Farr High School

NATIONAL 5 PHYSICS

CONSERVATION OF ENERGY				
1		$\begin{align*} \mathrm{E}_{\mathrm{p}} & =\mathrm{mgh} \tag{1}\\ & =25 \times 9.8 \times 1.2 \tag{1}\\ & =290 \mathrm{~J} \tag{1} \end{align*}$	3	Sf, accept $300,294$
2		C	1	
3		$\begin{aligned} \mathrm{E}_{\mathrm{k}} & =1 / 2 \mathrm{mv}^{2} \\ & =0.5 \times 1.5 \times 10^{2} \\ & =75 \mathrm{~J} \end{aligned}$	3	
4		$\begin{align*} \mathrm{E}_{\mathrm{P}} & =\mathrm{mg} \mathrm{~h} \tag{1}\\ & =8000 \times 10 \times 500 \tag{1}\\ & =40000000 \mathrm{~J} \\ & =40 \mathrm{MJ} \tag{1} \end{align*}$	3	
5	(a)	$\begin{align*} & \text { E } \mathrm{E}_{\mathrm{p}}=\mathrm{mgh} \tag{1}\\ & \mathrm{E}_{\mathrm{p}}=750 \times 10 \times 7.2 \tag{1}\\ & \mathrm{E}_{\mathrm{p}}=54000 \mathrm{~J} \tag{1} \end{align*}$	3	
	(b) (i)	54000 J (1)	1	
	(b) (ii)	$\begin{align*} \mathrm{E}_{\mathrm{K}} & =1 / 2 \mathrm{mv}^{2} \tag{1}\\ 54000 & =0.5 \times 750 \times \mathrm{v}^{2} \tag{1}\\ \mathrm{v} & =12 \mathrm{~ms}^{-1} \tag{1} \end{align*}$	3	
6	(a)	$\begin{align*} \mathrm{E}_{\mathrm{P}} & =\mathrm{mgh} \tag{1}\\ & =90 \times 10 \times 3 \tag{1}\\ & =2700 \mathrm{~J} \tag{1} \end{align*}$	3	
	(b)	$\begin{align*} \mathrm{E}_{\mathrm{k}} & =1 / 2 \mathrm{~m} \mathrm{v} \\ & =1 / 2 \times 90 \times 82 \tag{1}\\ & =2880 \mathrm{~J} \tag{1} \end{align*}$	3	
	(c)	Extra energy has been supplied (1) by (the work done) pedalling	2	

ELECTRIC CHARGE CARRIERS AND ELECTRIC FIELDS

POTENTIAL DIFFERENCE (VOLTAGE)

$\mathbf{1}$		A (1)	1	
$\mathbf{2}$		C (1)	1	

OHM'S LAW

PRACTICAL ELECTRICAL AND ELECTRONIC CIRCUITS				
1	(a)	$\begin{align*} \frac{1}{R_{\mathrm{T}}} & =\frac{1}{R_{1}}+\frac{1}{R_{2}} \tag{1}\\ & =\frac{1}{4}+\frac{1}{2} \tag{1}\\ \therefore R_{\mathrm{T}} & =1.3 \Omega \tag{1} \end{align*}$	3	Accept $1 \Omega, 1 \cdot 33 \Omega, 1 \cdot 333 \Omega$
	(b)	$\begin{align*} & \mathrm{RT}=\mathrm{R} 1+\mathrm{R} 2 \tag{1}\\ & =1 \cdot 3+6 \tag{1}\\ & =7 \cdot 3 \Omega \tag{1} \end{align*}$	3	Consistent with (a) (1) 2 Accept $7 \cdot 3 \Omega, 7 \cdot 33 \Omega, 7 \cdot 333 \Omega$
	(c)	$\begin{align*} & \text { (Voltage across } 2 \Omega \text { resistor }=\text { Voltage across } 4 \Omega \\ & \text { resistor) } \\ & \mathrm{V}=\mathrm{IR} \tag{1}\\ & =0.1 \times 4(\text { or } 0.2 \times 2) \tag{1}\\ & \quad=0.4 \mathrm{~V} \tag{1} \end{align*}$	3	(2) max, if divide final answer by 2
2		E (1)	1	
3		A (1)	1	
4		D (1)	1	
5		A (1)	1	
6	(a)	Transistor (switch)	1	Ignore any prefix (eg bipolar, NPN, PNP)
	(b)	- (As temp increases,) input voltage to transistor increases - (above 0.7 V) switching transistor on - Current in the (relay) coil (producing magnetic field). - (Relay) switch closes / activates, (completing the bell circuit/ operating the bell).	2	First bullet point may refer to voltage (output) from thermocouple or amplifier increasing but do not accept 'voltage' alone. Do not accept: 'transistor is saturated'
	(c)	$\begin{align*} & \frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}} \tag{1}\\ & \frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{1}{16}+\frac{1}{16} \tag{1} \end{align*}$ $\begin{equation*} \mathrm{Rt}=8 \Omega \tag{1} \end{equation*}$	3	If wrong equation used eg $\mathrm{R}_{\mathrm{t}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}$ then zero marks Accept imprecise working towards a final answer $\frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{1}{16}+\frac{1}{16}=8 \Omega$ Deduct (1) for wrong/missing unit Can be answered by applying product over sum method Can be answered using 'identical value' parallel resistors method: $R=$ value for single resistor total no. of Rs in parallel

