## Farr High School



## NATIONAL 5 PHYSICS



WAVE PARAMETERS AND BEHAVIOUR

| $\mathbf{1}$ |  | B |  |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | FM waveband has short(er) wavelength (1) <br> These radio waves do not diffract around hills (1) |  |  |


| 10 | (a) | $3 \times 10^{8} \mathrm{~ms}^{-1}$ | 1 | Unit required |
| :---: | :---: | :---: | :---: | :---: |
|  | (b) | $\begin{align*} \lambda & =\mathrm{v} / \mathrm{f} \\ & =3 \times 10^{8} / 1900 \times 10^{6}(1)  \tag{1}\\ & =0.16 \mathrm{~m} \tag{1} \end{align*}$ | 3 | significant figure range: 0.20 .160 .1580 .1579 |
|  | (c) | $\begin{aligned} \mathrm{t} & =\mathrm{d} / \mathrm{v} \\ & =72000000 / 3 \times 10^{8} \\ & =0.24 \mathrm{~s} \end{aligned}$ | 3 |  |
| 11 | (a) | Surface waves | 1 |  |
|  | (b) | Longer wavelength | 1 | accept:bigger/larger/greater/higher/ large/high <br> not: "wider", any answer based on frequency |
|  | (c) | The radio waves are reflected by the ionosphere | 1 | accept: reflection, (total internal) reflection <br> do not accept: "bounce (off ionosphere)", refraction |
|  | (d) | mention of satellite + any valid function of satellite <br> "signals transmitted back to Earth" <br> "signals amplified/focussed" <br> "signal frequency altered" | 2 |  |
| 12 |  | $\begin{aligned} \mathrm{t} & =\mathrm{d} / \mathrm{v} \\ & =6.8 / 340 \\ & \text { (1) } \\ & =0.02 \mathrm{~s} \end{aligned} \text { (1) } \quad \text { (1) for data selection of } 340 \mathrm{~ms}^{-1} .$ | 4 |  |
| 13 | (a) | $1500 \mathrm{~ms}^{-1}$ (1) | 1 |  |
|  | (b) | $\begin{align*} \mathrm{d} & =\mathrm{v} \times \mathrm{t} \\ = & 1500 \times 0.36 \\ & =540(\mathrm{~m}) \\ \text { So depth } & =540 \div 2 \\ = & 270 \mathrm{~m} \tag{1} \end{align*}$ | 4 | If correct speed (1500) is used in (c) but 2(b) is incorrect, can still get full marks. <br> Note: 1 mark is allocated for division by two: the division of time or distance by two can occur at any point |
| 14 | (a) <br> (i) | Q (1) | 1 |  |
|  | (a) <br> (ii) | Q (1) | 1 |  |
|  | $\begin{aligned} & \hline \text { (b) } \\ & \text { (i) } \end{aligned}$ | $\begin{array}{\|l\|} \hline \mathrm{v}=\mathrm{f} \lambda \\ 340=2 \times 10^{3} \times \lambda \\ \lambda=0.17 \mathrm{~m} \end{array}$ | 3 |  |
|  | (b) <br> (ii) | $\begin{array}{ll} \hline \mathrm{d}=\mathrm{vt} & \text { (1) } \\ 20.4=340 \times \mathrm{t} \\ \mathrm{t}=0.06 \mathrm{~s} & (1) \\ \hline \end{array}$ | 3 |  |
|  | (c) | Wavelength decreased (1) <br> Speed of sound slower (1) | 2 |  |
| 15 | (a) | $\begin{align*} & \hline \mathrm{v}=\mathrm{d} / \mathrm{t}  \tag{1}\\ & 340=\mathrm{d} / 2 \times 10^{-3} \\ & \mathrm{~d}=0.68 \mathrm{~m} \quad(1) \\ & \therefore \mathrm{d}=0.34 \mathrm{~m} \text { one way }(1) \\ & \hline \end{align*}$ | 4 |  |
|  | (b) | $\begin{array}{ll} \hline \mathrm{f}=1 / \mathrm{T} & (1) \\ \mathrm{f}=1 / 0.125 & (1) \\ \mathrm{f}=8 \mathrm{~Hz} & (1) \tag{1} \end{array}$ | 3 |  |

