

Exam Questions

	CONSERVATION OF ENERGY				
1		$E_{p} = m g h \tag{1}$		Sf, accept	
		$= 25 \times 9.8 \times 1.2 \tag{1}$		300, 294	
		= 290 J (1)	3		
2		C	1		
3		$\mathbf{E}_{\mathbf{k}} = \frac{1}{2} \mathbf{m} \mathbf{v}^2 \tag{1}$			
		$= 0.5 \text{ x } 1.5 \text{ x } 10^2 (1)$			
		= 75J	3		
4		$E_{\rm P} = m g h \tag{1}$			
		$=8000\times10\times500\qquad(1)$			
		$= 40\ 000\ 000\ J$			
		$= 40 \text{ MJ} \tag{1}$	3		
5	(a)	$E_p = mgh \tag{1}$			
		$E_p = 750 \times 10 \times 7.2 (1)$			
		$E_p = 54000 \text{ J}$ (1)	3		
	(b)	54000 J (1)	1		
	(i)				
	(b)	$E_{\rm K} = \frac{1}{2} \mathrm{mv}^2 \tag{1}$			
	(ii)	$54000 = 0.5 \times 750 \times v^2 (1)$			
		$v = 12 \text{ ms}^{-1}$ (1)	3		
6	(a)	$\mathbf{E}_{\mathbf{p}} = \mathbf{m} \mathbf{g} \mathbf{h} \tag{1}$			
		$=90\times10\times3(1)$			
		$= 2\ 700\ J$ (1)	3		
	(b)	$E_k = \frac{1}{2} m v^2$ (1)			
		$= \frac{1}{2} \times 90 \times 82 (1)$			
		= 2 880 J (1)	3		
	(c)	Extra energy has been supplied (1)			
		by (the work done) pedalling (1)	2		

	ELECTRIC CHARGE CARRIERS AND ELECTRIC FIELDS				
1		<pre>dc - electrons* flow around a circuit in one direction only (1) ac - electrons'* direction changes/reverses after a set time (1) *Accept 'current'</pre>	2		
2		E	1		
3		D	1		
4		D	1		
5		$Q = It (1) I = 1650/0.15 (1) = 1 \cdot 1 \times 10^4 A (1)$	3		
6		D (1)	1		
7		C (1)	1		
8		in d.c. electrons/charges move in one direction only (1) in a.c. direction of movement of electrons/charges continually reverses (1)	2		

POTENTIAL DIFFERENCE (VOLTAGE)				
1		A (1)	1	
2		C (1)	1	

		OHM'S LAW		
1		В	1	
2	(a)	R tot = $15 + 25 = 40 \Omega(1)$		
		$\mathbf{V} = \mathbf{I} \mathbf{R} (1)$		
		$20 = 1 \times 40(1)$	4	
	(b)	$I = 0.5 \text{ A}(I)$ $V = I P \qquad (1)$	4	
	(0)	V = 1 K (1) = 0.5 × 15 (1)		
		$= 7.5 \text{ V} \qquad (1)$	3	
	(c)	+ $20 V$ $ -$		
			2	
3	(a)	I = 0.075 A (1)		
		$\mathbf{V} = \mathbf{I}\mathbf{R} \tag{1}$		
		$4 \cdot 2 = 0 \cdot 0/5 \times \mathbf{R}$ (1)	4	
	(b)	$R = 56 \Omega $ (1)	4	
	(0)			
		$\frac{100}{0.023} = 56.5 \qquad \frac{500}{0.064} = 56.25 \tag{1}$		
		or as the voltage increases the current increases by the		
		same ratio or because it's a straight line through the origin	2	

