Determining the relationship between V (p.d), current and resistance

N5

- Using a fixed value of resistor, vary the voltage supply to the circuit.
- Measure and note the values of voltage and current.
- Draw a graph of p.d against I, as shown below

This graph shows that $\mathbf{V} \propto \mathbf{I}$

V = I x constant
$\mathrm{V}=$ constant
I
This constant $=$ gradient of the line

Pick values of potential difference and current from the graph to show that: $\mathrm{V} / \mathrm{I}=$ constant.

Potential difference (V)	Current(A)	$\mathrm{V} / \mathrm{I}=$ constant
2	0.4	5
4	0.8	5
6	1.2	5
8	1.6	5
10	2.0	5
12	2.4	5

Which quantity from the experiment is equal to a constant value of 5 ?
> The size of the resistor.

Therefore $\underline{\mathbf{V}}=\mathbf{R}$ and rearranged gives

I

Carry out calculations using V=I $\times \mathrm{R}$

Example 1

A mobile phone has a resistance of 4Ω and a current of 3 A passing through out, calculate the size of voltage it uses.
$\mathrm{V}=$?
$R=4 \Omega$

$$
\begin{aligned}
& V=1 \times R \\
& V=3 \times 4 \\
& V=12 \mathrm{~V}
\end{aligned}
$$

Example 2

The lamp has a voltage of 230 V and a resistance of 83Ω, calculate the current passing through the lamp.
$\mathrm{V}=230 \mathrm{~V}$
$\mathrm{R}=83 \Omega$

$\mathrm{I}=?$$\quad$| $\mathrm{V}=\mathrm{I} \times \mathrm{R}$ |
| :--- |
| $230=1 \times 83$ |
$230=1$
83

$$
\mathrm{I}=2.8 \mathrm{~A}
$$

Example 3

An electric fire has a voltage of 230 V and a current of 5 A , calculate the resistance of the fire.
$\mathbf{V}=\mathbf{I} \times \mathbf{R}$
$\mathrm{V}=230 \mathrm{~V}=?$
$\mathrm{I}=5 \mathrm{~A}$
$230=5 \times R$
$230=R$
$\mathbf{R}=46 \Omega$

