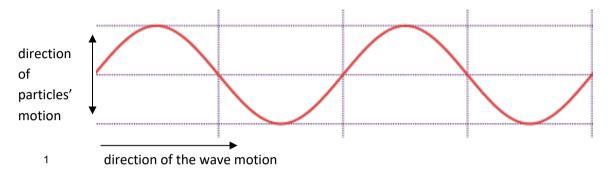
Hyndland Secondary School

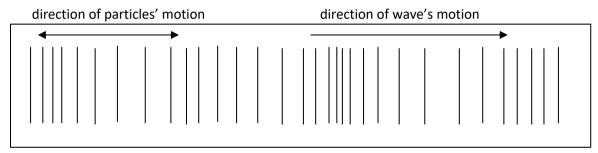
National 4/5

Physics

Waves and Radiation

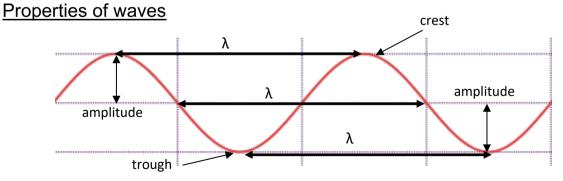

Summary Notes

Wave characteristics, parameters and behaviours


Types of wave

There are two different types of waves you will meet in this course, **transverse** waves and **longitudinal** waves

In transverse waves the particles oscillate (vibrate) at right angles to the motion of the wave



In longitudinal waves the particles oscillate in the same direction as the motion of the wave

Examples of transverse waves include light waves, radio waves, microwaves.

Sound is an example of a longitudinal wave

Waves are used to transfer energy. The particles oscillate around a fixed position but the energy travels along the wave.

¹ http://upload.wikimedia.org/wikipedia/commons/7/77/Waveforms.svg

Several important features of a wave are shown in the diagram. These are explained in the following table

Wave property	Symbol	Definition	Unit	Unit symbol
crest		highest point of		
		a wave		
trough		lowest point of		
		a wave		
frequency	f	number of	hertz	Hz
		waves		
		produced in		
		one second		
wavelength	λ	horizontal	metre	m
		distance		
		between		
		successive		
		crests or		
		troughs		
amplitude	А	half the vertical	metre	m
		distance		
		between crest		
		and trough		
wave speed	V	distance	metres per	m/s
		travelled per	second	
		unit time		

Distance, speed and time

One of the most important equations you will meet in Physics concerns the relationship between distance, speed and time. This means that the speed of an object (or wave) is a measure of how much distance is covered in a certain time.

Another way of looking at this is that the distance travelled depends on how fast you travel and for how long. We represent this as shown below

 $distance = speed \times time$ $d = \overline{v}t$

where d is the distance travelled in metres (m)

 \overline{v} is the average speed in metres per second (m/s)

and t is the time in seconds (s)

Example A wave travels 90 m in 30 s. Calculate the speed of the wave

Solution

d = 90m
t = 30s

$$d = \overline{v}t$$

 $90 = \overline{v} \times 30$
 $\frac{90}{30} = \overline{v}$
 $\overline{v} = 3ms^{-1}$

Wave speed, frequency and wavelength

By multiplying the frequency and wavelength we find that this is equal to the speed of the wave. We therefore say that:

wave speed = frequency × wavelength $v = f\lambda$

Example: A wave has a wavelength of 0.5 m and a frequency of 4 Hz. What is its speed?

Solution:

 $v = f\lambda$ $\lambda = 0.5m$

$$f = 4$$
Hz $v = 4 \times 0.5$

 $v = 2ms^{-1}$

Diffraction

Waves are able to bend around obstacles. This bending of waves around corners is called diffraction.

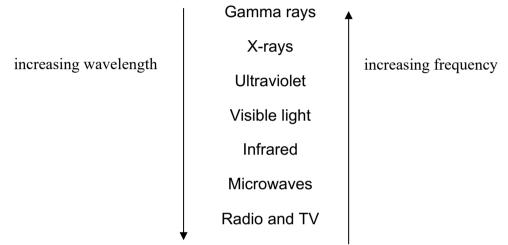
Long wavelength waves diffract more than short wavelength waves.

Long wavelength

2

Short wavelength

² http://www.schoolphysics.co.uk/age14-


^{16/}glance/Waves/Diffraction_/index.html?PHPSESSID=43cdadeaf8c0a5aeacf88cced9468bab

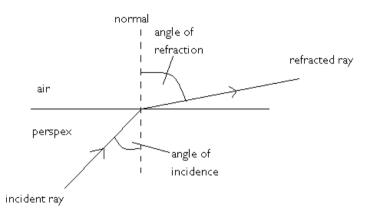
Electromagnetic spectrum and light

The electromagnetic spectrum

There are a number of waves which travel at the speed of light. They are all part of the **electromagnetic spectrum**. These waves are all transverse waves and travel at 300000000 m/s (3×10^8 m/s) in a vacuum.

The different parts of the electromagnetic spectrum differ in wavelength and frequency

The different parts of the electromagnetic spectrum can also be distinguished by their energy. Higher frequency electromagnetic radiation has a greater amount of energy than lower frequency electromagnetic radiation.


Some information on each part of the spectrum is given below

Type of e-m	Typical source	Application	Detector	Possible
radiation				hazard
Radio & TV	Electrical	Telecommunications	Aerial	Potential
	antennae			increased cancer
				risk
Microwaves	Cosmic sources,	Cooking,	Diode probe	Heating of body
	magnetron	telecommunications	-	tissues
Infra-red	Heat-emitting	Thermograms	Phototransistor,	Heating of body
	objects	C C	blackened	tissues
			thermometer	
Visible light	Stars	Vision	Eye,	Intense light can
C C			photographic film	damage the
				retina
Ultraviolet	Sunlight	Treating skin	Fluorescent paint	Skin cancer
		conditions	·	
X-rays	X-ray tube,	Medical imaging	Photographic	Destroys cells
	cosmic sources	00	plates	which can lead to
				cancer
Gamma rays	Nuclear decay	Treating tumours	Geiger–Müller	Destroys cells
		-	tube and counter	which can lead to
				cancer

Light

At the boundary between different types of materials, the speed of the light wave changes. This results in a change in wavelength, and can often cause the direction of a wave to change.

The change in light speed when going from one medium into another is known as **refraction**.

This effect is used in lenses.

Above a certain angle of incidence, refraction no longer occurs, and instead the wave is reflected back into the first medium. This is known as **total internal reflection**. The angle of incidence that causes an angle of refraction of 90° is called the **critical angle**.

Total internal reflection is used in optical fibres. Optical fibres can be used for communication or in medical applications to allow doctors to see into the body. One bundle of fibres carries light into the body whilst another carries the light back out of the body. This is known as an **endoscope**.

³ Sai2020 taken from http://en.wikipedia.org/wiki/File:TIR_in_PMMA.jpg