being replicated	Learner notes
DNA are joined together by ligase.		continuously and the other strand	
		replicated in fragments.	McGraw Hill – animation and quiz about
			PCR
(i) Polymerase chain reaction (PCR)	Case study on the use of PCR,	The polymerase chain reaction	
amplification of DNA using	including practical using thermal	(PCR) is a technique for the	Education Scotland – Polymerase Chain
complementary primers for specific	cycler or water baths.	amplification of DNA in vitro.	Reaction student activity and PowerPoint.
target sequences.			
	Emphasise the 'needle in a	In PCR, primers are complementary	Investigating plant evolution using
DNA heated to separate strands	haystack' accuracy of primers and	to specific target sequences at the	chloroplast DNA and PCR practical – links
then cooled for primer binding.	the amplification of 'a haystack	two ends of the region to be	to purchase of kit from Reading University.
Heat-tolerant DNA polymerase then replicates the region of DNA.	from the needle' by PCR.	amplified.	http://bit.ly/1jQSfVm
Repeated cycles of heating and	Investigating plant evolution using	DNA is heated to separate the	Education Scotland case study –
cooling amplify this region of DNA.	chloroplast DNA and PCR.	strands. Cooling allows primers to	PCR and electrophoresis
		bind to target sequences. Heat-	
		tolerant DNA polymerase then	Education Scotland PowerPoint on
		replicates the region of DNA.	extracting DNA from plant material
		Repeated cycles of heating and	
		cooling amplify this region of DNA.	Education Scotland practical on DNA
			extraction, purification, PCR and electro
			gelphoresis.
			Aims and method PowerPoint

2 Gene expression			Teacher's guide
The phenotype is determined by the	Separation and identification of	The genetic code used in	Topic guide
proteins produced as the result of	fish proteins by agarose gel	transcription and translation is found	
gene expression, influenced by	electrophoresis.	in all forms of life.	
intra- and extra-cellular			
environmental factors.			
Only a fraction of the genes in a cell			
are expressed.			
			SSERC – Gene expression:
(a) Gene expression is controlled by		mRNA is transcribed from DNA in	Protein electrophoresis
the regulation of transcription and		the nucleus and translated into	NCBE materials for electrophoresis
translation.		proteins by ribosomes in the	Tissue culture of plant material – SSPS
		cytoplasm.	material
(i) Structure and functions of RNA			SSERC login required
Single strand, replacement of			http://www.sserc.org.uk/index.php/biology-
thymine with uracil and deoxyribose			2/biology-resources/higher-biology-
with ribose compared to DNA.			revised/dna-and-the-genome/3420-gene-
mRNA (messenger) carries a copy			expression
of the DNA code from the nucleus			
to the ribosome. rRNA (transfer)			Education Scotland learner activities
and proteins form the ribosome.			PowerPoints and quizzes on protein
Each tRNA carries a specific amino			synthesis.
acid.			
			Education Scotland – animation showing
(ii) Transcription of DNA into	Modelling transcription and	RNA polymerase moves along DNA	translation
primary and mature RNA transcripts	translation using virtual and	unwinding and unzipping the double	
to include the role of RNA	physical resources.	helix and synthesising a primary	
polymerase and complementary		transcript of RNA from RNA	Bead Factory – protein synthesis activity.
base pairing.		nucleotides by complementary base	See Higher Biology folder on Glow 365
The introns of the primary transcript		pairing.	Sciences site http://bit.ly/glowsciences
of mRNA are non-coding and are		Introns (non-coding regions of	

removed in RNA splicing. The	genes) and exons (coding regions of	Education Scotland animation –
exons are coding regions and are	genes).	transcription
joined together to form mature	genes).	
transcript.		DNA Learning Centre animations –
		Transcription and translating: RNA splicing
This process is called RNA splicing.		Transcription and translating. RNA splicing
(iii) Translation of mRNA into a		An interactive DVD is also available with
polypeptide by tRNA at the		various levels of commentary.
ribosome. tRNA folds due to base		valious levels of commentary.
pairing to form a triplet anticodon		
site and an attachment site for a		
specific amino acid. Triplet codons		
on mRNA and anticodons translate		
the genetic code into a sequence of		
amino acids. Start and stop codons		
exist. Codon recognition of		
incoming tRNA, peptide bond		
formation and exit of tRNA from the		
ribosome as polypeptide is formed.		
(iv) One gene, many proteins as a		
result of RNA splicing and post-		
translational modification.		
Different mRNA molecules are		
produced from the same primary		
transcript depending on which RNA		
segments are treated as exons and		
introns.		Education Scotland learner activities -
Post-translation protein structure		one gene many proteins
modification by cutting and		
combining polypeptide chains or by		

adding phosphate or carbohydrate groups to the protein. (v) Proteins are held in a three- dimensional shape — peptide bonds, folded polypeptide chains, hydrogen bonds, interactions between individual amino acids.	Investigation of the shape and structure of fibrous and globular proteins using RasMol or protein explorer software. Separation and identification of amino acids using paper chromatography.	Proteins have a large variety of structures and shapes resulting in a wide range of functions. Amino acids are linked by peptide bonds to form polypeptides. Polypeptide chains fold to form the three- dimensional shape of a protein, held together by hydrogen bonds and other interactions between individual amino acids.	Education Scotland animation – <u>Regulation of gene expression</u> Protein Data Bank <u>video clip</u> explaining amino acid structure and protein formation.
(b) Cellular differentiation is the process by which a cell develops more specialised functions by			Education Scotland animation – <u>stem cell</u>
expressing the genes characteristic for that type of cell.	Tissue culture of plant material.	Meristems are regions of unspecialised cells in plants that are capable of cell division. Stem cells	<u>development</u>
Differentiation into specialised cells		are relatively unspecialised cells in	EuroStemCell video (15 minutes) with
from meristems in plants; embryonic and tissue (adult) stem		animals that can continue to divide and can differentiate into specialised	ethics discussions possible – stem cell story
cells in animals.		cells of one or more types. In the	
		very early embryo, embryonic stem cells differentiate into all the cell	MCB animation – therapeutic uses of stem
(i) Research and therapeutic uses	Case study on use of stem cells in	types that make up the organism.	<u>cells</u>
of stem cells by reference to the repair of damaged or diseased	repair of diseased or damaged organs (eg skin grafts, bone	Tissue (adult) stem cells replenish	Education Scotland role play -
organs or tissues.	marrow transplantation and cornea	differentiated cells that need to be	stem cell therapy for spinal cord injuries.
Stem cell research provides	repair).	replaced and give rise to a more	