	PRACTICAL ELECTRICAL AND ELECTRONIC CIRCUITS					
1	(a)	$\frac{1}{R_{\rm T}} = \frac{1}{R_{\rm 1}} + \frac{1}{R_{\rm 2}} $ (1)		Accept 1 Ω, 1·33 Ω, 1·333 Ω		
		$= \frac{1}{4} + \frac{1}{2} $ (1)				
		$\therefore R_{\rm T} = 1.3 \Omega \tag{1}$	3			
	(b)	$RT = R1 + R2 (1) = 1 \cdot 3 + 6 (1)$		Consistent with (a) (1) 2 Accept $7 \cdot 3 \Omega$, $7 \cdot 33 \Omega$, $7 \cdot 333 \Omega$		
		$= 7 \cdot 3 \Omega \tag{1}$	3			
	(c)	(Voltage across 2 Ω resistor = Voltage across 4 Ω resistor) $V = IR$ $= 0.1 \times 4$ (or 0.2×2) $= 0.4 V$	3	(2) max, if divide final answer by 2		
2			1			
2			1			
4		D (1)	1			
5		A (1)	1			
6	(a)	Transistor (switch)	1	Ignore any prefix (eg bipolar, NPN, PNP)		
	(b)	 (As temp increases,) input voltage to transistor increases (above 0.7V) switching transistor on Current in the (relay) coil (producing magnetic field). (Relay) switch closes / activates, (completing the bell circuit/ operating the bell). 	2	First bullet point may refer to voltage (output) from thermocouple or amplifier increasing but do not accept 'voltage' alone. Do not accept: 'transistor is saturated'		
	(c)	$\frac{1}{R_{t}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} $ (1) $\frac{1}{R_{t}} = \frac{1}{16} + \frac{1}{16} $ (1) $Rt = 8 \Omega $ (1)	3	If wrong equation used eg $R_t = \frac{1}{4} + \frac{1}{4}$ $R_1 R_2$ then zero marks Accept <i>imprecise</i> working towards a final answer $\frac{1}{4} = \frac{1}{4} + \frac{1}{4} = 8 \Omega$ $R_t 16 16$ Accept Deduct (1) for wrong/missing unit Can be answered by applying product over sum method Can be answered using 'identical value' parallel resistors method: $R = \underline{value \ for \ single \ resistor}$ total no. of Rs in parallel		

7		A (1)		
8		A (1)	1	
9		C (1)	1	
10		C (1)	1	
11		B (1)		
12		B (1)		
13		D (1)		
14		D (1)		
15	(a)			
		NPN (1) MOSFET (1)		
	(b)	(electronic) switch		
	(c)	(electronic) switch voltage across $5 \cdot 5 \text{ k}\Omega$ resistor = 9 - 2 · 4 = 6 · 6 V (1) $\frac{V_1 = R_1}{V_2 = R_2}$ (1) $\frac{2.4}{6.6} = \frac{R_1}{5500}$ (1) $R_1 = 2000\Omega$ (1) OR voltage across $5 \cdot 5 \text{ k}\Omega$ resistor = 9 - 2 · 4 = 6 · 6 V V = IR $6.6 = I \times 5500$ I = 0.0012A V = IR 2.4 = 0.0012 = B		
16		D (1)	1	
17	(a)	Thermistor (1)	1	
	(b)	as temperature drops, voltage across thermistor rises or resistance of thermistor rises (1) when voltage goes above certain level MOSFET switches on (1) relay switch closes (and heater circuit is completed) (1)		
	(c)	to set the temperature at which the heater is switched on (1)		

