National 5 Learning Checklist – Expressions & Formulae

Topic	Skills	Extra Study / Notes	
Rounding			
Round to decimal places	e.g. 25.1241 → 25.1 to 1 d.p.		
	34.676 → 34.68 to 2 d.p.		
Round to Significant	e.g. $1276 \rightarrow 1300$ to 2 sig. figs.		
Figures	$0.06356 \rightarrow 0.064$ to 2 sig. figs.		
	$37,684 \rightarrow 37,700$ to 3 sig. figs.		
	$0.005832 \rightarrow 0.00583$ to 3 sig. figs.		
Surds			
Simplifying	Learn Square Numbers: 4, 9, 16, 25, 36, 49, 64, 81,		
	100, 121, 144, 169.		
	Use square numbers as factors:		
	e.g. $\sqrt{50} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$		
Add/Subtract	e.g.		
	$\sqrt{50} + \sqrt{8} = \sqrt{25} \times \sqrt{2} + \sqrt{4} \times \sqrt{2} = 5\sqrt{2} + 2\sqrt{2} = 7\sqrt{2}$		
Multiply/Divide	e.g. $\sqrt{5} \times \sqrt{15} = \sqrt{5 \times 15} = \sqrt{75} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3}$		
	l		
	$\frac{\sqrt{48}}{\sqrt{3}} = \sqrt{\frac{48}{3}} = \sqrt{16} = 4$		
	V 3 .		
Rationalise	Remove surd from denominator.		
Denominator	e.g. $\frac{1}{\sqrt{3}} = \frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{\sqrt{9}} = \frac{\sqrt{3}}{3}$		
	$\sqrt{3}$ $\sqrt{3} \times \sqrt{3}$ $\sqrt{9}$ 3		
Indices	,	, ,	
Use Laws of Indices	1. $a^x \times a^y = a^{x+y}$ e.g. $a^2 \times a^3 = a^{2+3} = a^5$		
	2. $a^x \div a^y = a^{x-y}$ $a^7 \div a^4 = a^{7-4} = a^3$		
	3. $(a^x)^y = a^{xy}$ $(a^4)^5 = a^{4x5} = a^{20}$		
	4. $\frac{1}{a^x} = a^{-x}$ $\frac{1}{a^3} = a^{-3}$		
	u u		
	5. $a^0 = 1$ $a^0 = 1$		
Scientific Notation /	The first number is always between 1 and 10.		
Standard Form	e.g. $54,600 = 5.46 \times 10^4$ $0.000978 = 9.78 \times 10^{-4}$		
	$(1.3 \times 10^5) \times (8 \times 10^3) = 10.4 \times 10^8 = 1.04 \times 10^9$		
Evaluate using indices			
	e.g. $27^{\frac{2}{3}} = \sqrt[3]{27^2} = 3^2 = 9$		
Algebra	T		
Expand Single Bracket	3(x+4) = 3x + 12		
Expand Two Brackets	Use FOIL (Firsts Outsides Insides Lasts) or another		
	suitable method		
	$(x+3)(x-2) = x^2 + 3x - 2x - 6 = x^2 + x - 6$		
	(x+3)(x-2) = x + 3x - 2x - 6 = x + x - 6		
	Know that every term in the first bracket must		
	multiply every term in the second.		
	e.g.		
	$(x + 2)(x^2 - 3x - 4) = x^3 - 3x^2 - 4x + 2x^2 - 6x - 8$		
	$= x^3 - x^2 - 10x - 8$		
Simplify Expression	Put together the terms that are the same:		
	e.g. $x^2 + 4x + 3 - 2x + 8 = x^2 + 2x + 11$		
Factories 0	$a \times a \times a = a^3$		
Factorise – Common Factor	Take the factors each term has in common outside the bracket:		
I actui	e.g. $4x^2 + 8x = 4x(x + 2)$		
	NB: Always look for a common factor first.		
			1

