Series Circuit

All bulbs are identical
(a) $\quad V_{1}$ reads 3 V , what does V_{2} read?
V_{2} reads 3 V since the bulbs are identical each bulb gets the same share of the voltage.
(b) Hence, calculate the voltage supply.

$$
V_{s}=V_{1}+V_{2} \quad \text { therefore } \quad V_{s}=3+3=6 V
$$

(c) The reading on ammeter A_{2} is $1 A$, what will the reading be on A_{1} ?

The current is the same at all points in a series circuit therefore A_{1} will read 1 A.

Parallel Circuit

All bulbs are identical
(a) What are the readings on voltmeters V_{1} and V_{2} ?

Both read 12 V , since in parallel each branch of the circuit receives the same voltage as the voltage supply.
(b) If A_{1} reads $3 A$, calculate the readings on A_{2}, A_{3} and A_{4}.

The current will split equally between both branches since the bulbs are identical. Therefore, A_{2} and A_{3} will both read 1.5A.
A_{4} will read $3 A$ since this is the point in the circuit where the current recombines.

All bulbs are identical
(a) A_{1} reads $6 A_{\text {, what }}$ are the readings on A_{2}, A_{3} and A_{4} ?
A_{2} and $A_{3}=3 A$, since the supply current is split between both branches equally. $A_{4}=6 A$, at this point the current recombines.
(b) What is the reading on V_{1} ?

The parallel arrangement of bulbs will have half the resistance of the single bulb.
Therefore the parallel bulbs will receive only half the voltage the single bulb will get.
V_{1} will read 4 V and each bulb will receive only 2 V .
[This is explained under the heading resistance in parallel]

N5 Calculations involving resistors in series and parallel.

Resistors in Series

The total resistance of all three resistors in series is calculated using the following equation:

$$
\begin{aligned}
& \mathbf{R}_{\mathbf{T}}=\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}} \\
& \mathbf{R}_{T}=10+20+30 \\
& \mathbf{R}_{\mathbf{T}}=\mathbf{6 0} \mathbf{\Omega}
\end{aligned}
$$

Resistors in Parallel

The total resistance of all three resistors in parallel is calculated using the following equation:

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

Therefore

$$
\frac{1}{R_{T}}=\frac{1}{5}+\frac{1}{10}+\frac{1}{15}
$$

- Multiply both the top and bottom of each fraction to make all the denominators the same.

$$
\frac{1}{R_{T}}=\frac{6}{30}+\frac{3}{30}+\frac{2}{30}
$$

- Add fractions

$$
\frac{1}{R_{T}}=\frac{11}{30}
$$

- Invert to calculate RT

$$
\frac{R_{T}}{1}=\frac{30}{11}=\mathbf{2 . 7 2 \Omega}
$$

More on resistors in parallel

Shown below is a simple series circuit complete with a 5Ω resistor.

Calculate the value of current through the resistor.

$$
\begin{aligned}
& V=I \times R \\
& 6=1 \times 5 \\
& 6 / 5=1 \\
& I=1.2 \mathrm{~A}
\end{aligned}
$$

Now add another 5Ω resistor in parallel to the original, the circuit now looks like:

Calculate the value of the current through ammeter A_{1}.

- To do this the total resistance of the circuit must be calculated first.

Step 1

Step 2

- $\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
$\frac{1}{R_{T}}=\frac{1}{5}+\frac{1}{5}$

$\frac{1}{R_{T}}=\frac{2}{5}$
$R_{T}=2.5 \Omega$
$V=1 \times R$
$6=1 \times 2.5$
6/ $2.5=1$
$\mathrm{I}=2.4 \mathrm{~A}$

This result shows that when another resistor is added in parallel the total resistance of a circuit is decreased and the current in the circuit is increased.
i.e. by adding an identical resistor in parallel the resistance has halved and the current drawn doubled.

