By combining the above three relationships, the following relationship for the pressure, volume and temperature of a fixed mass of gas is true for all gases.

$$
\frac{\mathrm{p} \times \mathrm{V}}{\mathrm{~T}}=\text { constant }
$$

$$
\frac{\mathrm{p}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}
$$

Example

A balloon contains $1.5 \mathrm{~m}^{3}$ of helium at a pressure of 100 kPa and at a temperature of $27^{\circ} \mathrm{C}$. If the pressure is increased to 250 kPa at a temperature of $127^{\circ} \mathrm{C}$, calculate the new volume of the balloon.
$\mathrm{p} 1=100 \mathrm{kPa}$
$\mathrm{V} 1=1.5 \mathrm{~m} 3$
$\mathrm{T} 1=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
$\mathrm{p} 2=250 \mathrm{kPa}$
$\mathrm{V} 2=$?
$\mathrm{T} 2=127^{\circ} \mathrm{C}=400 \mathrm{~K}$