information on how cell processes		limited range of cell types, eg red	EuroStemCell/MRC/ University of
such as cell growth, differentiation	Case study on ethics of stem cell	bone marrow produces various	Edinburgh - stem cells in the news
and gene regulation work. Stem	research and sources of stem	blood cell types. Once a cell	
cells can be used as model cells to	cells. For example, embryo cells	becomes differentiated it only	Education Scotland –
study how diseases develop or for	must not be allowed to develop	expresses the genes that produce	video on stem cell research
drug testing. The ethical issues of	beyond 14 days, around the time a	the proteins characteristic for that	
stem cell use and the regulation of	blastocyst would be implanted in a	type of cell.	Education Scotland –
their use.	uterus. Sources of stem cells		case study on stem cells
	include embryonic stem cells,	The therapeutic uses of stem cells	
	tissue (adult) stem cells and	should be exemplified by reference	Education Scotland PowerPoint -
	attempts to reprogram specialised	to the repair of damaged or	Introduction to stem cells
	cells to an embryonic state. Ethical	diseased organs, eg corneal	
	issues could include: regulations	transplants, and skin grafts for	
	on the use of embryo stem cells,	burns.	
	the use of induced pluripotent		
	stem cells and the use of nuclear		
	transfer techniques.		

3 Genome			
 (a) The structure of the genome — coding and non-coding sequences include those that regulate transcription and those that are transcribed to RNA but are never translated. Some non-coding sequences have no known function. 	Non translated forms of RNA include tRNA, rRNA and RNA fragments.	The genome of an organism is its hereditary information encoded in DNA. DNA sequences that code for protein are defined as genes. A genome is made up of genes and other DNA sequences that do not code for proteins. Most of the eukaryotic genome consists of these non-coding sequences. Non- translated forms of RNA include tRNA, rRNA and RNA fragments.	Education Scotland handout – <u>The</u> structure of the genome
(b) Mutations are changes in the genome that can result in no protein or an altered protein being expressed.	Investigate mutant yeast or germination rates of irradiated seeds.		
 (i) Single gene mutations involve the alteration of a DNA nucleotide sequence as a result of the substitution, insertion or deletion of nucleotides. Single-nucleotide substitutions include: missense, nonsense and splice-site mutations. Nucleotide insertions or deletions result in frame-shift mutations or an expansion of a nucleotide sequence repeat. 	Investigate how point mutations can be silent, neutral, missense, nonsense or frame-shift. Research reasons for geographical variation in incidence of post-weaning lactose tolerance or sickle-cell trait in humans as examples of point mutation.	Regulatory sequence mutations can alter gene expression. Splice site mutations can alter post-transcriptional processing.	Education Scotland – point mutations teacher guide Pearson Education – animation about mutations Education Scotland – animation about mutations

	Г		
(ii) Chromosome structure	Analyse evidence for formation of	Alterations to the structure of one or	
mutations — duplication, deletion	human chromosome 2 by fusion of	more chromosomes.	
and translocation.	two ancestral chromosomes. Gene	Importance of gene duplication in	
	duplication and alpha and beta	evolution.	McGraw Hill animation and quiz – Changes
(iii) The importance of mutations	globins in haemoglobin.		in Chromosome Structure
and gene duplication in evolution			
			Education Scotland animation -
(iv) Polyploidy — errors during the	Research polyploidy in plants and	Polyploidy examples include banana	Chromosomal mutations
separation of chromosomes during	importance in origin of crop plants.	(triploid) and potato (tetraploid), as	
cell division can result in cells with	Research rarity of polyploidy in	well as swede, oil seed rape, wheat	
whole genome duplications.	animals.	and strawberry.	Education Scotland – teacher and learner
Importance of polyploidy in		-	notes Polyploidy
evolution and			
human food crops			
(c) Evolution — the changes in			Think Darwin, Think Evolution, Think Now
organisms over generations as a			- Edinburgh University self-study learner
result of genomic variations.			materials (61 page PDF)
(i) Gene transfer.		Prokaryotes can exchange genetic	Education Scotland – teacher and learner
Vertical (inheritance) - from parent		material horizontally, resulting in	activity on inheritance
to offspring as a result of sexual or		rapid evolutionary change.	
asexual reproduction. Horizontal -		Prokaryotes and viruses can	
prokaryotes and viruses can		transfer sequences horizontally into	
exchange genetic material in this		the genomes of eukaryotes.	
way.			
			Shelf 3D video clip on sexual selection &
(ii) Selection.	Gather data on sexual selection in	The non-random reduction in	evolution – discusses apparent anomalies
Natural selection is the non-random	brine shrimp.	frequency of deleterious DNA	to natural selection.
increase in frequency of DNA		sequences.	
sequences that increase survival.		The differences in outcome as a	

Sexual selection is an increase in successful reproduction. (iii) Genetic drift. The random increase and decrease in frequency of sequences, particularly in small populations, as a result of neutral mutations and founder effects.		result of stabilising, directional and disruptive selection.	Education Scotland document with six activities and teacher notes, including video clips and games – <u>selection and drift</u>
(iv) Speciation is the generation of new biological species by evolution. The importance of geographical barriers in allopatric speciation. The importance of behavioural or ecological barriers in sympatric speciation. Hybrid zones.	Research different definitions of the term species (e.g. biological species concept, phylogenetic species concept) and the difficulty of applying species definition to asexually reproducing organisms. Research the London Underground mosquito. Collaborative data gathering of hooded crow and carrion crow hybrid zone in Scotland.	A species is a group of organisms capable of interbreeding and producing fertile offspring, and which does not normally breed with other groups. The formation of hybrid zones in regions where the ranges of closely related species meet.	Education Scotland document with five activities, teacher and student and notes – <u>speciation</u>