ELECTRICAL POWER					
1		D	1		
2		А	1		
3		$\mathbf{P} = \mathbf{I}^2 \mathbf{R} \tag{1}$		deduct (1) for wrong/missing unit	
		$= (200 \times 10^{-3})^2 \times 20 (1)$		Watch for unit conversion errors	
		$= 0 \cdot 8 \mathbf{W} \tag{1}$	3	 penalise unit error only once 	
4	(a)	Use Ohm's Law twice. Once to calculate the current, then once to find V_R . V = I R (1) for both equations $0.36 = I \times 2000$ (1) for both substitutions I = 0.00018 (A) V = I R $= 0.00018 \times 4800$ = 8.64 V (1) for final answer	3	$\frac{V_1}{V_2} = \frac{R_1}{R_2}$ (1) $\frac{V_1}{0.36} = \frac{48000}{2000}$ (1) $V_2 = 8 \cdot 64 \text{ V}$ (1)	
	(b)	$P = \frac{V^{2}}{R}$ (1) $3 = \frac{V^{2}}{48}$ (1) $V^{2} = 144$ V = 12 V (1)	3	Do NOT accept V ² =144 = 12V (max 1 mark)	
5		$ \begin{array}{ll} \mbox{Method 1} & & & & \\ t = 1/250 = 0.004(s) & & (1) & \\ \mbox{E} = P t & & (1) & \\ 60 \ x \ 10^{-3} = P \ x \ 0.004 & & (1) & \\ \mbox{P} = 15 \ W & & (1) & \\ \mbox{Method 2} & & \\ \mbox{E}_{Total} = 250 \times 60 \times 10^{-3} \ (J) & (1) & \\ \mbox{E} = P \ t & & (1) & \\ \mbox{15} & \mbox{P} = 1 & & (1) & \\ \mbox{15} & \mbox{P} = 1 & & (1) & \\ \mbox{15} & \mbox{P} = 1 & & (1) & \\ \mbox{15} & \mbox{P} = 1 & & (1) & \\ \mbox{15} & \mbox{16} & \mbox{16} & \mbox{17} & \mbox{17} & \mbox{17} & \mbox{17} & \mbox{18} & \mbox{18} & \mbox{18} & \mbox{18} & \mbox{19} & \mbox{19} & \mbox{19} & \mbox{19} & \mbox{10} & \mbox{10} & \mbox{11} & \mbox{12} & \mbox{12} & \mbox{11} & \mbox{12} & \mb$		 If correct time correctly calculated or stated award (1) mark (this may appear anywhere in the answer). If time is stated or calculated wrongly and no calculation shown then (1) mark maximum for the power equation. If calculation for the time / energy is shown and calculation contains an arithmetic error then deduct (1) mark 	
		$15 = P \times I \tag{1}$	4		
6		$\frac{r = 13 \text{ W}}{C}$	4		
7		D D	1		
0			1		
8			1		
9		$ \begin{array}{ccc} R = V^2/P & (1) & V = 230V (1) \\ = 230^2/25 & (1) \\ = 2116 \Omega & (1) \\ \end{array} $	3	St range: 2000 2100 2120	
10		$P = I^{2} R (1)$ $2 = I^{2} \times 50 (1)$ $I^{2} = 0.04$ I = 0.2 A (1)	3		

	SPECIFIC HEAT CAPACITY					
1		$c = 4180 (J \text{ Kg}^{-1} \text{ C}^{-1}) $ (1) $E_{h} = c \text{ m} \Delta T $ (1) = 4180 x 1.6 x 80 (1) = 535040 J (1)	4	 (1) data mark for correct selection of c from 'Specific heat capacity of materials' table. If any other value from this table is used, then lose data mark but can still get (3) marks max if rest of calculation is correctly executed using this value. If any value of c used not from this table (including 4200) then only (1) max possible for correct selection of relationship. No s.f. issue (exact answer) 		
2		$Eh = cm\Delta T $ (1) = 4320 x 82 x 125 (1) = 44 280 000 J (1)	3	Must use value for c given in question, otherwise (1) mark max for equation sig. fig. range 1–4 40 000 000 44 000 000 44 300 000 44 280 000		
3	(a) (i)	$(33-21) = 12 \ ^{\circ}\text{C}$	1			
	(ii)	(120,000-12,000) = 108,000 J	1			
	(iii)	$E_{h} = cm\Delta T $ (1) 108,000 = c x 2.0 x 12 (1) c = 4,500 J kg ⁻¹ °C ⁻¹ (1)	3	Must be consistent with parts (i) + (ii)		
	(b) (i)	Measured value of □ □ too large OR ΔT too small (1)(1)Heat lost to surroundings (or similar) * OR water not evenly heated (or similar) †(1)	2	 *to air, from water, from equipment etc † or immersion heater not fully immersed Explanation must be offered 		
	(ii)	Insulate beaker OR Put lid on beaker OR Stir water OR Fully immerse heater	1			
	(c)	E = P t (1) 108,000 = P x (5 x 60) (1) P = 360 W (1)	3	If no conversions answer is 21,600. Also accept 22,000, Max (2) must be consistent with (a) (ii) or wrong physics		
4		D	1			