Algebra Contd.			
Factorise – Difference of	Always takes the same form, one square number		
Two Squares	take away another. Easy to factorise:		
	e.g. $x^2 - 9 = (x + 3)(x - 3)$		
	$5x^2 - 125 = 5(x^2 - 25)$ (Common factor first)		
	= 5(x+5)(x-5)		
Factorise – Trinomial	Use any appropriate method to factorise:		
(simple)	e.g. Opposite of FOIL:		
	Factors of first term are Firsts in brackets.		
	Lasts multiply to give last term and add to give		
	middle term.		
Factories Trinomial	$x^2 - x - 6 = (x - 3)(x + 2)$ This is made difficulty bloom with the month and their a		
Factorise – Trinomial (hard)	This is more difficult. Use suitable method. Using opposite of FOIL above with trial and error.		
(Haru)	NB: The Outsides add Insides give a check of the		
	correct answer:		
	e.g. $3x^2 - 13x - 10$		
	$=\frac{(3x-5)(x+2)}{}$		
	Check: $3x \times 2 + (-5) \times x = 6x - 5x = -x$		
	=(3x+2)(x-5)		
	Check: $3x \times (-5) + 2 \times x = -15x + 2x = -13x$		
	If the answer is wrong, score out and try alterative		
	factors or positions. Keep a note of the factors you		
	have tried.		
Complete the Square	e.g. $x^2 + 8x - 13 = (x + 4)^2 - 13 - 16 = (x + 4)^2 - 29$		
Algebraic Fractions			
Simplifying Algebraic	Step 1: Factorise expression		
Fractions	Step 2: Look for common factors.		
	Step 3: Cancel and simplify		
	$6x^2 - 12x = 6x(x-2) = 6x$		
	$\frac{\partial x}{\partial x^2 + x - 6} = \frac{\partial x}{(x + 3)(x - 2)} = \frac{\partial x}{x + 3}$		
Add and Subract	Find a common denominator. This can be done		
Fractions	either by working out the lowest common		
Tractions	denominator, or by using Smile and Kiss		
	$\frac{5a}{b} + \frac{3d}{2c} = \frac{10ac}{2bc} + \frac{12bd}{2bc} = \frac{10ac + 12bd}{2bc} = \frac{5ac + 6bd}{bc}$		
	D 2C 2DC 2DC 2DC DC		
Multiply Fractions	Multiply top with top, bottom with bottom:		
ividitiply Fractions			
	$\frac{3a}{3a} \times \frac{4b}{a} = \frac{12ab}{3a}$		
	7c 5d 35cd		
Divide Fractions	Invert second fraction and multiply:		
	$\frac{6x^2}{2} \div \frac{4x}{2} = \frac{6x^2}{2} \times \frac{3z}{2} = \frac{18x^2z}{2} = \frac{2xz}{2}$		
	7y 3z 7y 4x 28xy 14y		
Volumes			
Volume of a prism	V = Area of base x height		
Volume of a cylinder	$V = \pi r^2 h$		
Volume of a cone	$V = \frac{1}{2}\pi r^2 h$		
	$V = -\pi r^- h$		
Volume of a sphere	4 .		
	$V = \frac{4}{3}\pi r^3$		
Rearrange each of the	e.g. Cylinder has volume 400cm ³ and radius 6cm,		
formulae to find an	find the height		
unknown	_		
	$V = \pi r^2 h \qquad h = \frac{400}{\pi \times 6^2}$		
	$\pi \times 6^{\circ}$		
	$\frac{V}{\pi r^2} = h$ $h = \dots$		
	πr^2 $h =$		