(d) Genomic sequencing — the	Research how sequencing		Original paper from Nature for analysis –
sequence of nucleotide bases can	technologies use techniques such		Human genome analysis
be determined for individual genes	as fluorescent tagging of		
and entire genomes. To compare	nucleotides to identify the base		Website listing genomes of many species -
sequence data, computer and	sequence.		Blast website
statistical analyses (bioinformatics)			Allows comparison of sequences and
are required.			creation of own gene sequences to find
			(used by Roslin Institute).
(i) Evidence from phylogenetics and	Case study on the evolution of	The use of sequence data to study	
molecular clocks to determine the	bears and primates using	the evolutionary relatedness among	CassioPeia Project video explaining the
main sequence of events in	Geneious software.	groups of organisms. Sequence	main principles - molecules of life
evolution.	Highly conserved DNA sequences	divergence is used to estimate time	
	are used for comparisons of	since lineages diverged. For	Education Scotland unit with student and
	distantly related genomes.	example, comparison of sequences	teacher notes and activities -
		provides evidence for three main	molecular clocks
	Compare number and proportion	domains (bacteria, archaea and	
	of shared genes between	eukaryotes).	DNA Learning Centre interactive video -
	organisms such as <i>C. elegans</i> ,		Mitochondrial DNA and the molecular clock
	Drosophila and humans.	The use of sequence data and fossil	interview
		evidence to determine the main	
		sequence of events in evolution of	
		life: cells, last universal ancestor,	
		photosynthetic organisms,	
		eukaryotes, multicellularity, animals,	
		land plants, vertebrates.	
(ii) Comparison of genomes from			Video from Richard Dawkins Foundation
different species.	Research the importance of the	Many genomes have been	Why are there still chimpanzees?
Comparison of genomes reveals	Fugu genome as an example of a	sequenced, particularly of disease-	Comparing human and chimpanzee
that many genes are highly	very small vertebrate genome with	causing organisms, pest species	<u>genomes</u>
conserved across different	a high rate of chromosome	and species that are important	

organisms	deletion. Comparison of human and chimp genomes reveals rapid change in genes for immune system and regulation of neural development over last 6 million years.	model organisms for research.	
(iii) Personal genomics and health. Analysis of an individual's genome may lead to personalised medicine through knowledge of the genetic component of risk of disease and likelihood of success of a particular treatment.	Comparison of individual's genomes focuses on point mutations, repetitive sequence errors and blocks of duplication and deletion.	Pharmacogenetics. The difficulties in distinguishing between neutral and harmful mutations in both genes and regulatory sequences, and in understanding the complex nature of many diseases.	Education Scotland teacher and student notes plus video clips and games – personal genomics

Metabolism and Survival		Unit Specification http://bit.ly/1gYupnb	
Mandatory Course key areas	Suggested learning activities	Exemplification of key areas	Useful resources
1 Metabolism is essential			
for life			
(a) Introduction to metabolic pathways	Case study on the toxic effects of	Metabolic pathways involve	Education Scotland - teacher's guide on
integrated and controlled pathways of	venoms, toxins and poisons on	biosynthetic processes (anabolism) and	<u>metabolism</u>
enzyme-catalysed reactions within a cell.	metabolic pathways.	the breakdown of molecules	
		(catabolism) to provide energy and	SSERC activities –
(i) Anabolic (energy requiring) and		building blocks.	 Competitive and non-competitive
catabolic (energy releasing) pathways -			inhibition and b-galactosidase
can have reversible and irreversible		Membranes can form compartments to	 ATP- dependent reactions
steps and alternative routes.		localise the metabolic activity of the	SSERC login required
		cell. The high surface to volume ratio of	
(ii) Membranes form surfaces and	Examine photomicrographs to	small compartments allows high	Education Scotland animation – enzyme
compartments for metabolic pathways —	compare ultrastructure of	concentrations and high reaction rates.	action including competitive and non-
protein pores, pumps and enzymes	prokaryotes and eukaryotes and		comp inhibition
embedded in phospholipid membranes.	compartments and membranes in		
	mitochondria and chloroplasts.		Education Scotland vocabulary bingo
			activity based on metabolic processes
(b) Control of metabolic pathways	Enzyme induction experiments such	Regulation can be controlled by intra-	DNA Learning Centre – Jacob-Monod
(presence or absence of particular	as ONPG and lactose metabolism in	and extra cellular signal molecules.	stepped animation explanation
enzymes and the regulation of the rate of	E. coli and PGIo experiments.		
reaction of key enzymes within the			
pathway			
(i) Induced fit and the role of the active	Activation energy experiments,	The role of the active site in orientating	Pearson Education animation – <u>enzyme</u>
site of enzymes including shape and	comparing heat, manganese dioxide	reactants, lowering the activation	substrate interaction
substrate affinity. Activation energy. The	and catalase action on hydrogen	energy of the transition state and the	
effects of substrate and end product	peroxide.	release of products with low affinity for	Boardworks animation – Induced fit

concentration on the direction and rate of enzyme reactions. Enzymes often act in groups or as multienzyme complexes.	Experiments on reaction rate with increasing substrate concentration.	the active site. Most metabolic reactions are reversible and the presence of a substrate or the removal of a product will drive a sequence of reactions in a particular direction.	
(ii) Control of metabolic pathways through competitive, non-competitive and feedback inhibition.	Investigate the inhibition of beta galactosidase by galactose and its reversal by increasing ONPG concentration. Experiments on product inhibition with phosphatase.	Genes for some enzymes are continuously expressed. These enzymes are always present in the cell and they are controlled through the regulation of their rates of reaction. Competitive inhibition (binds to active site), non-competitive inhibition (changes shape of active site) and feedback inhibition (end product binds to an enzyme, catalysing a reaction earlier in the pathway).	 Education Scotland – <u>phosphatase</u> <u>practical</u> end product inhibition experiment from AH p.27-39 technician's guide student guide and teacher info.
		Competitive inhibition can be reversed by increasing substrate concentration.	

(c) Cellular respiration — glucose broken	Experiments on ATP dependent	Cellular respiration pathways are	
down, hydrogen electrons removed by	reactions, eg luciferase, luminescent	present in cells from all three domains	
dehydrogenase enzymes, releasing	reactions.	of life. The metabolic pathways of	
ATP.		cellular respiration are of central	
		importance to cells. They yield energy	
(i) The role of ATP in the transfer of		and are connected to many other	
energy and the phosphorylation of	Investigate a phosphorylated	pathways.	
molecules by ATP.	substrate (eg glucose-1-phosphate)		
Metabolic pathways of cellular	using suitable positive and negative	ATP is used to transfer energy to	
respiration.	controls in the design of an	synthetic pathways and other cellular	
	experiment.	processes where energy is required.	
The breakdown of glucose to pyruvate in			
the cytoplasm in glycolysis, and the		The return flow of H ions rotates part of	
progression pathways in the presence or		the membrane protein ATP synthase,	
absence of oxygen (fermentation).		catalysing the synthesis of ATP.	
The formation of citrate. Pyruvate is		The phosphorylation of intermediates in	
broken down to an acetyl group that		glycolysis in an energy investment	
combines with coenzyme A to be		phase and the direct generation of ATP	
transferred to the citric acid cycle as		in an energy payoff stage. Pyruvate	Animation on cellular respiration - broken
acetyl coenzyme A. Acetyl coenzyme		progresses to the citric acid cycle if	down in to overall, glycolysis, Krebs and
A combines with oxaloacetate to form		oxygen is available. In the absence of	Electron transfer. Uses NAD and FAD.
citrate followed by the enzyme mediated	Research how Hans Krebs	oxygen, the pyruvate undergoes a	
steps of the cycle. This cycle results in	discovered the citric acid cycle.	fermentation to either lactate or ethanol	
the generation of ATP, release of CO2,		and CO ₂ .	
and the regeneration of oxaloacetate in	Experiments on inhibition of citric		
the matrix of the mitochondria.	acid cycle with malonic acid and		
	DCPIP as an indicator of		
Dehydrogenase enzymes remove H ions	dehydrogenase activity.		
and electrons, which are passed to			