7		A (1)	1	
8		A (1)	1	
9		C (1)	1	
10		C (1)	1	
11		B (1)	1	
12		B (1)	1	
13		D (1)	1	
14		D (1)	1	
15	(a)		2	
	(b)	(electronic) switch	1	
	(c)	$\begin{align*} & \text { voltage across } 5 \cdot 5 \mathrm{k} \Omega \text { resistor } \\ & =9-2 \cdot 4 \\ & =6 \cdot 6 \mathrm{~V} \tag{1}\\ & \begin{array}{l} \mathrm{V}_{1}=\frac{\mathrm{R}_{1}}{\mathrm{~V}_{2}} \\ \frac{2.4}{\mathrm{R}_{2}} \\ \frac{2.4}{6.6}=\frac{\mathrm{R}_{1}}{5500} \\ \mathrm{R}_{1}=2000 \Omega \end{array} \tag{1} \end{align*}$ OR voltage across $5.5 \mathrm{k} \Omega$ resistor $=9-2.4=6.6 \mathrm{~V}$ $\begin{aligned} & V=I R \\ & 6.6=I \times 5500 \\ & I=0.0012 \mathrm{~A} \end{aligned}$ $\begin{aligned} & \mathrm{V}=\mathrm{IR} \\ & 2.4=0.0012 \times \mathrm{R} \\ & \mathrm{R}=2000 \Omega \end{aligned}$	4	
16		D (1)	1	
17	(a)	Thermistor (1)	1	
	(b)	as temperature drops, voltage across thermistor rises or resistance of thermistor rises (1) when voltage goes above certain level MOSFET switches on (1) relay switch closes (and heater circuit is completed) (1)	3	
	(c)	to set the temperature at which the heater is switched on (1)	1	

