Trigonometry

1. "SOH, CAH, TOA!"
2. Using the 3 Trigonometric Functions
3. Exact Values (C)
4. Trigonometric Identities (C)
5. The Graph of $\sin (x), \cos (x)$ and $\tan (x)$ (C)
6. More Trigonometric Graphs (C)
7. Using the 4 Quadrants (C)
8. More Examples of Quadrant Work (C)
9. Trigonometric Equations (C)
10. Area of a Triangle (C)
11. The Sine Rule (C)
12. The Cosine Rule (C)
13. 3-D Drawings (C)
14. 3 Figure Bearings15. Working with Bearings(C)

1) "SOH, CAH, TOA!"

$\sin A=\frac{\text { OPPOSITE }}{\text { HYPOTENUSE }}$
$\cos A=\frac{A D J A C E N T}{H Y P O T E N U S E}$
$\tan A=\frac{\text { OPPOSITE }}{\text { ADJACENT }}$

2) Using the $\mathbf{3}$ Trigonometric Functions

Examples: Find the value of x, in each of the following:-

$$
\sin A=\frac{O P P}{H Y P}
$$

$\sin 40^{\circ}=\frac{4}{x}$

$$
\begin{aligned}
x & =\frac{4}{\sin 40^{\circ}} \\
& =6.22
\end{aligned}
$$

$\tan A=\frac{O P P}{A D J}$
$\tan 60^{\circ}=\frac{5}{X}$

$$
\begin{aligned}
x= & \frac{5}{\tan 60^{\circ}} \\
& =2.89
\end{aligned}
$$

$$
\sin A=\frac{O P P}{H Y P}
$$

$$
\sin A=\frac{4}{9}
$$

$$
\sin A=0.444
$$

$$
A=26.4^{\circ}
$$

3) Exact Values

From the special triangles \qquad
We can write down the following exact values...

(C)

$\sqrt{ } 3$
$\sin 45^{\circ}=\frac{1}{\sqrt{2}}$
$\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\sin 30^{\circ}=\frac{1}{2}$
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}$
$\cos 60^{\circ}=\frac{1}{2}$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\tan 45^{\circ}=1$
$\tan 60^{\circ}=\sqrt{3}$
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}$

4) Trigonometric Identities

For all values of $\mathrm{x}^{\circ} \quad \ldots$.

from which you have \qquad

$$
\begin{aligned}
& \sin ^{2} x=1-\cos ^{2} x \\
& \cos ^{2} x=1-\sin ^{2} x \\
& \sin x=\cos x \tan x
\end{aligned}
$$

5) The Graph of $\operatorname{Sin}(x), \operatorname{Cos}(x)$ and $\operatorname{Tan}(x)$

$$
y=\operatorname{Sin}(x)
$$

Period $=360^{\circ}$
$\sin (0)=0, \quad \sin (90)=1$
$\sin (180)=0 \quad \sin (270)=-1$
$y=\operatorname{Cos}(x)$
Period $=360^{\circ}$
$\cos (0)=1 \quad \cos (90)=0$
$\cos (180)=-1 \quad \cos (270)=0$
$y=\operatorname{Tan}(x)$
Period $=180^{\circ}$
$\tan (0)=0 \quad \tan (90)=\infty$
$\tan (180)=0 \tan (270)=\infty$

Notice: The maximum value of the sine and cosine graph is 1.
The minimum value of the sine and cosine graph is $\mathbf{- 1}$.
The tangent graph has no maximum and no minimum.

6) More Trigonometric Graphs

Example:-
$y=5 \cos (4 x)$
Period $=360 / 4=90^{\circ}$
Max. value $=5$
Min. value $=-5$

Example:-

$$
\begin{array}{cc}
y=3 \sin (2 x)+5 & \text { (upper } \\
\text { graph }) \\
y=3 \sin (2 x) & (\text { lower } \\
\text { graph })
\end{array}
$$

For $y=3 \sin (2 x)+5$,
Max. value $=3(1)+5=8$
Min value $=3(-1)+5=2$
Period $=360 / 2=180^{\circ}$

7) Using The Four Quadrants

Example: Solve for $x, \sin \mathbf{x}=\mathbf{0 . 5}$, for $0<x<360^{\circ}$.
From the diagram opposite, the solutions are in the 1st and 2nd quadrants (where $\sin x$ is positive).

The calculator will always give the answer in the first quadrant only. Use the SHIFT key and the sin key to obtain:-
$x=\underline{30}^{\circ}$ and $x=180-30=\underline{150}^{\circ}$

Notice that you may only use 180 or 360 when calculating solutions in other quadrants.

Remember that the 4 quadrant diagram shows where $\sin x, \cos x$ and tanx are always positive (compare with graphs on previous page).

Look closely at the next two examples on the following page.