coenzymes NAD or FAD (forming NADH	Experiments with yeast	The electron transport chain as a	
or FADH2) in glycolysis and citric acid	dehydrogenase, eg using resazurin.	collection of proteins attached to a	
pathways. The high energy electrons are		membrane.	
passed to the electron transport chain on			
the inner mitochondrial membrane and		Energy is released and ATP synthase	
results in the synthesis of ATP.		generates ATP.	Education Scotland animation - electron
			transport chain
(iii) ATP synthesis - high energy		Other sugar molecules can be	
electrons are used to pump H ions		converted to glucose or glycolysis	
across a membrane and the flow of		intermediates for use as respiratory	
these ions synthesises ATP by the	Investigation of different sugars as	substrates. Proteins can be broken	
membrane protein ATP synthase.	respiratory substrates in yeast.	down to amino acids and converted to	
Oxygen is the final electron acceptor,	Research different use of substrates	intermediates of glycolysis or the citric	
which combines with H ions and	during exercise and starvation.	acid cycle for use as respiratory	
electrons, forming water.		substrates. Fats can also be broken	
		down to intermediates of glycolysis and	
(iv) Substrates for respiration (starch and		the citric acid cycle.	
glycogen, other sugar molecules, amino			
acids and fats).			

2 Maintaining Metabolism			
(a) Metabolic rate	Investigate metabolic rate using	Comparison of metabolic rates of	
	oxygen, carbon dioxide and	different organisms at rest.	
(i) Measurement of oxygen consumption,	temperature probes.		
carbon dioxide and heat production.			
(ii) High metabolic rates require efficient			
delivery of oxygen to cells. Comparative			
physiology of heart chambers, circulation		Low oxygen niches, eg high altitude,	Education Scotland case study activity
and lung arrangement in amphibians,		deep diving. The variation in	and work sheet for low oxygen
reptiles, mammals and birds, and heart		atmospheric oxygen concentration over	environments –
and circulation in fish.		a long geological timescale and how	animal adaptations to low oxygen niches
		this relates to maximum terrestrial body	
(iii) Physiological adaptations of animals		size.	Education Scotland report writing
for low oxygen niches.			resources (data) on oxygen dissociation
			curves and diving mammals –
(iv) The use of maximum oxygen uptake	Case study on adaptations to		Resource sheet
as a measure of fitness in humans.	survive low oxygen niches.		Review sheet for above activity
			Self-assessment checklist for above

(b) Metabolism in conformers and regulators.		Abiotic factors such as temperature, salinity and pH.	
regulators.			GLOW 365 PowerPoint – Conformers
(i) The ability of an organism to maintain			and regulators.
its metabolic rate is affected by external			http://bit.ly/glowsciences
abiotic factors.			See Higher Biology/Metabolism and
			Survival folder
(ii) Conformers internal environment is	Case study on the response of a	Conformers may have a narrow	
dependent upon external environment.	conformer to a change in an	ecological niche unless they can	
Conformers may have low metabolic	environmental factor. Comparisons	tolerate or resist variation in their	Heyer resource –
costs and a narrow ecological niche.	of marine and estuarine	external environment.	Homeostasis & Thermoregulation slides
Behavioural responses to maintain	invertebrates and their response to		Includes images and diagrams
optimum metabolic rate.	variation in salinity.		
(iii) Regulators control their internal			Education Scotland case study –
environment, which increases the range			effect of temperature on brine shrimp
of possible ecological niches. Regulation			(Artemia). Needs shrimp cysts and takes
requires energy to achieve homeostasis.			min 48hrs.
(iv) Negative feedback control and	Experiments using thermistors or	The importance of regulating	<u>Teacher's guide</u> Technician's guide
thermoregulation in mammals including	infra-red thermometers on skin		Student information sheet
the role of the hypothalamus, nerves,	temperature and its regulation in	temperature for optimal enzyme- controlled reaction rates and diffusion	orddent mormation Sneet
effectors and skin.	humans.	rates for maintenance of metabolism.	Can be repeated with hatched shrimps
	nanalo.		using $0\% - 30\%$ saline solutions,
			measuring heart rate.

(c) Maintaining metabolism during			
environmental change.			Twelve short BBC video clips (1 – 5
(i) Surviving adverse conditions	Research and scientific presentation on aspects of surviving adverse conditions.	Organisms must have adaptations to survive and/or avoid adverse conditions. Many environments vary	mins) on different animals' dormancy versions – <u>animal dormancy clips</u>
Dormancy is part of some organisms'		beyond the tolerable limits for normal	Three short BBC clips on aestivation
lifecycle and may be predictive or	Seed dormancy experiments.	metabolic activity for any particular	
consequential. Examples of dormancy	Research seed banks and the	organism.	
include hibernation and aestivation.	practicalities of maintaining viable		
Hibernation is often defined in terms of	stocks.	To allow survival during a period when	
mammals. Aestivation allows survival in		the costs of continued normal metabolic	
periods of high temperature or drought.		activity would be too high, the metabolic	
Daily torpor as a period of reduced		rate can be reduced.	
activity in organisms with high metabolic			Three BBC clips (2-4 mins) on torpor
rates.			
(ii) Avoiding adverse conditions by	Evaluate procedures and results of	The use of specialised techniques in	BBC Scotland bird migration article –
migration. Migration avoids metabolic adversity by expending energy to	studies investigating triggers for migration, navigation adaptations.	studies of long-distance migration, such as individual marking and types of	unique bird migration discovered
relocate to a more suitable environment.	Research the genetic control of	tracking to overcome the difficulties	Animal migration research from Nature
Long-distance migration studies. Innate	migratory behaviour in studies of	involved in the study of migratory	Education giving reasons for and
and learned influences on migratory	populations of the blackcap.	vertebrates and invertebrates.	examples of migrations, including
behaviour.			altitudes, distances and maps.
		The design of experiments to	
		investigate the innate and learned	
		influences on migratory behaviour.	