ELECTRICAL POWER

1		D			1	
2		A			1	
3		$\begin{align*} \mathrm{P} & =\mathrm{I}^{2} \mathrm{R} \tag{1}\\ & =\left(200 \times 10^{-3}\right)^{2} \times 20 \tag{1}\\ & =0.8 \mathrm{~W} \tag{1} \end{align*}$			3	deduct (1) for wrong/missing unit Watch for unit conversion errors - penalise unit error only once
4	(a)	Use Ohm's Law twice. Once to calculate the current, then once to find V_{R}. $\begin{align*} & V=I R \\ & 0.36=I \times 2000 \tag{1} \end{align*}$ (1) for both equations (1) for both substitutions $\mathrm{I}=0.00018(\mathrm{~A})$ $\begin{aligned} & \mathrm{V}=\mathrm{I} \mathrm{R} \\ & =0.00018 \times 4800 \\ & =8.64 \mathrm{~V} \end{aligned}$ (1) for final answer			3	$\begin{align*} & \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \tag{1}\\ & \frac{\mathrm{~V}_{1}}{0.36}=\frac{48000}{2000} \\ & \mathrm{~V}_{2}=8.64 \mathrm{~V} \tag{1} \end{align*}$
	(b)	$\begin{align*} & \mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \tag{1}\\ & 3=\frac{\mathrm{V}^{2}}{48} \tag{1}\\ & \mathrm{~V}^{2}=144 \\ & \mathrm{~V}=12 \mathrm{~V} \tag{1} \end{align*}$			3	Do NOT accept $\mathrm{V}^{2}=144=12 \mathrm{~V}$ (max 1 mark)
5		Method 1 $\begin{align*} & t=1 / 250=0.004(\mathrm{~s}) \tag{1}\\ & E=P \mathrm{t} \tag{1}\\ & 60 \times 10^{-3}=P \times 0.004 \tag{1}\\ & P=15 \mathrm{~W} \tag{1} \end{align*}$ Method 2 $\begin{equation*} \mathrm{E}_{\text {Total }}=250 \times 60 \times 10^{-3}(\mathrm{~J}) \tag{1} \end{equation*}$ $\begin{align*} & \mathrm{E}=\mathrm{Pt} \tag{1}\\ & 15=\mathrm{P} \times 1 \tag{1} \end{align*}$ $\begin{equation*} \mathrm{P}=15 \mathrm{~W} \tag{1} \end{equation*}$			4	If correct time correctly calculated or stated award (1) mark (this may appear anywhere in the answer). - If time is stated or calculated wrongly and no calculation shown then (1) mark maximum for the power equation. - If calculation for the time / energy is shown and calculation contains an arithmetic error then deduct (1) mark
6		C			1	
7		B			1	
8		D			1	
9		$\begin{array}{rlrl} \mathrm{R} & =\mathrm{V}^{2} / \mathrm{P} & (1) & \mathrm{V}=230 \mathrm{~V}(1) \\ & =230^{2} / 25 & (1) & \\ & =2116 \Omega(1) & \\ \hline \end{array}$			3	Sf range: 200021002120
10		$\begin{align*} & \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \\ & 2=\mathrm{I}^{2} \times 50 \\ & \mathrm{I}^{2}=0.04 \\ & \mathrm{I}=0.2 \mathrm{~A} \tag{1}\\ & \hline \end{align*}$			3	

SPECIFIC HEAT CAPACITY

1		$\begin{aligned} \mathrm{c} & =4180\left(\mathrm{~J} \mathrm{Kg}^{-1} \mathrm{C}^{-1}\right) \\ \mathrm{E}_{\mathrm{h}} & =\mathrm{cm} \mathrm{\Delta T} \\ & =4180 \times 1.6 \times 80 \\ & =535040 \mathrm{~J} \end{aligned}$	(1) (1) (1) (1)		4	(1) data mark for correct selection of \mathbf{c} from 'Specific heat capacity of materials' table. If any other value from this table is used, then lose data mark but can still get (3) marks max if rest of calculation is correctly executed using this value. If any value of \boldsymbol{c} used not from this table (including 4200) then only (1) max possible for correct selection of relationship. No s.f. issue (exact answer)
2		$\begin{aligned} \text { Eh } & =\mathrm{cm} \Delta \mathrm{~T} \\ & =4320 \times 82 \times 125(1) \\ & =44280000 \mathrm{~J} \end{aligned}$	(1) (1)		3	Must use value for c given in question, otherwise (1) mark max for equation sig. fig. range $1-4$ 4000000044000000 $44300000 \quad 44280000$
3	$\begin{array}{\|l} \hline \begin{array}{l} \text { (a) } \\ \text { (i) } \end{array} \\ \hline \end{array}$	$(33-21)=12^{\circ} \mathrm{C}$			1	
	(ii)	$(120,000-12,000)=108,0$			1	
	(iii)	$\begin{aligned} & \mathrm{E}_{\mathrm{h}}=\mathrm{cm} \Delta \mathrm{~T} \\ & 108,000=\mathrm{c} \times 2.0 \times 12 \\ & \mathrm{c}=4,500 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$		3	Must be consistent with parts (i) + (ii)
	(b) (i)	Measured value of \square too 1 (1) Heat lost to surroundings (or OR water not evenly heated	OR $\Delta \mathrm{T}$ to milar) * similar) \dagger		2	*to air, from water, from equipment etc \dagger or immersion heater not fully immersed Explanation must be offered
	(ii)	Insulate beaker OR Put lid on beaker OR Stir water OR Fully immerse heater			1	
	(c)	$\begin{align*} & \mathrm{E}=\mathrm{Pt} \\ & 108,000=\mathrm{P} \times(5 \times 60) \tag{1}\\ & \mathrm{P}=360 \mathrm{~W} \end{align*}$	(1) (1)		3	If no conversions answer is 21,600 . Also accept 22,000, Max (2) must be consistent with (a) (ii) or wrong physics
4		D			1	

