A potential divider circuit is made up with resistors or other components connected across a supply.

For example:

Drawn as above, the potential divider circuit is simply a series circuit following all the same rules; the current is the same at all points and the supply voltage splits up across each component to give them a share of the voltage (or potential difference).

Through experimentation the following relationships can be derived:

$V_{1}=\frac{R_{1}}{R_{1}+R_{2}} \times V_{\text {supply }} \quad$ and $\quad V_{2}=\frac{R_{2}}{R_{1}+R_{2}} \times V_{\text {supply }}$

Example 1

Calculate the potential difference V_{1}.

$$
\begin{aligned}
& V_{1}=\frac{R_{1}}{R_{1}+R_{2}} \times V_{\text {supply }} \\
& V_{1}=\frac{200}{800+200} \times 5 \\
& \mathbf{V}_{1}=1 \mathbf{V}
\end{aligned}
$$

Example 2

The resistance of the LDR, R_{1} in the dark is $10 k \Omega$ and when in the light its resistance is $1 k \Omega$. Calculate the value of V_{1} when the LDR is in the dark.