(d) Extremophiles	Research different types of	Use of heat-tolerant DNA polymerase	March 2013 BBC Nature article 'Life of
Some species have enzymes that are	extremophiles.	from thermophilic bacterium in PCR.	extremophiles' including heat, cold and
extremely tolerant and allow them to		Some species living in hot springs or	altitude – <u>extremophiles</u>
thrive in environments that would be	Research use of H ₂ in methanogenic	seabed vents generate their ATP by	
lethal to almost all other species.	bacteria and H ₂ S in sulphur bacteria.	removing high-energy electrons from	BBC video (3 mins) on extremophiles
Examples of extremophiles include		inorganic molecules.	and space BBC and NASA
thermophilic bacteria living in hot springs			
or seabed vents.			

3 Metabolism in microorganisms			
Microorganisms to include archaea,			Education Scotland research activities
bacteria and some species of eukaryota.			plus practical on effect of temp. on
			microbe growth -
(a) Environmental control of metabolism.		Microorganisms include species that	prokaryotes and eukaryotes student
		use a wide range of substrates for	activities
(i) Variations in growth media and control	Investigate the growth of microbes	metabolism and produce a wide range	
of environmental factors.	under different cultural and	of products from their metabolic	Education Scotland PowerPoint -
Microorganisms require an energy	environmental conditions using	pathways. As a result of their	culturing microbes
source (chemical or light) and simple	standard laboratory equipment and	adaptability microorganisms are found	
chemical compounds for biosynthesis.	simple fermenters. Isolate yeast	in a wide range of ecological niches	Education Scotland teacher's guide on
Many microorganisms can produce all	from grapes using selective media	and can be used for a variety of	controlling metabolism -
the complex molecules required. Other	and appropriate growing conditions.	research and industrial uses because of	Introduces primary and secondary
microorganisms require more complex		their ease of cultivation and speed of	metabolites and inducers/inhibitors.
compounds to be added to the growth		growth.	
media.			
Culture conditions include sterility to		Energy is derived either from chemical	
eliminate any effects of contaminating		substrates or from light in	
microorganisms, control of temperature,		photosynthetic microorganisms.	
control of oxygen levels by aeration and		Complex compounds such as vitamins	
control of pH by buffers or the addition of		or fatty acids. Growth media can be	
acid or alkali.		composed of specific substances or	
		can contain complex ingredients such	Education Scotland teacher's guide on
		as beef extract.	culture conditions
(ii) Phases of growth and doubling or		Interpretation of exponential growth on	
generation time of exponential growth		normal and semi-logarithmic scales.	
and changes in culture conditions.		Lag phase of growth where	
Phases to include lag, log/exponential,		microorganisms adjust to the conditions	

			1
stationary and death.		of the culture by inducing enzymes that	
		metabolise the available substrates.	
		Log or exponential phase of growth.	
		Stationary phase where the culture	Pearson Education animated video on
		medium becomes depleted and	bacterial growth - lag, log stationary and
		metabolites accumulate and secondary	death.
		metabolites are produced. Death phase	
		where lack of substrate and the toxic	Education Scotland teacher's guide on
		accumulation of metabolites causes	bacterial growth
		death of cells.	
(iii) Control of metabolism through the		Exposure to UV light and other forms of	
addition of metabolic precursors,		radiation or mutagenic chemicals	
inducers or inhibitors to give a required		results in mutations some of which may	
product.		produce an improved strain. Mutant	
		strains are often genetically unstable	
Secondary metabolism can confer an	Experiments on the induction of	and revert to the wild type in continuous	
ecological advantage.	enzymes in microorganisms.	cultureCo.	
	Research industrial processes that		
	use microorganisms. Suitable		
	processes that involve underpinning		Education Scotland research activities on
	biology include: citric acid		medical uses of microbes.
	production, glutamic acid production,		
	penicillin production and therapeutic		Education Scotland teacher's notes and
	proteins such as insulin, human		student questions on metabolism in
	growth hormone and erythropoietin.		microorganisms.
			č
(b) Genetic control of metabolism.	Investigate transfer of DNA using	Some bacteria can transfer plasmids or	Animation from Glencoe Online –
	bacteria. Experiments investigating	pieces of chromosomal DNA to each	bacterial conjugation transfer of a
(i) Wild strains of microorganisms can be	the effects of UV radiation on UV	other (horizontal transfer) or take up	plasmid
improved by mutagenesis, selective	sensitive yeast.	DNA from their environment to produce	·
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

breeding and culture or recombinant		new strains. In fungi and yeast, new	
DNA.		genotypes can be brought about by	
		sexual reproduction between existing	
		strains.	
(ii) Recombinant DNA technology,	Case study on bacterial	Restriction endonucleases cut target	Education Scotland animation –
plasmids and artificial chromosomes.	transformation.	sequences of DNA and can leave sticky	DNA Technology and gene transfer
Restriction endonucleases. Use of ligase		ends. Vectors with complementary	
in recombinant DNA. Gene introduction		sticky ends are then combined with	
to increase yield or to prevent the		target sequences using ligase. Genes	
survival of the microorganism in an		that remove inhibitory controls or	
external environment. Control of gene		amplify specific metabolic steps in a	
expression in recombinant plasmids and		pathway can be introduced to increase	
artificial chromosomes.		yield. As a safety mechanism, genes	
Use of recombinant yeast cells.		are often introduced that prevent the	
		survival of the microorganism in an	
		external environment.	
		Recombinant plasmids and artificial	
		chromosomes contain marker genes	
		and restriction sites in addition to genes	
		for self-replication and regulatory	
		sequences to allow the control of gene	
		expression.	
		Plant or animal recombinant DNA in	
		bacteria may result in polypeptides that	
		are folded incorrectly or lack post-	
		translational modifications. These	
		proteins may be produced more	
		successfully in a recombinant yeast	
		cell.	

(c) Ethical considerations in the use of	Research the development of a	Education Scotland case study on
microorganisms, hazards and control of	microbiological product from	bacterial transformation
risks.	discovery to market.	Includes support notes for Bio-Rad P-Glo
		kit, PowerPoints, teacher and student
		notes and health and safety advice.