GAS LAWS AND THE KINETIC MODEL										
1		C (1)							1	
2		B (1)							1	
3		C (1)							1	
4		A (1)							1	
5		A (1)							1	
6		D (1)							1	
7	(a)	$\begin{align*} \mathrm{P} & =\mathrm{F} / \mathrm{A} \tag{1}\\ 1.01 \times 10^{5} & =262 / \mathrm{A} \tag{1}\\ \mathrm{~A} & =2.59 \times 10^{-3} \mathrm{~m}^{2} \tag{1} \end{align*}$							3	
	(b)	```Volume increases/expands/gets bigger because P decreases P \(\alpha 1 / \mathrm{V}\) \(\mathrm{PV}=\) const.None```							1	Look for this first
8	(a)	$\begin{align*} & P 1 V 1=P 2 V 2 \tag{1}\\ & 1.01 \times 10^{5} \times 200=P 2 \times 250 \tag{1}\\ & P 2=8.1 \times 10^{4} \mathrm{~Pa} \tag{1} \end{align*}$							3	```Accept: \(\mathrm{P}_{2}=8,8 \cdot 1,8 \cdot 08,8 \cdot 080 \times 10^{4} \mathrm{~Pa}\) OR \(80000,81000,80800 \mathrm{~Pa}\)```
	(b)	Number of collisions on walls of jar is less frequent/less often (1)							4	Must have atoms/molecules/particles colliding with the (container) walls before any marks can be given For 'particles' accept 'molecules' Must be frequency, not just "less collisions" Any mention of Ek or speed of particles changing - max $1 / 2$ mark
9	(a)	P / T 347 347 346 348 348 (1) for all data Pressure and temperature are directly proportional when T is in Kelvin. OR $\begin{equation*} \mathrm{P} / \mathrm{T}=347 \text { or "constant" } \tag{1} \end{equation*}$							2	
	(b)	As temperature increases, Ek of gas molecules/particles increases (1) (or molecules travel faster) and hit/collide with the walls of the container more often/frequently OR with greater force (1) pressure increases (1)							3	Must be Ek, not just "energy". Must have atoms/molecules/particles colliding with the (container) walls somewhere in the answer before any of last 2 marks can be awarded
		To ensure all the gas in the flask is heated evenly OR all the gas is at the same temperature							3	

$\mathbf{1 0}$	(a) (i)	$\mathrm{P} \times \mathrm{V}=2000$ 1995 2002 2001 (1) $\mathrm{P} \times \mathrm{V}=$ constant (1) or $\times \mathrm{V}=2000$ or $\mathrm{P} 1 \mathrm{~V} 1=\mathrm{P} 2 \mathrm{~V} 2$ or $\mathrm{P}=\mathrm{k} / \mathrm{V}$	2	All 4 values needed

