Graphs

Speed - Time Graphs

A speed-time graph is a useful way of describing the motion of an object.
Since speed is a scalar quantity, a speed-time graph considers motion in one direction only.

The graphs below illustrate the 3 types of motion you will study.

The steeper the line (larger gradient) the greater the acceleration

Example: The motion of a car over 50 s is described in the speed-time graph below.

a) Calculate the acceleration of the car during the first 10 s .
b) Calculate the distance travelled by the car for the entire $\mathbf{5 0} \mathrm{s}$.

Solution

a) $a=$?
$\mathrm{v}=8 \mathrm{~ms}^{-1}$
$\mathrm{u}=0$ (at rest)
$\mathrm{t}=10 \mathrm{~s}$

$$
\begin{aligned}
& a=\frac{v-u}{t} \\
& a=\frac{8-0}{10} \\
& a=0.8 \mathrm{~ms}^{-2}
\end{aligned}
$$

b) To calculate the distance travelled we cannot use $d=v t$ as the speed is not constant throughout the journey.
The distance travelled = area under the speed-time graph
Area $1=1 / 2(10 \times 8)=40 \quad$ (area of right angled triangle)
Area $2=30 \times 8=240 \quad$ (area of rectangle)
Area $3=1 / 2(10 \times 8)=40 \quad$ (area of right angled triangle)

Total area $=40+240+40=320$ so distance travelled $=320 \mathrm{~m}$

A velocity-time graph is a useful way of describing the motion of an object.
Since velocity is a vector quantity, a velocity-time graph can consider motion in two directions.

The graphs below illustrate the 3 types of motion you will study.

The steeper the line (larger gradient) the greater the acceleration

Example: The motion of a car over 40 s is described in the velocity-time graph below.

a) During which stage of the journey is the acceleration of the car the greatest?
b) Calculate the deceleration of the car between 30 and 40 s .
c) Calculate the displacement of the car for the entire 40 s .

Solution

a) Between 0 and 5 s . (the gradient of the line is greater than $\mathbf{5 s}$ to $\mathbf{1 0} \mathrm{s}$)
b) $a=$?
$v=0$
$\mathrm{u}=10 \mathrm{~ms}^{-1}$
$\mathrm{t}=10 \mathrm{~s}$

$$
\begin{aligned}
& a=\frac{v-u}{t} \\
& a=\frac{0-10}{5} \\
& a=-2 \mathrm{~ms}^{-2} \quad \text { deceleration }=2 \mathrm{~ms}^{-2}
\end{aligned}
$$

c) Displacement = area under the velocity-time graph

Area $1=1 / 2(5 \times 8)=20$
Area $2=5 \times 8=40$
Area $3=1 / 2(5 \times 2)=5$

Area $4=20 \times 10=200$
Area $5=1 / 2(10 \times 10)=50$