Volumes Contd.			
Volume of composite shapes	These are two of the above combined: Label them V_1 and V_2 $V_1 = \frac{4}{3}\pi r^3 \div 2$ $V_1 = \dots$ V_2 $V_2 = \pi r^2 h$ $V_2 = \dots$		
Gradient			
Find the gradient of a line joining two points	Know that gradient is represented by the letter m Step 1: Select two coordinates Step 2: Label them (x_1, y_1) (x_2, y_2) Step 3: Substitute them into gradient formula e.g. $\begin{pmatrix} x_1 & y_1 & x_2 & y_2 \\ (-4, 4), & (12, -28) \end{pmatrix}$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(-28) - 4}{12 - (-4)} = -\frac{-32}{16} = -2$		
Circles			
Length of Arc	This finds the length of the arc of a sector of a circle: $LOA = \frac{angle}{360} \times \pi d \text{or} \frac{LOA}{\pi d} = \frac{angle}{360}$ For harder questions rearrange formula to find angle		
Area of Sector	$AOS = \frac{angle}{360} \times \pi r^2$ or $\frac{AOS}{\pi r^2} = \frac{angle}{360}$ For harder questions rearrange formula to find angle		

National 5 Learning Checklist - Relationships

Topic	Skills	Extra Study /	
•		Notes	
Straight Line		1.33.33	
Gradient	Represented by m		
	Measure of steepness of slope		
	Positive gradient – the line is increasing		
	Negative gradient – the line is decreasing		
Y-intercept	Represented by c		
'	Shows where the line cuts the y-axis		
	 Find by making x = 0 		
Find the gradient of a	Know that gradient is represented by the letter m		
line joining two points	Step 1: Select two coordinates		
	Step 2: Label them (x_1, y_1) (x_2, y_2)		
	Step 3: Substitute them into gradient formula		
	$\mathbf{x}_1 \mathbf{y}_1 \mathbf{x}_2 \mathbf{y}_2$		
	$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(-28) - 4}{12 - (-4)} = \frac{-32}{16} = -2$		
Find equation of a line	Step 1: Find gradient m		
(from gradient and y-	Step 2: Find y-intercept c		
intercept)	Step 3: Substitute into $y = mx + c$ (see above for definitions)		
Find equation of a line	Use this when there are only two points		
(from two points)	(i.e. no y-intercept)		
(ITOTIT EWO POINTS)	Step 1: Find gradient		
	Step 2: Substitue into $y - b = m(x - a)$ where (a, b) are		
	taken from either one of the points		
Rearrange equation to	e.g. 3y + 6x = 12		
find gradient and y-	3y = -6x + 12		
intercept	y = -2x + 4 $m = -2$, $c = 4$		
Sketch lines from their	Step 1: Rearrange equation to the form $y = mx + c$		
equations	(see note above)		
	Step 2: Draw a table of points		
	Step 3: Plot points on coordinate axes		
Solving Equations /			1 1
Solving Equations	Use suitable method:		
	e.g. $5(x + 4) = 2(x - 5)$ 5x + 20 = 2x - 10		
	5x + 20 - 2x - 10 5x = 2x - 30		
	3x = 30 $3x = 30$		
	x = 10		
Solving inequations	Solve the same way as equations.		
	NB: When dividing by a negative change the sign:		
	e.g. -3x ≤ 15		
	x ≥ -5		
Simultaneous Equat	ions		
Solve by sketching lines	Step 1: Rearrange lines to form y = mx + c		
	Step 2: Sketch lines using table of points (as above)		
	Step 3: Find coordinate of point of intersection		
Solve by substitution	This works when one or both equations are of the form		
	y = ax + b		
	e.g. Solve $3x + 2y = 17$		
	Sub equation 2 into 1: 3x + 2(x + 1) = 17		
	5x + 2(x + 1) - 17 5x + 2 = 17		
	x = 3 so $y = 3 + 1 = 4$		
<u> </u>		1	<u> </u>