VARIOUS					
1	(a)	$\begin{aligned} I & =\frac{P}{V} \\ & =\frac{60}{230} \\ & =0 \cdot 26 \mathrm{~A} \end{aligned}$	(1) (1) (1)	3	Sig. fig. Range: $0 \cdot 3,0 \cdot 26,0.261$
	(b) (i)	$\begin{aligned} & \frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\ & \frac{1}{R_{\mathrm{T}}}=\frac{1}{46}+\frac{1}{92} \\ & R_{\mathrm{T}}=30.67 \Omega \end{aligned}$	(1) (1) (1)	3	OR $\begin{aligned} R_{\mathrm{T}} & =\frac{R_{1} R_{2}}{R_{1}+R_{2}} \\ & =\frac{46 \times 92}{46+92} \\ R_{\mathrm{T}} & =30.67 \Omega \end{aligned}$ If wrong equation used eg $R_{\mathrm{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ then zero marks Accept imprecise working towards a final answer. $\frac{1}{R_{\mathrm{T}}}=\frac{1}{46}+\frac{1}{92}=30 \cdot 67 \Omega$ \uparrow accept Sig. fig. Range: 30, 31, 30.7, $30 \cdot 67$ If answer left as $302 / 3$ then (-1) (sig fig error) If intermediate rounding of $1 / 46$ and $1 / 92$ then deduct (1) for arith error.

2	(a)	$\begin{aligned} I & =\frac{V}{R} \\ & =\frac{12}{64000} \\ & =1.875 \times 10^{-4}(\mathrm{~A}) \end{aligned}$ THEN $\begin{aligned} V & =I R \\ & =1.875 \times 10^{-4} \times 4000 \\ & =0.75 \mathrm{~V} \end{aligned}$ Award (1) for both formulae Award (1) mark for all substitutions correct Award (1) mark for final answer	3	Alternatives: $\begin{aligned} V_{1} & =\frac{R_{1}}{R_{1}+R_{2}} \times V_{\mathrm{S}} \\ & =\frac{4000}{4000+60000} \times 12 \\ & =0.75 \mathrm{~V} \end{aligned}$ OR $\begin{aligned} & \frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}} \\ & \frac{12}{V_{2}}=\frac{64000}{4000} \\ & V_{2}=0.75 \mathrm{~V}(1) \end{aligned}$ Only accept this method if the substitutions are for: the supply voltage, the total resistance, and the resistance of the LDR. Award zero marks if this relationship is stated alone or implied by any other substitutions $\operatorname{eg} \frac{12}{V_{2}}=\frac{60000}{4000}$
	(b)	Transistor (switch)	1	Ignore any reference to pnp or npn NOT: - Phototransistor - MOSFET transistor - Switch alone
	(c)	- R of LDR increases - V across LDR increases (above 0.7V) - Transistor switches ON - Relay coil is energised (which closes the relay switch and activates the motor)	2	All 4 bullet points needed for (2) Must clearly identify: - the resistance of LDR increasing - the voltage across LDR increasing - transistor on - relay coil operates/is switched on/ - activated/magnetised

5	(a)		1	Must have connecting wires at both ends. accept: - no line through middle - arrows could be either side - accept black (fill) triangle
	(b)	Protect the LED OR prevent damage to the LED OR limits the current OR reduces voltage across LED	1	(1) for a correct answer. Not: - 'voltage through/current across LED.' - To reduce voltage alone - To stop LED 'blowing'. - To reduce charge/power to LED - To prevent LED overheating
	(c)	$\begin{align*} \mathrm{V}_{\mathrm{R}} & =6-1 \cdot 2=4 \cdot 8 \mathrm{~V} \tag{1}\\ \mathrm{~V} & =\mathrm{IR} \tag{1}\\ 4 \cdot 8 & =15 \times 10-3 \times R \tag{1}\\ R & =320 \Omega \tag{1} \end{align*}$	4	If error can be seen in subtraction to get V_{R} then can still get (3) marks If no subtraction and 6 V or $1 \cdot 2$ V used in calculation for R then (1) MAX for equation. Deduct (1) for wrong/missing unit This can also be answered using voltage divider method.
6	(a)	$\begin{align*} \mathrm{E} & =\mathrm{Pt} \tag{1}\\ & =1500 \times 35 \tag{1}\\ & =52500 \mathrm{~J} \tag{1} \end{align*}$	3	Deduct (1) for wrong/missing unit Watch for unit conversion errors penalise unit error only once
	(b)	$\begin{align*} \mathrm{E} & =c m \Delta T \tag{1}\\ 52500 & =902 \times m \times(200-24) \tag{1}\\ m & =0.33 \mathrm{~kg} \tag{1} \end{align*}$	1	Must use value for Energy from 6(a) OR correct value. Must use value for c given in question or else (1) max for eqn Deduct (1) for wrong/missing unit Sig fig range: $0.3,0.33,0.331,0.3307$
	(c)	Heat is - Lost OR - Radiated OR - escapes OR from the sole plate	1	Accept: - Heat is lost/radiated/ escapes to the surroundings - Some of the heat (energy) is used to heat other parts of the iron The explanation should indicate that heat is lost from/to... eg - power rating of iron is incorrect - inaccurate temperature readings etc.