_	$\langle \rangle$			
5	(a)	$E_h = cm\Delta T \tag{1}$		
		2.39×10	2	
	c = 00x[(307-(-173)]](1) = 899 J/kg°C (1)		3	
		$= 899 \text{ J/kg}^{\circ}\text{C} \qquad (1)$		
	(b)	$P = E/t \tag{1}$		
		$t = 2.50 \times 10^{7}/1440$ (1)		
		= 18000 s (1)	3	
	(c)	288000/1440 (1)		
		= 200 (rocks) (1)	2	
6	(a)	$E_{\rm H} = c \ m \ \Delta T \tag{1}$		
		$=2100 \times 0.6 \times 36$ (1)		
	(1)	= 45360 J (1)	3	
	(b)	$E_{\rm H} = 1 \mathrm{m}$ (1)		
		$=2.34 \times 10^{-5} \times 0.6$ (1)		
		$= 140\ 400\ J$ (3)	3	
	(c)	total $E_{\rm H} = 45\ 360 + 140\ 400$		
	(1)	= 185760 J(1)		
		$\mathbf{E} = \mathbf{P} \mathbf{t} (\mathbf{I})$		
	$185\ 760 = 120\ t (1)$			
		t = 1548 s(1)	4	
	(c)	No heat (energy) enters the ice cream (1)	1	
-	(11)			
7	(a)	$E_{\rm H} = c m \Delta T \qquad (1)$		
		$=4180 \times 15 \times 6$ (1)	2	
	(1)	$E_{\rm H} = 3/6200 {\rm J}$ (1)	3	
	(b)	$E_{\rm H} = c \mathrm{m} \Delta \mathrm{I} \tag{1}$		
		$3/6200 = 480 \times 0.75 \times \Delta 1 (1)$		
		$\Delta I = 1045 (°C) $ (1)		
		1045 ± 22		
		$= 1043 + 23$ $= 1068 {}^{\circ}{}^{\circ}{}^{\circ}{}^{\circ}$ (1)	4	
	(2)	$= 1008 \text{ C} \tag{1}$	4	
	(0)	OP no host lost to surroundings (1)		
		OR no neat lost to surroundings (1)	1	
	(4)	OK no steam created	1	
	(u)			
		value of class		
		OR less heat required per degree temperature rise		
		OR greater temperature rise for same energy input (1)		
		Note: first mark only available if explanation attempted		
8	(a)	$F_{\rm H} = c m \Delta T$ (1)		
	(4)	$E_{\rm rr} = 4180 \times 10 \times 80$ (1)		
		$F_{\rm H} = 3.34 \times 106 {\rm J}$ (1)	3	
	(b)	$E = P t \qquad (1)$		
		$3.34 \times 106 = 2.5 \times 103 \times t$ (1)		
		t = 1340 s (1)	3	
	(c)	not all $E_{\rm H}$ used to heat water		
		OR		
		$E_{\rm H}$ lost to surroundings (1)	1	