Simultaneous Equation	ons Contd.		
Solve by Elimination	Step 1: Scale equations to make one unknown equal with opposite sign. Step 2: Add Equations to eliminate equal term and solve. Step 3: Substitute number to find second term. e.g. $4a + 3b = 7$ 1 $2a - 2b = -14$ 2 $2a - 2b = -14$ 3 $2a - 2b = $		
Form Equations	Form equations from a variety of contexts to solve for unknowns		
Change the Subject			
Linear Equations	Rearrange equations change the subject:		
	e.g. $D = 4C - 3$ [C] $y = 5(z + 6)$ [z]		
	$D+3=4C \qquad \frac{y}{5}=z+6$		
	D+3		
	$\frac{D+3}{4} = C \qquad \frac{y}{5} - 6 = z$		
	D+3		
	$D+3=4C$ $\frac{D+3}{4}=C$ $C=\frac{D+3}{4}$ $z=\frac{y}{5}-6$		
Equations with powers	e.g. $V = \pi r^2 h$ [r]		
or roots	$\frac{V}{\pi h} = r^2$ $r = \sqrt{\frac{V}{\pi h}}$		
Quadratic Functions			
Quadratics and their	$y = x^2 \qquad \qquad y = -x^2$		
equations	$y = 2x^{2}$ $y = x^{2} + 5$ $y = (x - 3)^{2}$ $y = (x + 2)^{2} - 3$		

		1	ı	1	
Equations of quadratics	Step 1: Identify coordinate from graph				
$y = kx^2$	Step 2: Substitute into $y = kx^2$				
	Step 3: Solve to find k				
	e.g.				
	Coordinate: (2, 2)				
	Substitution: $2 = k(2)^2$				
	2 = 4k				
	X				
	k = 0.5				
	Quadratic: $y = 0.5x^2$				
Sketching Quadratics	Step 1: Identify shape, if k = 1 then graph is +ve or if k = -1				
$y = k(x + a)^2 + b$	then the graph is -ve				
	Step 2: Identify turning point (-a, b)				
	Step 3: Sketch axis of symmetry x = -a				
	Step 5: Find y-intercept (make x = 0)				
	Step 4: Sketch information				
Sketching Quadratics	Step 1: Identify shape (+ve or -ve)				
(Harder)	Step 2: Identify roots (x-intercepts) x = -a, x = b				
y = (x + a)(x - b)	Step 3: Find y-intercept (make x = 0)				
	Step 4: Identify turning point				
	Step 4. Identify turning point				
	· · · (· · · · · · · · · · · · · · ·				
	e.g. $y = (x + 4)(x - 2)$				
	+ve graph ∴ Minimum turning point				
	Roots: $x = 2$, $x = -4$				
	y-intercept: $y = (0 + 4)(0 - 2) = -8$				
	Turning Point (-1, -9) (see below)				
	NB: Turning point is halfway between roots.				
	x -coord = $(2 + (-4)) \div 2 = -1$				
	y-coord = $(-1 + 4)(-1 - 2) = -9$				
Solving Quadratics	Step 1: Factorise quadratic				
(finding roots) –	Step 2: Set each factor equal to zero				
Algebraically	Step 3: Solve each factor to find roots				
	e.g. $y = x^2 + 4x$ $y = x^2 - 5x - 6$				
	x(x + 4) = 0 $(x - 6)(x + 1) = 0$				
	x = 0 or x + 4 = 0 $x - 6 = 0 or x + 1 = 0$				
Solving Quadratics	x = 0 or x = -4 $x = 6, x = -1$				
(finding roots) –	Read roots from graph				
Graphically	10				
Grapincany	x = 2, x = -2				
	у -				
	5				
	x ,				
	A				
Solving Quadratics –	When asked to solve a quadratic to a number of decimal				
Quadratic Formula	places use the formula:				
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{}$				
	2a				
	where $y = ax^2 + bx + c$				