7	(a)	$\begin{align*} \mathrm{E}_{\mathrm{p}} & =\mathrm{mgh} \tag{1}\\ & =0.50 \times 9.8 \times 19.3 \tag{1}\\ & =95 \mathrm{~J} \tag{1} \end{align*}$	3	
	(b)	$\begin{align*} & \hline \mathrm{E}_{\mathrm{c}}=\mathrm{cm} \Delta \mathrm{~T} \tag{1}\\ & 95=386 \times 0.50 \times \Delta \mathrm{T} \tag{1}\\ & \Delta \mathrm{~T}=0.5^{\circ} \mathrm{C} \tag{1} \end{align*}$	3	E_{h} must be consistent with (a). If any other value of 'c' used, only (1) for formula.
	(c) (i)	Less than.	1	If 'less than' is on its own $=0$ marks. 'Less than' plus wrong explanation = 1 mark.
	(ii)	Some heat is lost to surroundings/ or equivalent.	1	'Heat loss to' must be qualified. Qualified sound loss OK eg on hitting the ground
8	(a)		3	Must draw battery, not single cell.
	(b)	$\begin{align*} & V=I R \tag{1}\\ & 5.7=0.60 \times R \tag{1}\\ & R=9.5 \Omega \tag{1} \end{align*}$	3	
	(c) (i)	No	1	
	(ii)	In parallel the voltage is still the same/6V across each resistor so power is the same	1	
9	(a)	MOSFET	1	Transistor on its own $=0$ Correct spelling required
	(b)	(Voltage) falls/decreases	1	Or equivalent Arrows not allowed

