Determining the relationship between V (p.d), current and resistance

N5

- Using a fixed value of resistor, vary the voltage supply to the circuit.
- Measure and note the values of voltage and current.
- Draw a graph of p.d against I, as shown below

Pick values of potential difference and current from the graph to show that: V/I = constant.

Potential difference (V)	Current(A)	V/I = constant
2	0.4	5
4	0.8	5
6	1.2	5
8	1.6	5
10	2.0	5
12	2.4	5

Which quantity from the experiment is equal to a constant value of 5?

> The size of the resistor.

Carry out calculations using V= I x R

Example 1

A mobile phone has a resistance of 4 Ω and a current of 3 A passing through out, calculate the size of voltage it uses.

Example 2

The lamp has a voltage of 230 V and a resistance of 83 Ω , calculate the current passing through the lamp.

Example 3

An electric fire has a voltage of 230 V and a current of 5 A, calculate the resistance of the fire.

