Electricity and Energy

Practical Electricity

Electric Current

Materials can be divided into two main groups as conductors and insulators
Electrical conductors contain electrons which are free to move throughout the structure.
In electrical insulators, the electrons are tightly bound and cannot move.
All circuits need a source of energy and some electrical components which are connected by wires. The source of energy may be a battery or the mains.

If a battery is connected across a conductor such as a bulb, then the electrons will move in one direction around the circuit:

An electric current is the flow of electrons around a circuit. The greater the flow of electrons in a circuit, the greater is the current.

The voltage is the electrical energy supplied by the battery (or mains) to make the electrons move around the circuit.

When we define an electric current we consider it to be the movement of a group of electrons around a circuit.

The smallest unit of electric charge is the charge on one electron, but this is too small a number to use practically, therefore we use the term Charge to describe a group of electrons at any one point.

A quantity of Charge has the symbol Q and is measured in units of Coulombs, C.

The size of an electric current will depend on the number of coulombs of charge passing a point in the circuit in one second.

This means that electric current is defined as the electric charge transferred per second.

Example

A current of 5 amperes flows through a lamp for 7 seconds. How much charge has passed through the lamp in that time?

$$
\begin{aligned}
& I=5 A \\
& t=7 \mathrm{~s} \\
& \mathrm{Q}=?
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{Q} & =1 \times t \\
& =5 \times 7 \\
& =35 \mathrm{C}
\end{aligned}
$$

Therefore 35 coulombs of charge have passed through the lamp in 7 seconds.

Current is measured using an ammeter which has the symbol:

Electric current is given the symbol I and is measured in amperes (A).
To measure the current through a component, make a gap in the circuit and connect the ammeter in series with the component.

In the circuit, the ammeter is in series with the bulb. The reading on the ammeter is the current through the bulb.

Voltage is measured using a voltmeter which has the symbol:

Electrical voltage is given the symbol V and is measured in volts (V).
To measure the voltage across a component, use two extra wires to connect the voltmeter in parallel with the component.

In the circuit, the voltmeter is added in parallel with the bulb.

The reading on the voltmeter is the voltage across the bulb.