GAS LAWS AND THE KINETIC MODEL				
1		C (1)	1	
2		B (1)	1	
3		C (1)	1	
4		A (1)	1	
5		A (1)	1	
6		D (1)	1	
7	(a)	$P = F/A (1) 1.01 \times 10^5 = 262/A (1) A = 2.59 \times 10^{-3} m^2 (1)$	3	
	(b)	Volume increases/expands/gets bigger because P decreases P α 1/V PV = const. (1)	1	Look for this first
8	(a)	$P1V1 = P2V2 (1) 1 \cdot 01 \times 10^5 \times 200 = P2 \times 250 (1) P2 = 8 \cdot 1 \times 10^4 Pa (1)$	3	Accept: $P_2 = 8, 8.1, 8.08, 8.080 \times 10^4 Pa$ OR 80 000, 81 000, 80 800 Pa
	(b)	Number of collisions on walls of jar is less frequent/less often (1) Average force (on walls) decreases (1) Pressure on walls of jar decreases (1)	4	Must have atoms/molecules/particles colliding with the (container) walls before any marks can be given For 'particles' accept 'molecules' Must be frequency, not just "less collisions" Any mention of Ek or speed of particles changing – max ½ mark
9	(a)	P/T347347346348348(1) for all dataPressure and temperature are directly proportional whenT is in Kelvin.ORP/T = 347 or "constant" (1)	2	
	(b)	As temperature increases, Ek of gas molecules/particles increases (1) (or molecules travel faster) and hit/collide with the walls of the container more often/frequently OR with greater force (1) pressure increases (1) To ensure all the gas in the flack is boated evenly	3	Must be Ek, not just "energy". Must have atoms/molecules/particles colliding with the (container) walls somewhere in the answer before any of last 2 marks can be awarded
		OR		
		all the gas is at the same temperature (1)	3	

10	(a) (i)	$P \times V = 2000 \ 1995 \ 2002 \ 2001 \ (1)$ $P \times V = \text{constant} \ (1)$ or $P \times V = 2000$ or $P1V1 = P2V2$ or $P = k/V$		All 4 values needed
	(a) (ii)	Gas molecules collide with walls of container more often (1) so (average) force increases (1) pressure increases (1)		Must have atoms/molecules/ particles colliding with the (container) walls somewhere in the answer before any marks can be awarded pressure constant or decrease gets 0 molecules increasing or 'harder collisions' is WP so gets zero
	(b)	(As diver ascends) pressure decreases(1)volume of air in lungs will increase(1)(or pressure difference increases)(1)so lungs may become damaged(1)	3	
11		$ \frac{\underline{P}_{1}}{T_{1}} = \underline{P}_{2} \qquad (1) $ $ \frac{\underline{2.8 \times 10^{6}}}{(19 + 273)} = \underline{P}_{2} \qquad (1) $ $ \frac{\underline{P}_{2}}{(5 + 273)} \qquad (1) $ $ \underline{P}_{2} = 2.68 \times 10^{6} Pa \qquad (1) $	3	

			VARIOUS		
1	(a)	$I = \frac{P}{V}$ $= \frac{60}{230}$	(1) (1)		Sig. fig. Range: 0·3, 0·26, 0·261
		= 0.26 A	(1)	3	
	(b) (i)	$\frac{1}{R_{\rm T}} = \frac{1}{R_{\rm 1}} + \frac{1}{R_{\rm 2}}$ $\frac{1}{R_{\rm T}} = \frac{1}{46} + \frac{1}{92}$ $R_{\rm T} = 30 \cdot 67 \ \Omega$	 (1) (1) (1) 	3	OR $R_{T} = \frac{R_{I}R_{2}}{R_{1} + R_{2}}$ $= \frac{46 \times 92}{46 + 92}$ $R_{T} = 30.67 \Omega$ If wrong equation used eg $R_{T} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$ <i>then zero marks</i> Accept <i>imprecise</i> working towards a final answer. $\frac{1}{R_{T}} = \frac{1}{46} + \frac{1}{92} = 30.67 \Omega$ $\uparrow accept$ Sig. fig. Range: 30, 31, 30.7, 30.67 If answer left as 30 ² / ₃ then (-1) (sig fig error) If intermediate rounding of 1/46 and 1/92 then deduct (1) for arith error.

