Line Types

Continuous thick

Continuous thin

Continuous thin straight with zigzags

Dashed thin line.

Chain thin.

Used for visible outlines and edges.

Used for projection, dimensioning, leader lines, hatching and short centre lines.

Used for limits of partial or interrupted views and sections if the limit is not an axis.

Used for hidden outlines and edges.

Used for centre lines, lines of symmetry.

Line Types

Dimensioning

Dimensioning

Note the position of the dimensions on each of the lines

Parallel Dimensioning

- Parallel dimensioning shows dimensions taken from a common datum.
- Less likely to accumulate errors during manufacture
- Takes up a lot of space on a page

Chain Dimensioning

- Chain dimensioning measures one size after the other in line.
- This takes us less space than parallel dimensioning
- This method can lead to an
 accumulation of error during manufacture.

Dimensioning Small Features

- Where there is a small feature amongst larger features of an object, the dimension must be applied as is shown below.

- Depending on the position of other dimensions, it is also possible to dimension small features using the methods shown.

Dimensioning Shapes

Across corners	Across flats	Square

Dimensioning Radii

1. Radii should be dimensioned by a line that passes through or is in line with the centre of an arc.
2. The dimension line should only have one arrowhead, which should touch the arc.
3. Radii of arcs that require their centre to be shown should be dimensioned with a leader line and extension that connects the centre of the circle to the arrowhead.
4. R is placed in front of the dimensions

Dimensioning Circles + Angles

Angular Dimensions

Pitch Circle Diameter (PCD)

Pitch Circle

Title Blocks

Should include:

- Drawing number
- Name
- Title of Drawing
- Scale
- Date
- Tolerance
- Projection Symbol

$3^{\text {rd }}$ Angle

 Projection Symbol

This informs the reader that the drawing has been carried out in $3^{\text {rd }}$ angle projection.

Dimensioning

1. Projection lines connect to dimension lines.
2. Dimensions are kept outside the drawing as much as possible to improve clarity.
3. Crossing of dimension lines should be avoided.
4. A 2 mm gap should be kept between the projection line and part being dimensioned.
5. Projection lines are drawn at right angles to the object.
6. Dimension lines should never be broken, even if interrupted by another.
7. A slim block arrow head should be used at the end of a dimension line indicating the position of the part being dimensioned.
8. On horizontal dimensions the number should always be placed above the dimension line and in the centre of the dimension line.
9. On vertical dimensions the numbers should always read from bottom to top and be placed on the left hand side of the line. They should also be kept central.

Task:

Q. Describe 4 mistakes that has been made with the dimensioning in the plan.

End Elevation

Exam Q

Explain why it would be useful to adhere to British Standards conventions and protocols when sharing drawings. (2)

Exam Q

Explain why it would be useful to adhere to British Standards conventions and protocols when sharing drawings. (2)

Answer from marking scheme:

- Common language
- Aids understanding of drawings
- Multiple people can be working on the same project so having this would standardise everything.

Exam Q

Find the 6 errors in the drawing.

uo!łeэ!unuuos э!чdeıs SN

ELEVATION

SECTION X-X

Answer

- Incorrect direction of text on dimension 300.
- Missing Diameter symbol on 220.

- Plan or Section X-X wrong orientation.
- View incorrectly labelled.
- Cutting plane arrows on wrong side.
- Centre lines missing at detail X.
- No projection symbol.
- Several centre lines missing (1 mark for each, must be clearly

elevation

SECTION X-X identified).

- Hatching missing from handle feature on section X -X.