	e.g. Solve $y = x^2 - 6x + 2$ to 1 d.p.		
	a = 1 b = -6 c = 2		
	$-(-6) \pm \sqrt{(-6)^2 - 4 \times 1 \times 2}$		
	$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \times 1 \times 2}}{2 \times 1}$ $x = \frac{6 \pm \sqrt{28}}{2}$		
	$x = \frac{6 \pm \sqrt{28}}{}$		
	2		
	$x = \frac{6 + \sqrt{28}}{2}$ $x = \frac{6 - \sqrt{28}}{2}$		
	2		
<u> </u>	x = 5.6 $x = 0.4b^2 - 4ac where y = ax^2 + bx + c$		
Discriminant			
	The discriminant describes the nature of the roots		
	$b^2 - 4ac > 0$ two real roots		
	$b^2 - 4ac = 0$ equal roots (tangent to axis) $b^2 - 4ac < 0$		
Using the Discriminant			
Osing the Discriminant	Example 1: Determine the nature of the roots of the quadratic $y = x^2 + 5x + 4$		
	quadratic $y = x + 5x + 4$ Solution: $a = 1$, $b = 5$, $c = 4$		
	$b^2 - 4ac = 5^2 - 4 \times 1 \times 4 = 25 - 16 = 9$		
	Since $b^2 - 4ac > 0$ the quadratic has two real roots.		
	Since b 4de / 6 the quadratic has two real roots.		
	Example 2: Determine p, where $x^2 + 8x + p$ has equal		
	roots		
	Solution : $b^2 - 4ac = 0$		
	$8^2 - 4 \times 1 \times p = 0$		
	64 - 4p = 0		
	64 = 4p		
	P = 16		
Properties of Shapes			
Properties of Shapes Circles			
Circles			
	Use Pythagoras Theorem to solve problems involving		
Circles	Use Pythagoras Theorem to solve problems involving circles and 3D shapes.		
Circles	Use Pythagoras Theorem to solve problems involving		
Circles	Use Pythagoras Theorem to solve problems involving circles and 3D shapes.		
Circles	Use Pythagoras Theorem to solve problems involving circles and 3D shapes. e.g. Find the depth of water in a pipe of radius 10cm. r is the radius		
Circles	Use Pythagoras Theorem to solve problems involving circles and 3D shapes. e.g. Find the depth of water in a pipe of radius 10cm. r is the radius $x^2 = 10^2 - 9^2$		
Circles	Use Pythagoras Theorem to solve problems involving circles and 3D shapes. e.g. Find the depth of water in a pipe of radius 10cm. r is the radius $x^2 = 10^2 - 9^2$		
Circles	Use Pythagoras Theorem to solve problems involving circles and 3D shapes. e.g. Find the depth of water in a pipe of radius 10cm. r is the radius $x^2 = 10^2 - 9^2$ $x^2 =$		
Pythagoras	Use Pythagoras Theorem to solve problems involving circles and 3D shapes. e.g. Find the depth of water in a pipe of radius 10cm. r is the radius $x^2 = 10^2 - 9^2$ $x^2 =$ $x = 4.4$ cm		
Pythagoras Similar Shapes	Use Pythagoras Theorem to solve problems involving circles and 3D shapes. e.g. Find the depth of water in a pipe of radius 10cm. r is the radius $x^2 = 10^2 - 9^2$ $x^2 =$ $x = 4.4$ cm		
Pythagoras	Use Pythagoras Theorem to solve problems involving circles and 3D shapes. e.g. Find the depth of water in a pipe of radius 10cm. r is the radius $x^2 = 10^2 - 9^2$ $x^2 =$ $x = 4.4$ cm		

Area Scale Factor	(1		
Area Scale Factor	Area.Scale.Factor = $\left(\frac{\text{New.Length}}{\text{Original.Length}}\right)^2$			
Volume Scale Factor	Volume.Scale.Factor = $\left(\frac{\text{New.Length}}{2 \cdot \text{New.Length}}\right)^3$			
	Original.Length)			
Trigonometry				
Trig Graphs – Sine	$y = a \sin b x + c$			
Curve	a = maxima and minima of graph			
	$b = \text{no. of waves between 0 and 360}^{\circ}$			
	c = movement of graph vertically			
	$y = \sin x$ maxima and minima 1 and -1, period = 360°			
	y 1 1 1			
	11			
	180° 360° x			
	180° 360 ⁶ X			
	-1			
	y = 2sin x			
	<i>y</i> ↑			
	2			
	180° 360° x			
	180° 360° x			
	-2-			
	y = sin 3x			
	y ↑ 11			
	1			
	60° 120° x			
	-1			
	y = 2sin x + 2			
	<i>y</i> ↑			
	4-			
	2			
	180° 360° x			
	-2			
	y = -sin x			
	$y = -\sin x$ y			
	180° 360° X			
	-1			
	1			
	$y = \sin(x - 30^{\circ})$			
	$y = \sin(x - 30^{\circ})$			
	1			
	30 ° 210° 360° <i>x</i>			
	-1			
			1	