Sustainability and Interdependence		Unit specification <u>http://bit.ly/1gZU9Q7</u>	
Mandatory Course key areas	Suggested learning activities	Exemplification of key areas	Useful resources
1 The science of food production			
			Education Scotland resources -
(a) Food supply.			science of food production
(i) Food security and sustainable food	Case study on challenge of providing	Food security is the ability of human	
production.	food for the global human population.	populations to access food of sufficient	Global Food Security Programme
	Contribution of biological science to	quality and quantity.	video (3 mins) and other resources.
Increase in human population and	interdisciplinary approaches to food		
concern for food security leads to a	security.		
demand for increased food production.			
Food production must be sustainable		Most human food comes from a small	Rothampsted Research website -
and not degrade the natural resources		number of plant crops. All food	http://www.rothamsted.ac.uk/tools
on which agriculture depends.		production is dependent ultimately upon	Crop specific interactive forecasting
		photosynthesis. Plant crops examples	Live data from a real farm - farm host
(ii) Agricultural production depends on		include cereals, potato, roots and	
factors that control plant growth.		legumes.	Free organised farm visits in your
The area to grow crops is limited.		Breeders seek to develop crops with	area – <u>RHET farm visits</u>
Increased food production will depend		higher nutritional values, resistance to	
on factors that control plant growth:		pests and diseases, physical	
breeding of higher yielding cultivars,		characteristics suited to rearing and	
protecting crops from pests, diseases,		harvesting as well as those that can	
competition.		thrive in particular environmental	
		conditions.	

Livestock produce less food per unit		Livestock production may be possible in	
area than plant crops due to loss of		managed and wild habitats unsuitable for	
energy between trophic levels.		cultivation of crops.	
(b) Plant growth and productivity.			
(i) Photosynthesis.			
			Compare bacterial and plant electron
Energy capture by photosynthetic			excitation systems;
pigments to generate ATP and for	Examination of spectrum of visible		photophosphorylation
photolysis.	light and artificial light sources with a		
Transmission and reflection of light that	simple spectroscope. Examine light		
is not absorbed by pigments.	transmission through extracted		
	chlorophyll with a simple		
Absorption spectra of Chlorophyll a and	spectroscope. Investigate the action		
b and carotenoids compared to the	spectra of photosynthesis in plants		
action spectra for photosynthesis.	using coloured filters.		
Carotenoids extend the range of	Chromatography of photosynthetic		
wavelengths absorbed by	pigments. Research photosynthetic		
photosynthesis and pass the energy to	pigments in other photoautotrophs.		
chlorophyll.			
Absorbed energy excites electrons in			McGraw Hill animation – electron
the pigment molecule. Transfer of these	Carry out the Hill reaction.		transfer chains in chloroplasts
high energy electrons through electron			
transport chains releases energy to			
generate ATP by ATP synthase. Energy			
is also used for photolysis, in which			
water is split into oxygen, which is			
evolved, and hydrogen, which is			
transferred to the coenzyme NADP.			

The enzyme RuBisCO fixes carbon dioxide by attaching it to ribulose bisphosphate (RuBP) in the Calvin cycle. The intermediate produced is phosphorylated by ATP and combined with hydrogen from NADPH to form glyceraldehyde-3-phosphate (G3P). G3P is used to regenerate RuBP and for the synthesis of sugars. These sugars may be synthesised into starch or cellulose or pass to other biosynthetic	Research the inhibition of Rubisco by oxygen. Experiments on the synthesis of starch from glucose-1-phosphate by potato phosphorylase.		Animations from Biology 203 Cell Biology Laboratory – <u>The Calvin cycle</u> in stages or <u>The Calvin cycle</u>
pathways to form a variety of metabolites.			
(ii) Plant productivity Net assimilation is the increase in mass due to photosynthesis minus the loss due to respiration and can be measured by the increase in dry mass per unit leaf area. Productivity is the rate of generation of new biomass per unit area per unit of time. Biological yield of a crop is the total plant biomass. Economic yield is the mass of desired product. The harvest index is calculated by dividing the dry mass of economic yield by the dry mass of biological yield.	Measure net assimilation rate in leaf samples under a variety of conditions. Carry out experimental investigations on limiting factors in photosynthesis. Analyse data on crop planting density, biological yield and economic yield using leaf area index, crop growth rates and harvest index.	Plant and animal breeding involves the manipulation of heredity to develop new and improved organisms to provide sustainable food sources. Breeders seek to develop crops and stock with higher yields, higher nutritional	Pass my exams website – learner resources for <u>factors affecting the</u> <u>rate of photosynthesis</u>

		values, resistance to pests and diseases,	
(c) Plant and animal breeding by manipulation of heredity: for improved plant crops, improved animal stock, to support sustainable food production.	Investigate resistance of potato varieties to <i>Phytophthera infestans</i> .	physical characteristics suited to rearing and harvesting as well as those that can thrive in particular environmental conditions.	National Geographic video showing extremes of selective breeding (5mins). Shows semen collection from bull for artificial insemination – <u>supercow breeding</u>

(i) Plant field trials are carried out in a range of environments to compare the performance of different cultivars or treatments and to evaluate GM crops. In designing field trials account has to be taken of: the selection of treatments, the number of replicates and the randomisation of treatments.	Evaluate crop trials to draw conclusions on crop suitability, commenting on validity and reliability of trial design and the treatment of variability in results.	The selection of treatments (to ensure fair comparisons); the number of replicates (to take account of the variability within the sample) and the randomisation of treatments (to eliminate bias when measuring treatment effects).	Rothampsted Research website – GM wheat trial resources
 (ii) Selecting and breeding Animals and cross pollinating plants are naturally outbreeding. In inbreeding, selected plants or animals are bred for several generations until the population breeds true to the desired type due to 	Analyse patterns of inheritance in inbreeding and outbreeding species (monohybrid cross, F1 and F2 from two true breeding parental lines, back cross, test cross).		University of Nebraska step by step animation about <u>corn crossing</u>
the elimination of heterozygotes. Test crosses can be used to identify unwanted individuals with heterozygous recessive alleles. Inbreeding depression is the accumulation of recessive, deleterious homozygous alleles. Self-	Case studies on the development of particular crop cultivars and livestock breeds.		Norway historic breeds programme – ancient cow breeds Research paper on effect of inbreeding on the <u>dairy industry</u>
pollinating plants are naturally inbreeding and less susceptible to inbreeding depression due to the elimination of deleterious alleles by natural selection. In outbreeding species			
inbreeding depression is avoided by selecting for the desired characteristic while maintaining an otherwise genetically diverse population.			

