

If the graph of volume against temperature is drawn using the kelvin temperature scale, the graph now goes through the origin: \mathbf{v}

Charles' law states that for a fixed mass of gas at a constant pressure, the volume of a gas is directly proportional to its temperature measured in kelvin (K):

Example

400 cm³ of air is at a temperature of 20 °C. At what temperature will the volume be 500 cm³ if the air pressure does not change?

T ₂ = ?	<u>Т₂ = 366 К = 93 °С</u>
$V_2 = 500 \text{ cm}^3$	$\overline{293}^{-}\overline{T_2}$
$I_1 = 20$ C = 293 K	400 _ 500
T = 20 °C = 202 K	$\frac{1}{T_1} = \frac{1}{T_2}$
$V_1 = 400 \text{ cm}^3$	$\mathbf{V}_1 \mathbf{V}_2$

Note: convert back to the temperature scale used in the question