Trig Graphs – Cosine	$y = a\cos bx + c$			
Curve	-			
Curve	a = maxima and minima of graph			
	$b = \text{no. of waves between 0 and 360}^{\circ}$			
	c = movement of graph vertically			
	$y = \cos x$ maxima and minima 1 and -1, period = 360°			
	<i>y</i> _			
	180° 360° X			
	-1			
	*			
	The same transformations apply for Cosine as Sine (above)			
Trig Graphs – Tan	y = tan x no maxima or minima, period = 180°			
Curve	VA -1			
- Carro	*			
	-90° 90° x			
	11 1			
Solving Trig Equations	Know the CAST diagram			
	Sin All (positive) (nositive)			
	(positive)			
	180 - x x			
	180 + × 360 - ×			
	Tan Cos (positive) (positive)			
	(positive)			
	Memory Aid: All Students Take Care			
	Use the diagram above to solve trig equations:			
	Example 1: Solve $2\sin x - 1 = 0$			
	2sin <i>x</i> = 1			
	$\sin x = \frac{1}{2}$			
	$x = \sin^{-1}(\frac{1}{2})$			
	$x = 30^{\circ}, 180^{\circ} - 30^{\circ}$ $x = 30^{\circ}, 150^{\circ}$			
	x = 20° 150°			
	x - 30 , 130			
	Example 2: Solve $4\tan x + 5 = 0$			
	4tan <i>x</i> = -5			
	$\tan x = -5/4$			
	NB: tan x is negative so there will be solutions in the			
	second and fourth quadrant			
	$x = \pm \tan^{-1}(5/4)$			
	$\lambda = -\tan \left(\frac{1}{2} \right) + 1$			
	Aacute - 51.5			
	$x = \tan^{-1}(5/4)$ $x_{acute} = 51.3^{\circ}$ $x = 180^{\circ} - 51.3^{\circ}, 360 - 51.3^{\circ}$ $x = 128.7^{\circ}, 308.7^{\circ}$			
	x = 128.7, 308.7			
Trig Identities	Know: $\sin^2 x + \cos^2 x = 1$			
	$\therefore \sin^2 x = 1 - \cos^2 x$			
	and $\cos^2 x = 1 - \sin^2 x$			
	unu cos v = T = 3III v			
	siny			
	and $\tan x = \frac{\sin x}{\cos x}$			
	COS X			
	Use the above facts to show one trig function can be			
	another. Start with the left hand side of the identity and			
	work through until it is equal to the right hand side.			
<u> </u>		1		