(iii) Cross breeding and F1 hybrids	Case histories of plant mutations in	New alleles can be introduced to plant	
In animals, individuals from different	breeding programmes. Mutation	and animal lines by crossing a cultivar or	
breeds may produce a new crossbreed	breeding has brought about	breed with an individual with a different,	
population with improved	improvement to a number of crops in	desired genotype.	
characteristics. As an F2 population will	disease resistance, dwarf habit (eg in		
have a wide variety of genotypes a	cereals) and chemical/nutritional		
process of selection and backcrossing is	composition (eg low euricic acid in		
required to maintain the new breed.	rape seed).		
Alternatively the two parent breeds can			
be maintained to produce crossbred			
animals for production.			
-			
(iv) Test cross. Test crosses can be			Goldies Room website animation -
used to identify unwanted individuals			test cross interactive
with heterozygous recessive alleles.	Research/study of self-pollinating		
In plants F1 hybrids, produced by the	plants- naturally inbreeding and less		
crossing of two different inbred lines,	susceptible to inbreeding depression		
creates a relatively uniform	due to the elimination of deleterious		
heterozygous crop. F1 hybrids often	alleles by natural selection.		Transgenic Crops website - teacher
have increased vigour and yield. The F2			resources on transgenic plants
generation is genetically variable and of			
little use for further production although	Genetic transformations in plant		
it can provide a source of new varieties.	breeding include Bt toxin gene for		The Golden Rice project homepage
Genetic transformation techniques allow	pest resistance, glyphosate		
one or more genes to be inserted into a	resistance gene for herbicide		
genome and this genome can then be	tolerance and golden rice, a cultivar		
used in breeding programmes.	that contains a pre cursor of vitamin		
	Α.		

 (v) Genetic technology As a result of genome sequencing, organisms with desirable genes can be identified and then used in breeding programmes. 	GMO Compass website – <u>information</u> on pest resistant crops
 (d) Crop protection (i) Weeds, pests and disease populations compete with crops 	Syngenta website – crop pest <u>library</u> showing effects and control measures for many crop pests.
reducing productivity. Properties of annual weeds include rapid growth, short life cycle, high seed output, long-term seed viability. Properties of perennial weeds with competitive adaptations — storage organs and vegetative reproduction. Most of the pests of crop plants are invertebrate animals such as insects, nematode worms and molluscs. Plant diseases can be caused by fungi, bacteria or viruses, which are often	lowa State University booklet presentation on weed life cycles and growth – <u>introduction to weed science</u>
carried by invertebrates.	

 (ii) Control of weeds, pests and diseases by cultural means. The advantages of plant protection chemicals which are selective or systemic. Protective applications of fungicide based on disease forecasts are often more effective than treating a diseased crop. (iii) Problems with plant protection chemicals may include toxicity to animal species, persistence in the environment, can accumulate or be magnified in food chains, produce resistant populations. 	Investigate the incidence and viability of potato cyst nematode cysts in samples of soil continuously cropped with potatoes and in samples of soil cropped with potatoes as part of a rotation. Case study on the control of weeds, pests and or diseases of agricultural crops by cultural and chemical means.	The use of pesticides may also result in a population selection pressure producing a resistant population.	Article on persistent chemicals in salmon from the National STEM Centre. Article from National STEM Centre on obligations of industry to minimise pollution
(iv) Biological control and integrated pest management.	Case studies on, for example, control of glasshouse whitefly with the parasitic wasp <i>Encarsia</i> , control of glasshouse red spider mite with the predatory mite <i>Phytoseiulus</i> and/or control of butterfly caterpillars with the bacterium <i>Bacillus thuringiensis</i> . Investigate the chemical and biological control of red spider mite.	In biological control the control agent is a natural predator or parasite of the pest. Integrated pest management combines chemical and biological control.	Green Methods website – advice on green methods of pest control.

	Research the five freedoms for
(e) Animal welfare and behavioural	animal welfare.
indicators of poor welfare.	
The costs, benefits and ethics of	
providing different levels of animal	
welfare in livestock production.	
Behavioural indicators include	
stereotypes, misdirected behaviour,	
failure in sexual or parental behaviour,	
altered levels of activity.	

 (i) Observing behaviour (ethology)
 The observed behaviours of domesticated animals in natural or seminatural settings. Information from these studies can be used to improve the environment for domesticated animals.
 The use of preference tests and measurements of motivation in animal welfare studies. Interpret and evaluate ethograms to form hypotheses and draw conclusions on animals' behaviour needs and to develop an awareness of scientific evidence rather than anthropomorphism when creating an environment for domestic animals.

Compassion in World Farming
website offers one view point and a
useful free DVD.

'Stimulus response' video can be obtained free from the <u>National</u> <u>STEM Centre</u> website.

Choice of twenty two animal behaviour videos on the <u>National</u> <u>STEM Centre</u> website.

.

 2 Interrelationships and dependence (a) Symbiosis — relationships between members of two different species. (i) Parasitic relationships and transmission — a parasite benefits in 		Symbiotic relationships are coevolved and intimate.	Education Scotland resources on symbiosis and social behaviour including <u>teacher's notes</u> , <u>learner</u> <u>material</u> and accompanying
terms of energy or nutrients, whereas its host is harmed by the loss of these resources.	Observe microscope slides of parasites.	Parasites often have more limited metabolism so often cannot survive out of contact with a host.	symbiosis PowerPoint
Transmission of parasites to new hosts using direct contact, resistant stages and vectors. Some parasitic lifecycles involve secondary hosts.	Research the links between these symbioses and anthropogenic climate change.		
(ii) Mutualism including evolution of mitochondria and chloroplasts. Both mutualistic partner species benefit in an interdependent relationship.		Examples include the cellulose-digesting protozoa/bacteria in the guts of many herbivores and the photosynthetic algae in the polyps of coral.	
(b) Social behaviour Many animals live in social groups and have behaviours that are adapted to group living such as social hierarchy or cooperative hunting and defence.		Cooperative hunting may benefit subordinate animals as well as dominant, as the subordinate animal may gain more food than by foraging alone; also food sharing will occur as long as the reward for sharing exceeds that for foraging individually.	BBC website – thirty video clips showing <u>dominance hierarchy</u> in a number of species. BBC website – thirty five video clips showing <u>Pack hunting</u> in various species.