8) More examples of Quadrant work

Example: Solve for $x, \tan x=0.453$, for $0 \leq x \leq 360^{\circ}$.
Answer: From the diagram, the two solutions are in the 1st and 3rd quadrants.

$$
x=\underline{24.4^{0}} \quad \text { and } \quad \begin{aligned}
x & =180+24.4 \\
& =\underline{204.4^{0}}
\end{aligned}
$$

Example: Solve for $x, \cos x=-0.321$, for $0 \leq x \leq 360^{\circ}$.
Answer: From the diagram, the two solutions are in the 2nd and 3rd quadrants.

$$
\begin{array}{rlrl}
x & =180-71.3 & \text { and } & x=180+71.3 \\
& =\underline{108.7^{0}} & & \\
= & \underline{251.3^{0}}
\end{array}
$$

9) Trigonometric Equations

Example: Solve the equation $2 \cos x-\sqrt{3}=0$ for $0 \leq x \leq 360^{\circ}$.
Answer:

$$
\begin{aligned}
2 \cos x-\sqrt{3} & =0 \\
2 \cos x & =\sqrt{3} \\
\cos x & =\frac{\sqrt{3}}{2}=0.866
\end{aligned}
$$

From the diagram, the solutions are in the 1st \& 4th quadrants.

$$
x=\underline{30}^{\circ} \quad \text { and } \quad x=360-30=\underline{330}^{\circ}
$$

Example: Solve the equation $1+2 \sin x=0$, for $0 \leq x \leq 720^{\circ}$.
Answer:

$$
\begin{aligned}
1+2 \sin x & =0 \\
2 \sin x & =-1 \\
\sin x & =-\frac{1}{2}=-0.5
\end{aligned}
$$

From the diagram, the solutions are in the 3 rd \& 4th quadrants.

$$
x=180+30=\underline{210^{\circ}} \text { and } x=360-30=\underline{330}^{\circ}
$$

$$
y=\sin x
$$

For the other two solutions,-

$$
\begin{array}{rlrl}
x & =210+360 & \& 330+360 \\
& =\underline{570^{\circ}} & & \underline{690^{\circ}}
\end{array}
$$

10) Area of a Triangle

Example: Find the Area of the triangle drawn below.

Answer: Area(triangle) $=\frac{1}{2} b c \sin A$

$$
\begin{aligned}
& =0.5 \times 20 \times 5 \times \sin 30 \\
& =\underline{25 \mathrm{~cm}^{2}}
\end{aligned}
$$

11) The Sine Rule

Example: Find the value of x in the triangle opposite.

$$
\begin{aligned}
& \frac{a^{\checkmark}}{\sin A}=\frac{b^{?}}{\sin B}=\frac{c}{\sin C} \\
& \checkmark \\
& \frac{10}{\sin 60}=\frac{x}{\sin 80} \\
& x \sin 60=10 \sin 80 \\
& x=\frac{10 \sin 80}{\sin 60}=\underline{11.4}
\end{aligned}
$$

(Sine Rule)

Example: Find the angle x in the triangle opposite,-

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c^{\checkmark}}{\sin C} \\
& \checkmark \\
& \frac{10}{\sin 40}=\frac{12}{\sin x} \\
& 10 \sin x=12 \sin 40 \\
& \sin x=\frac{12 \sin 40}{10} \\
& \sin x=0.771 \\
& x=50.5^{\circ}
\end{aligned}
$$

12) The Cosine Rule

Example: Find the size of $B C$ in the triangle opposite.
Answer: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A \quad$ (Cosine Rule)
$B C^{2}=15^{2}+10^{2}-2(15)(10) \cos 40$
$B C^{2}=225-229.8$
$B C=\sqrt{95.2}=9.76$

Example: Find the angle x in this triangle.
Answer: $\quad b^{2}=c^{2}+a^{2}-2 c a \cos B$
$17^{2}=6^{2}+12^{2}-2(6)(12) \cos x$
$289=180-144 \cos x$
$\cos x=\frac{180-289}{144}=-0.826$

$x=145.7^{\circ} \quad$ (since angle is in the 2nd quadrant)

13) 3-D Drawings

This involves no new work however, a good imagination is required!
Example: In the solid below, find the length of AC and the angle ACO.

Using Pythagoras,

$$
\begin{aligned}
& A C^{2}=A D^{2}+D C^{2} \\
& A C^{2}=3^{2}+4^{2} \\
& A C=\sqrt{25}=5
\end{aligned}
$$

In $\triangle O M C, M$ is a right angle \& $M C=\frac{1}{2} A C$.
$\tan C=\frac{M O}{C M}=\frac{8}{2.5}=3.2$
So $C=72.6^{\circ}$

14) 3 Figure Bearings

Note: All three figure bearings are measured from the North in a clockwise direction (a negative rotational direction).
Examples: Sketch bearings of a) 120°
b) 240°
c) 030°

15) Working with Bearings

Example: A ship (S) lies on a bearing of 120° from a Control Tower (H) which is 25 km away. A storm (i) is known to be on a bearing of 080° from the Control Tower. If the distance between the storm and the Control Tower is 15 km how far is the ship from the storm?

Answer: A good sketch is always required!

Angle at H is $120-80=40^{\circ}$
Using the Cosine Rule,
$h^{2}=i^{2}+s^{2}-2 i s \cos H$
$h^{2}=15^{2}+25^{2}-2(15)(25) \cos 40$
$h^{2}=275.5$
$h=\sqrt{275.5}=16.6 \mathrm{~km}$

So the ship is only 16.6 km from the storm.