National 5 Learning Checklist - Applications

Topic	Skills	Extra Study / Notes		
Trigonometry				
Triangle	Label Triangle C b a C B			
Area of a Triangle	$A = \frac{1}{2}ab\sin C$			
Sine Rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Use Sine Rule to find a side Use Sine Rule to find an angle. NB: $\sin A =$ $A = \sin^{-1}()$			
Coosine Rule	Use $a^2 = b^2 + c^2 - 2bc\cos A$ to find a side Use $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ to find an angle NB: $\cos A =$ $A = \cos^{-1}()$			
Bearings	Use knowledge of bearings to solve trig problems. Including knowledge of Corresponding, Alternate and Supplementary angles.			
Vectors				
2D Line Segments	Add or subtract 2D line Segments • Vectors end-to-end • Arrows in same direction			
3D Vectors	Determine coordinates of a point from a diagram representing a 3D object			
Vector Components	Add and Subtract 2D and 3D vector components. $\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} \mathbf{a} + \mathbf{b} = \begin{pmatrix} 1+3 \\ 1+2 \\ 4+5 \end{pmatrix}$			
	Multiply vector components by a scalar $2\mathbf{a} = 2 \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix}$			
	Find the magnitude of a 2D or 3D vector: For vector $\begin{pmatrix} x \\ y \end{pmatrix}$ magnitude = $\sqrt{x^2 + y^2}$ For vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ magnitude = $\sqrt{x^2 + y^2 + z^2}$			
Percentages				
Compound Interest	Calculate multiplier from percentage: e.g. 5% increase 100% + 5% = 105% = 1.05 Use multiplier to calculate compound interest / depreciation.			
	e.g. £500 with 5% interest for 3 years 1.05³ x 500			

Percentages Contd.		
Percentage	difference	
increase/decrease	% Increase/decrease = $\frac{difference}{original} \times 100$	
Reverse the Change	Find initial amount.	
	e.g. Watch reduced by 30% to £42.	
_	$70\% = £42, 1\% = £0.60, 100\% = £60 \text{ or } 42 \div 0.7 = £60$	
Fractions		
Add and Subract Fractions	Find a common denominator $\frac{2}{3} + \frac{4}{5} = \frac{10}{15} + \frac{12}{15}$	
Add and Subract Mixed	Add or subtract whole numbers, or make an	
Numbers	improper fraction:	
	$2\frac{2}{3} + 3\frac{4}{5} = 5\frac{10}{15} + \frac{12}{15} \text{ or } 2\frac{2}{3} + 3\frac{4}{5} = \frac{8}{3} + \frac{19}{5}$	
Multiply Fractions	Multiply top with top, bottom with bottom:	
	$\frac{3}{\cancel{-}} \times \frac{4}{\cancel{-}} = \frac{12}{\cancel{-}}$	
	7 5 35	
Multiply Mixed	Make top heavy fraction then as above:	
Numbers	$3\frac{3}{3} \times \frac{4}{3} = \frac{23}{3} \times \frac{4}{3} = \frac{92}{3}$	
	3-x-=-x-=- 7 5 7 5 35	
Divide Fractions	Invert second fraction and multiply:	
	$\begin{bmatrix} 6 & 2 & 6 & 3 & 18 & 9 \\ 7 & 3 & 7 & 2 & 14 & 7 \end{bmatrix}$	
Statistics	, , , , , , , , , , , , , , , , , , , ,	 .
Comparing data	sum, of , data	
	Calculate the mean: $\overline{x} = \frac{sum \cdot of \cdot data}{number \cdot of \cdot terms}$	
	Find five figure summary:	
	L = lowest term, Q1 = lower quartile, Q2 = Median,	
	Q3 = upper quartile, h = highest term	
	Interquartile range: IQR = Q3 – Q1	
	middle 50% of data	
	Semi-Interquartile range: SIQR = $\frac{Q3-Q1}{2}$	
	Calculate Standard Deviation:	
	$(\Sigma x)^2$	
	$S = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}} \text{ or } S = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}}$	
	$S = \sqrt{\frac{n-1}{n-1}}$ or $S = \sqrt{\frac{n-1}{n-1}}$	
	Know that IQR, SIQR and standard deviation are a	
	measure of the <i>spread</i> of data. Lower value means	
	more consistent data.	
Line of Best Fit	Use knowledge of straight line to find the equation	
	of a line of best fit: $y = mx + c$ or $y - b = m(x - a)$	
	Use equation of line of best fit to find estimate for	
	new value. Usually do so by substituting value for x	
	into equation.	
	Draw best fitting line:	
	In line with direction of points	
	Roughly the same number of points above and	
	below line.	