THE ELECTROMAGNETIC SPECTRUM

| 1 |  | Phototransistor/photodiode/CCD (1) | 1 | NOT thermometer/thermopile/ thermogram - not suitable for given context <br> NOT Infra red camera OR Infra red detector |
| :---: | :---: | :---: | :---: | :---: |
| 2 | (a) | $\begin{aligned} & \mathrm{P}=\mathrm{X} \text {-rays } \\ & \mathrm{Q}=\text { Ultra violet/UV } \end{aligned}$ | 1 |  |
|  | (b) | (Black bulb) thermometer OR <br> photodiode <br> OR <br> phototransistor <br> (1) | 1 | Accept: <br> - thermofilm <br> - thermistor <br> - thermopile <br> - thermocouple <br> - thermographic film <br> - heat sensitive paper <br> - IR film <br> - CCD <br> Do not accept: <br> - skin <br> - IR camera <br> - photographic film <br> - thermogram |
| 3 |  | B (1) | 1 |  |
| 4 |  | A (1) | 1 |  |
| 5 | (a) | - Radio (signals/waves) have a longer wavelength than television (signals/waves) (1) <br> - Longer wavelengths diffract more (1) | 2 | Must mention both points for full marks <br> If 'radio diffracts more than TV signals' only then (1) max. |
|  | (b) | $3 \times 10^{8} \mathrm{~ms}^{-1}(1)$ <br> OR <br> $3000000000 \mathrm{~ms}^{-1}$ | 1 | Must have correct value and unit NOT: ‘same as speed of light' alone |
| 6 |  | C (1) | 1 |  |
| 7 | (a) | Infrared (1) | 1 |  |
|  | (b) | both arrive at the same time both travel at the same speed (or speed of light or $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ ) (1) | 2 |  |
| 8 |  | B (1) | 1 |  |


| LIGHT |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 |  | E | 1 |  |
| 2 |  | C | 1 |  |
| 3 | (a) | Greater | 1 | Accept bigger, larger, longer but not higher |
|  | (b) (i) | Correct drawing and change of direction <br> (b) | 1 | Arrows not required. |
|  | (ii) | All 3 labels correctly shown | 1 |  |
| 4 |  | B (1) | 1 |  |
| 5 |  | C (1) | 1 |  |
| 6 | (a) | $59^{\circ}$ (1) | 1 |  |
|  | (b) | $40^{\circ}$ (1) | 1 |  |
| 7 | (a) | Total internal reflection (1) | 1 |  |
|  | (b) | Any angle less than $45^{\circ}$ (1) <br> Angle of incidence must be more than critical angle | 2 | First mark only available if explanation attempted |
| 8 |  | C (1) | 1 |  |
| 9 |  | E (1) | 1 |  |
| 10 | (a) | Ray must obey the law of reflection (1) Appropriate number of reflections (1) line not straight $(-1)$ | 2 |  |
|  | (b) | (total internal) reflection (TIR) (1) | 1 |  |