(ii)	V^2		Must use value for <i>R</i> T from
	$P = \frac{v}{r}$ (1)		3(b)(i) or fresh
	R		start with correct value.
	230^2 (1)		Alternative solution:
	$=\frac{200}{30.67}$ (1)		Alternative solution.
	50.07		
	= 1725 W (1)		$I = \frac{V}{V}$
			R
	Or calculate individual power of each heating		230
	element and add together		$=\frac{1}{20.67}$
		3	= 7.5 (A)
			= 7.5 (A)
			THEN
			P = IV
			- 7 5 × 220
			$= 7.5 \times 230$
			= 1/25 w(1)
			OD
			OK
			$P = I^2 R$
			$= 7.5^2 \times 30.67$
			- 1725 W
			- 1725 W
			Award (1) for both equations
			Award (1) for all substitutions
			Award (1) for final answer
			Tward (1) for finar answer
			$P = 1^{-}R$ Award (1) mark for
			$=7.5^2 \times 30.67$ final answer
			= 1725 W
			If $R = 138 \Omega$ from b(i) then $P =$
			383W
			Sig figs depend on condidates
			Signes depend on candidates
/···			answer to (b) part (1)
(111)	S3 (only)	1	
(A)			
(iii)	Greatest value of resistance/	1	Accept: 'heating element with
(B)	lowest current/lowest power	1	greatest resistance has lowest
. /	1	1	power output/rating
		1	"hecause it has the
		1	biggest/langest resist "
		1	biggest/largest resistance
		1	DO NOT accept "bigger
			resistor"
		1	
			Can only get second mark if S3
		1	selected
		1	sciceicu.

2	(a)			Alternatives
2	(a)	$I = \frac{V}{R}$ = $\frac{12}{64000}$ = 1.875×10^{-4} (A) THEN V = IR = $1.875 \times 10^{-4} \times 4000$ = 0.75 V Award (1) for both formulae Award (1) mark for all substitutions correct Award (1) mark for final answer	3	Alternatives: $V_{1} = \frac{R_{1}}{R_{1} + R_{2}} \times V_{s}$ $= \frac{4000}{4000 + 60000} \times 12$ $= 0.75 \text{ V}$ OR $\frac{V_{1}}{V_{2}} = \frac{R_{1}}{R_{2}}$ $\frac{12}{V_{2}} = \frac{64000}{4000} (1)$ $V_{2} = 0.75 \text{ V} (1)$ Only accept this method if the substitutions are for: the supply voltage, the total resistance, and the resistance of the LDR. Award zero marks if this relationship is stated alone or
	(b) (c)	Transistor (switch) R of LDR increases V across LDR increases 	1	implied by any other substitutions eg $\frac{12}{V_2} = \frac{60000}{4000}$ Ignore any reference to pnp or npn NOT: • Phototransistor • MOSFET transistor • Switch alone All 4 bullet points needed for (2)
		 (above 0.7V) Transistor switches ON Relay coil is energised (which closes the relay switch and activates the motor) 	2	 Must clearly identify: the resistance of LDR increasing the voltage across LDR increasing transistor on relay coil operates/is switched on/ activated/magnetised

3	(a)	To reduce current in	LED			
		OR				
		To reduce voltage ac	ross LED			
		OR				
		To reduce power to I	LED		1	
	(b)	V = 6 - 2 = 4 V	(1)			
		$\mathbf{V} = \mathbf{IR}$	(1)			
		4= 0.1 x R	(1)			
		$R = 40 \Omega$	(1)		4	
	(c)	$\mathbf{P} = \mathbf{I}^2 \mathbf{R}$		$\mathbf{P} = \mathbf{V}^2 / \mathbf{R}$		Must be consistent with (b)
		(1)				
		$= (0 \cdot 1)^2 \times 40$		$=4^{2}/40$		
		(1)				
		$= 0.4 \mathrm{W}$		$= 0.4 \mathrm{W}$		
		(1)			3	
		$\mathbf{P} = \mathbf{IV}$	(1)			
		$= 0 \cdot 1 \times 4$	(1)			
		$= 0.4 \mathrm{W}$	(1)			