10	(a)		1	Must have all labels correctly positioned. (1) or (0) only
	(b)	$\begin{align*} \mathrm{Vr} & =\mathrm{Vs}-\mathrm{Vmotor} \\ & =24=18 \\ & =6(\mathrm{~V}) \tag{1}\\ \mathrm{Vr} & =\mathrm{IR} \tag{1}\\ 6 & =\mathrm{Ix} 2.1 \tag{1}\\ \mathrm{I} & =2.9 \mathrm{~A} \tag{1} \end{align*}$	4	If arithmetic error can be seen in subtraction to get VR then deduct (1) mark. Candidate can still get next (3) marks. If no subtraction and 24 V or 18 V used in calculation for V then (1) MAX for equation. Deduct (1) for wrong/missing unit $\mathrm{V}=\mathrm{I} \times \mathrm{R}$ sig. fig. range: $1-4$ $3 \mathrm{~A}, 2 \cdot 9 \mathrm{~A}, 2 \cdot 86 \mathrm{~A}, 2 \cdot 857 \mathrm{~A}$
	(c)	$\begin{align*} \mathrm{Q} & =\mathrm{I} \times \mathrm{t} \tag{1}\\ & =3.2 \times(10 \times 60 \times 60) \tag{1}\\ & =115200 \mathrm{C} \tag{1} \end{align*}$	3	Accept: 100000C, 120000 C , $115000 \mathrm{C}, 115200 \mathrm{C}$. If wrong or no conversion into seconds then deduct (1) mark.
	(d)	Accept - Change the polarity of the battery - Swap over the connections to the motor - Change the direction of the current - Reverse current - Swap battery terminals	1	Do not accept - "swap battery" alone. - Turn the battery around alone. - Swap the battery around alone. - Any answers relating to magnetic field (not relevant to this question) If > one answer apply \pm rule.
11	(a)	Parallel	1	Only answer ignore spelling
	(b)	$\begin{align*} & \mathrm{P}=\mathrm{IV} \tag{1}\\ & 300=\mathrm{I} \times 230 \tag{1}\\ & \mathrm{I} \quad=1.3 \mathrm{~A} \tag{1}\\ & \mathrm{OR} \\ & \mathrm{P}=\mathrm{IV} \tag{1}\\ & 900=\mathrm{I} \times 230 \\ & \mathrm{I} \quad=3.9 \mathrm{~A} \end{align*}$ Current in one mat $=3.9 / 3$ $\begin{equation*} \mathrm{I}=1.3 \mathrm{~A} \tag{1} \end{equation*}$	3	$\begin{aligned} & \text { sig. fig. range: } 1-3 \\ & 1 \mathrm{~A} \\ & 1 \cdot 3 \mathrm{~A} \\ & 1 \cdot 30 \mathrm{~A} \end{aligned}$
	(c)	$\begin{align*} & \mathrm{P} \text { total }=3 \times 300 \mathrm{~W}=900 \mathrm{~W} \tag{1}\\ & \mathrm{P}=\mathrm{V}^{2} / \mathrm{R} \tag{1}\\ & 900=230^{2} / \mathrm{R} \tag{1}\\ & \mathrm{R}=59 \Omega \tag{1}\\ & \mathrm{Or} \\ & \mathrm{I}_{\text {total }}=3 \times 1.3=3.9 \mathrm{~A} \tag{1}\\ & \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \tag{1}\\ & 900=3.9^{2} \times \mathrm{R} \tag{1}\\ & \mathrm{R}=59 \Omega \tag{1}\\ & \hline \end{align*}$	4	sig. fig. 1-3 range: 60Ω 59Ω 58.8Ω sig. fig. 1-3 range: $60 \Omega, 59 \Omega, 59 \cdot 2 \Omega$

12	(a) (i)	Lamp A	1	
	(ii)	It has the lowest resistance/highest current/greatest power	1	one of three
	(b)	$\begin{align*} \mathrm{P} & =\mathrm{V}^{2} / \mathrm{R} \tag{1}\\ & =24^{2} / 2 \cdot 5 \tag{1}\\ & =230 \mathrm{~W} \tag{1} \end{align*}$	3	
	(c)		1	
	(d) (i)	12 V	1	unit required
	(ii)	$\begin{align*} 1 / \mathrm{Rp} & =1 / \mathrm{R} 1+1 / \mathrm{R} 2 \\ & =1 / 8+1 / 24 \tag{1}\\ \mathrm{Rp} & =6 \Omega \tag{1} \end{align*}$	3	
	(e) (i)	The motor speed will reduce	1	
	(ii)	The (combined) resistance (of the circuit) is now higher/current is lower. Voltage across motor is less Motor has less power	1	any one of four
13	(a) (i)	X = (NPN) transistor	1	0 marks for MOSFET or PNP transistor
	(ii)	To act as a switch	1	To turn on the buzzer 0 marks To operate the buzzer 0 marks
	(b)	Resistance of LDR reduces so voltage across LDR reduces Voltage across variable resistor/R increases When voltage across variable resistor/R reaches (0.7 V) transistor switches buzzer on.	3	Accept 'when voltage is high enough'
	(c)	80 units: resistance of LDR $=2500(\Omega)$Total resistance $=2500+570$$\quad=3070(\Omega)$I--- $=5 / 3$$=1.63 \times 10^{-3} \mathrm{~A}$ or $1.63 \mathrm{~mA}(1)$	4	$\begin{aligned} & 1.6 \mathrm{~mA} \\ & 1.63 \mathrm{~mA} \\ & 1.629 \mathrm{~mA} \end{aligned}$
	(d)	The variable resistor is to set the light level at which the transistor will switch on or to set the level at which the buzzer will sound	1	