NUCLEAR RADIATION

| 1 | $\begin{aligned} & \hline \text { (a) } \\ & \text { (i)A } \end{aligned}$ | Diagram 2 (represents ionized atom) | 1 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (i)B | An electron has been removed (from the atom) | 1 | For this mark must explain that: Electron has been removed OR Fewer electrons than protons |
|  | (ii) | Alpha (accept symbol $\alpha$ ) | 1 | Accept: <br> - Wash hands <br> - Do not eat <br> - Wear protective clothing <br> - Use shielding <br> - Return to container as soon as demo is <br> - finished <br> Or other suitable alternative |
|  | (b) | Use forceps/don't point at eyes/wear gloves etc | 1 |  |
|  | (c) <br> (i) | Instrument sterilisation/treatment of cancer | 1 |  |
|  | (ii) | Beta (radiation) (accept symbol $\beta$ ) | 1 |  |
| 2 |  | C | 1 |  |
| 3 |  | D | 1 |  |
| 4 |  | A | 1 |  |
| 5 | (a) | The radiation detector would detect a higher level of radiation <br> OR <br> count rate would be higher where there was a crack in the aircraft | 1 | Some indication that there would be an increase in the reading on the detector. |
|  | (b) <br> (i) | Time taken for the (radio) activity (of a radioactive source) to reduce by half. | 1 | Do not accept: <br> Time for radiation/count rate to half. |
|  | (ii) | Source Y (1) <br> gamma can penetrate through the metal aircraft (1) <br> Long half life (1). | 3 | Y only acceptable answer. Additional (1) marks can only be obtained if Y is selected. |
|  | (c) | Point away from face / people OR <br> use tongs/ forceps <br> OR <br> Use lead (lined) aprons/gloves etc. | 1 | Accept: <br> - Wash hands <br> - Do not eat <br> - Wear protective clothing <br> - Goggles <br> - Film badge to monitor exposure <br> - Limit exposure time <br> - Increased distance from source. <br> - Return to container as soon as demo is finished <br> Or any other sensible alternative NOT: <br> - "Film badge" on its own <br> - "wear gloves' or "gloves" alone |
|  | (d) | 48/12 $=4$ ( half lives) $128 \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow 8(\mathrm{MBq})$ <br> (1) for halving <br> (1) for final answer | 3 | Unit not required but deduct (1) if wrong unit given in final answer Halving process (1) mark is independent of the calculation of the number of half lives. |


| $\mathbf{6}$ | (a)Any two correct count rate values from the graph, <br> i.e. second $=$ half of the first. <br> Half-life $=2$ hours | 2 |  |
| :--- | :--- | :--- | :--- | :--- |


| VARIOUS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (a) <br> (ii) | $\begin{aligned} & 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & \text { OR } 300000000 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ |  | 1 | Must have correct value and unit marks (1 or 0) <br> NOT: ‘same as speed of light' alone |
|  | (ii) | $\begin{aligned} & \mathrm{d}=\mathrm{vt} \\ & =3 \times 10^{8} \times 0.68 \\ & =20400000 \mathrm{~m} \end{aligned}$ |  | 3 | Must use value for speed from (a) OR correct value for speed of radio signals If $v=340$, then $d=23 \cdot 12 \mathrm{~m}$ |
|  | (b) | $\begin{aligned} v & =f \lambda \\ 3.0 \times 10^{8} & =2100 \times 10^{6} \times \lambda \\ \lambda & =\frac{3.0 \times 10^{8}}{2100 \times 10^{6}} \\ & =0.14 \mathrm{~m} \end{aligned}$ | (1) <br> (1) <br> (1) | 3 | Must use value for speed from (a) OR correct value for speed of radio signals Sig. fig range: $0 \cdot 1,0 \cdot 14,0 \cdot 143$, 0. 1429 <br> If $v=340$, then $\lambda=1.62 \times 10-7 \mathrm{~m}$ |
| 2 | (a) | $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ <br> OR $300000000 \mathrm{~m} \mathrm{~s}^{-1}$ |  | 1 | (1) OR (0) must show correct unit <br> Do not accept: <br> "The speed of light" |
|  | (b) | $\begin{align*} & \mathrm{v}=\mathrm{f} \lambda  \tag{1}\\ & 3 \times 10^{8}=12 \times 10^{9} \times \lambda  \tag{1}\\ & \lambda=0 \cdot 025 \mathrm{~m} \tag{1} \end{align*}$ |  | 3 | Must use value for speed from (a) OR correct value for speed of microwave signals deduct for wrong/missing unit (1) If $\mathrm{v}=340$, then $\lambda=2.83 \times 10^{-8} \mathrm{~m}$ |