4	(a)	P = I V	(1)		Deduct (1) for wrong/missing
	(i)	36 = I x 12	(1)		unit
		I = 3 A	(1)	3	
	(ii)	$48 = 12 + 12 + V_R$			Deduct (1) for wrong/missing
		$V_R = 24 V$	(1)	1	unit
	(iii)	V = I R	(1)		Must use answers from 3 (a)(i)
		24 = 3 x R	(1)		and (ii) or correct answers
		$R = 8 \Omega$	(1)	3	Deduct (1) for wrong/missing
					unit
	(b)	1 1 1			If wrong equation used eg
	(i)	$\frac{1}{R_{\pi}} = \frac{1}{R_{\star}} + \frac{1}{R_{\star}} + \dots$	(1)		$R_t = \underline{1} + \underline{1}$
					$R_1 R_2$
		$\frac{1}{} = \frac{1}{-+} + \frac{1}{-+} + \frac{1}{}$	(1)		then zero marks
		R_T 6 4 4			
		$\frac{1}{-0.17+0.25+0.25}$	5		Accept imprecise working
		$\frac{1}{R_{\tau}} = 0.17 + 0.23 + 0.2$	25		towards a final
		$P_{-1} = 0$	(1)		answer
		$R_T = 1.5 \Omega_2$	(1)	3	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = 1.50$
					$\frac{1}{R_{\tau}} = \frac{1}{6} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{1}{5} + \frac{1}{5$
					f accept
					laccept
					deduct (1) for wrong/missing
					unit
					Can be answered by applying
					product over sum method. If
					applied twice.
					Accept $3/2$ and $1\frac{1}{2}\Omega$ as final
					answer.
	(ii)A	The reading decreases/gets s	maller/reduces	1	Any clear statement that the
					reading decreases
	-				
	В	The resistance increases (so t	the current decreases)	1	Explanation must link current
					decrease with increase of
					resistance

5	(a)			accept
			1	Must have connecting wires at both ends. accept: • no line through middle • arrows could be either side • accept black (fill) triangle
	(b)	Protect the LED OR prevent damage to the LED OR		(1) for a correct answer.
		limits the current OR reduces voltage across LED	1	 'voltage through/current across LED.' To reduce voltage alone To stop LED 'blowing'.
				• To reduce charge/power to
				 To prevent LED overheating
	(c)	$V_{R} = 6 - 1 \cdot 2 = 4 \cdot 8 V$ (1)		If error can be seen in subtraction
		V = IR (1)		to get v_R then can still get (3) marks
		$4 \cdot 8 = 15 \times 10 - 3 \times R$ (1)		If no subtraction and $6 V \text{ or } 1.2$
		$R = 320 \ \Omega$ (1)		V used in calculation for R then
				(1) MAX for equation.
				Deduct (1) for wrong/missing unit
			4	This can also be answered using voltage divider method.
6	(a)	E = Pt (1)		Deduct (1) for wrong/missing unit
		$=1500\times35$ ⁽¹⁾		Watch for unit conversion errors – penalise unit error only once
		= 52 500 J (1)	3	
	(b)	$\mathbf{E} = cm\Delta T \tag{1}$		Must use value for Energy from $6(a) OB$ correct value
		$52500 = 902 \times m \times (200 - 24)$ (1)		Must use value for c given in
		$m = 0.33 \mathrm{kg}$ (1)		question or else (1) max for eqn
			1	Sig fig range:
	(c)	Heat is		0.3, 0.33, 0.331, 0.3307. Accept:
	(-)	Lost OR		• Heat is lost/radiated/ escapes
		 Radiated OR escapes OR 		 Some of the heat (energy) is
		from the sole plate	1	used to heat other parts of the iron
				The explanation should indicate
				 that heat is lost from/to eg power rating of iron is
				incorrect
				• inaccurate temperature readings etc.

