Relationship between Volume and Temperature of a Gas

Consider an experiment to determine the relationship between volume and temperature of a fixed mass of gas at a constant pressure.

- As the water is heated, the volume of the gas is measured
- It is found that as the temperature increases, the volume increases

If a graph is drawn of volume against temperature, in degrees celsius, for a fixed mass of gas at a constant pressure, the graph is a straight line which does not pass through the origin. When the graph is extended until the volume reaches zero, again it crosses the temperature axis at $-273^{\circ} \mathrm{C}$. This is true for all gases

If the graph of volume against temperature is drawn using the kelvin temperature scale, the graph now goes through the origin:

Charles' law states that for a fixed mass of gas at a constant pressure, the volume of a gas is directly proportional to its temperature measured in kelvin (K):
$V \alpha T$
$\frac{\mathrm{V}}{\mathrm{T}}=$ constant
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$

Example

$400 \mathrm{~cm}^{3}$ of air is at a temperature of $20^{\circ} \mathrm{C}$. At what temperature will the volume be 500 cm^{3} if the air pressure does not change?
$V_{1}=400 \mathrm{~cm}^{3}$
$\mathrm{T}_{1}=20^{\circ} \mathrm{C}=293 \mathrm{~K}$
$\mathrm{V}_{2}=500 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& \frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
& \frac{400}{293}=\frac{500}{\mathrm{~T}_{2}} \\
& \underline{\mathrm{I}}_{2}=\mathbf{3 6 6 \mathrm { K } = 9 3 ^ { \circ } \mathrm { C }}
\end{aligned}
$$

Note: convert back to the temperature scale used in the question