 (i) Altruism and kin selection and its influence on survival. An altruistic behaviour harms the donor individual but benefits the recipient. Behaviour that appears to be altruistic can be common between a donor and a recipient if they are related (kin). The donor will benefit in terms of the increased chances of survival of shared genes in the recipient's offspring or future offspring. 	Investigate reciprocal altruism using the prisoner's dilemma. Analyse data on helper behaviour and relatedness.	Reciprocal altruism, where the roles of donor and recipient later reverse, often occurs in social animals. The prisoner's dilemma as a simple model of altruism.	BBC website – video about <u>termites</u>
 (ii) Social insects, the structure of their society and their ecological importance evolution of the societies of insects such as bees, wasps, ants and termites, in which only some individuals contribute reproductively. Most members of the colony are workers who 			BBC website – five videos providing information on bees
cooperate with close relatives to raise relatives. Ecological importance — social insects are often keystone species within their ecosystems. Some species are of economic importance to humans providing ecosystem services such as pollination and pest control.			Many resources are available from the <u>Buzzaboutbees</u> website. BBSRC website – list of projects looking at <u>pollinators</u>

(iii) Primate behaviour	Case study on primate behaviour.	Long period of parental care in primates	Education Scotland – teacher and
Complex behaviours that support social		gives an opportunity to learn complex	learner resources on <u>chimpanzee</u>
structure to reduce unnecessary conflict,		social behaviours.	behaviour
group behaviour, the influence of			
external factors such as the complexity		To reduce unnecessary conflict, social	
of social structure include ecological		primates use ritualistic display and	
niche, resource distribution and		appeasement behaviours. Grooming,	
taxonomic group.		facial expression, body posture and	
5 1		sexual presentation important in different	
		species.	
		In some monkeys and apes, alliances	
		form between individuals which are often	
		used to increase social status within the	
		group.	

3 Biodiversity			Education Scotland – teacher's notes
(a) Mass extinction, and the regaining	Research the Permian, Cretaceous		on <u>biodiversity</u>
of biodiversity.	and Holocene mass extinction events.		
Fossil evidence indicates that there			Education Scotland student card sort
have been several mass extinction			activity 1 on mass extinction
events in the past. Following each mass			
extinction event, biodiversity has been			
regained slowly as some surviving			BBC website – tree of life <u>free poster</u>
taxonomic groups radiate. The			download
difficulties in estimating past and current			
species extinction rates. The extinction			
of mega fauna correlated with the			
spread of humans.			
The escalating rate of ecosystem			
degradation caused by humans is			
causing the rate of species extinction to			
be much higher than the natural			
background rate.			
	Research the importance of	If one population dies out then the	Education Scotland – teacher support
(b) Measuring biodiversity.	producing a central database of all	species may have lost some of its	notes 1 on biodiversity.
Measurable components of biodiversity	known species and the difficulties	genetic diversity, and this may limit its	
include genetic diversity, species	involved in ensuring its accuracy. It is	ability to adapt to changing conditions.	Education Scotland – biodiversity
diversity and ecosystem diversity.	estimated that there are about 2		student activity 2.
(i) The number and frequency of alleles	million known species. Of these,		
in a population as a measure of genetic	about half are animals, most of which		
diversity. Genetic diversity comprises	are insects. Of the vertebrate		
the genetic variation represented by the	animals, most are fish. There are		
number and frequency of all the alleles	about 0.25 million species of		
in a population.	flowering plants.		

(ii) Species diversity comprises the	Case study using fieldwork to	A community with a dominant species	Education Scotland – teacher support
number of different species in an	compare biodiversity indices of	has a lower species diversity than one	notes 2 on biodiversity.
ecosystem (the species richness) and	different areas (eg polluted versus	with the same species richness but no	
the proportion of each species in the	unpolluted river, monoculture versus	particularly dominant species.	
ecosystem (the relative abundance).	set-aside, an ecosystem with invasive		
The effects of isolation and area on the	species versus an ecosystem with	Reduction of a population to a level that	
species diversity of habitat islands.	native species, a disturbed habitat	can still recover. This loss of genetic	Education Scotland – biodiversity
	versus an undisturbed habitat).	diversity can be critical for many species,	student activity 4 (treasure hunt loop
		as inbreeding results in poor reproductive	game).
(iii) Ecosystem diversity refers to the	Analyse data on island biogeography.	rates. Some species have a naturally low	
number of distinct ecosystems within a	Compare ecosystem diversity in	genetic diversity in their population and	
defined area.	different land areas.	yet remain viable.	
(c) Threats to biodiversity			
(i) Exploitation and recovery of	Analyse data on exploitation of whale		
populations and the impact on their	or fish populations. Use of gel		
genetic diversity. Small populations may	electrophoresis in monitoring harvest		BBC video clips on blue whales
lose the genetic variation necessary to	species.		
enable evolutionary responses to			New York Times – documentary video
environmental change (the bottleneck	Research impact of naturally low		(5 mins) on Alaskan whaling as a
effect).	genetic diversity within cheetah		tradition
	populations.		
			WWF species directory of
			endangered species

 (ii) Habitat loss, habitat fragments and their impact on species richness. Habitat fragments suffer from degradation at their edges and this may further reduce their size; species adapted to the habitat edges may invade the habitat at the expense of interior species. To remedy widespread habitat fragmentation, isolated fragments can be linked with habitat corridors allowing species to feed, mate and recolonise habitats after local extinctions. 	Research impact of habitat fragmentation and benefits of habitat corridors for tiger populations.	BBC website – video about <u>Tiger</u> <u>corridor creation</u>
 (iii) Introduced, naturalised and invasive species and their impact on indigenous populations. Introduced (non-native) species are those that humans have moved either intentionally or accidentally to new geographic locations. Those that 		Education Scotland – biodiversity <u>student activity 5</u> (map poster activity). BBC website – videos about different <u>invasive species</u>

become established within wild communities are termed naturalised species. Invasive species are naturalised species that spread rapidly and eliminate native species. Invasive species may well be free of the predators, parasites, pathogens and competitors that limit their population in their native habitat. They may prey on native species, out-compete them for resources or hybridise with them.	Case study on invasive species.		BBC website – a video diary of Japanese Knotweed as a <u>homewrecker</u>
(iv) Analysing climate change and its impact on biodiversity.	Use climate change modelling software.	Biological and other sources of data for analysing the effects of climate change on biodiversity. The challenges associated with modelling the impact of climate change on species and ecosystem diversity.	BBC climate change prediction from real <u>data</u> Climate change modelling power points, activities, computer spread sheets and modelling resources on the <u>National STEM Centre</u> website.