(a)	$E_p = m \overline{g h} \tag{1}$		
	$= 0.50 \times 9.8 \times 19.3 \tag{1}$	3	
	= 95 J (1)		
(b)	$\mathbf{E}_{\mathbf{c}} = \mathbf{c} \ \mathbf{m} \ \Delta \mathbf{T} \tag{1}$		E_h must be consistent with (a). If
	$95 = 386 \ge 0.50 \ge \Delta T $ (1)		any other value of 'c' used, only
	$\Delta T = 0.5 \text{ °C} \tag{1}$	3	(1) for formula.
(c)	Less than.	1	If 'less than' is on its own $= 0$
(i)			marks.
			'Less than' plus wrong
			explanation $= 1$ mark.
(ii)	Some heat is lost to surroundings/ or equivalent.	1	'Heat loss to' must be qualified.
			Qualified sound loss OK eg on
			hitting the ground
(a)	. .		
	│ ┌───┤┠──┤┠───┐		Must draw battery, not single
			cen.
		3	
		5	
(b)	V = IR (1)		
	57 0 (0. 1 (0)		
	$5.7 = 0.00 \times R$ (1)		
	$R = 9.5 \Omega$ (1)	3	
(-)	NI-	1	
(C)	NO	1	
(I) (ii)	In parallel the voltage is still the same/6V across		
(11)	each	1	
	resistor so power is the same	1	
(a)	MOSFET	1	Transistor on its $own = 0$
(")			Correct spelling required
			content sponing required
(b)	(Voltage) falls/decreases	1	Or equivalent
			Arrows not allowed
	 (a) (b) (c) (i) (ii) (b) (c) (ii) (c) (ii) (a) (b) 	(a) $E_p = m g h$ (1) $= 0.50 \ge 9.8 \ge 19.3$ (1) $= 95 J$ (b) $E_c = c \mod \Delta T$ (1) $\Delta T = 0.5 \ ^{\circ}C$ (1)(c)Less than.(1)(i)Some heat is lost to surroundings/ or equivalent.(a) $\checkmark = 1.8 \ (1)$ 	(a) $E_p = m g h$ (1) $= 0.50 \times 9.8 \times 19.3$ (1) $= 95 J$ (1) (b) $E_c = c m \Delta T$ (1) $95 = 386 \times 0.50 \times \Delta T$ (1) $\Delta T = 0.5 \ ^{\circ}C$ (1) (i) $\Delta T = 0.5 \ ^{\circ}C$ (1) (c) Less than. 1 (ii) Some heat is lost to surroundings/ or equivalent. 1 (a) \checkmark \checkmark \checkmark (b) \lor \checkmark (1) $S.7 = 0.60 \times \mathbb{R}$ (1) 3 (c) No 1 (i) In parallel the voltage is still the same/6V across each resistor so power is the same 1 (a) MOSFET 1 (b) (Voltage) falls/decreases 1

10	(a)		1	Must have all labels correctly positioned .
				(1) or (0) only
	(b)	$Vr = Vs - Vmotor$ $= 24 = 18$ $= 6(V)$ (1) $Vr = IR$ (1) $6 = I \times 2.1$ (1) $I = 2.9 A$ (1)	4	If arithmetic error can be seen in subtraction to get VR then deduct (1) mark. Candidate can still get next (3) marks. If no subtraction and 24 V or 18 V used in calculation for V then (1) MAX for equation. Deduct (1) for wrong/missing unit $V = I \ge R$ sig. fig. range: 1–4 3A, 2.9A, 2.86A, 2.857A
	(c)	Q = I x t (1) = 3.2 x (10 x 60 x 60) (1) = 115 200 C (1)	3	Accept: 100000C, 120 000C, 115 000C, 115200C. If wrong or no conversion into seconds then deduct (1) mark.
	(d)	 Accept Change the polarity of the battery Swap over the connections to the motor Change the direction of the current Reverse current Swap battery terminals 	1	 Do not accept "swap battery" alone. Turn the battery around alone. Swap the battery around alone. Any answers relating to magnetic field (not relevant to this question) If > one answer apply ±rule.
11	(a)	Parallel	1	Only answer ignore spelling
	(b)	$P = I V (1)$ $300 = I \times 230 (1)$ $I = 1.3 A (1)$ OR $P = I V (1)$ $900 = I \times 230$ $I = 3.9 A$ $Current in one mat= 3.9/3 (1)$ $I = 1.3A (1)$		sig. fig. range: 1–3 1A 1·3A 1·30A
			3	
	(c)	$P = V^{2} / R $ (1) $900 = 230^{2} / R $ (1) $R = 59 \Omega $ (1) Or (1) $I_{total} = 3 \times 1.3 = 3.9 A $ (1)		sig. fig. 1–3 range: 60Ω 59Ω 58·8Ω sig. fig. 1–3
		$P = I^{2} R (1) 900 = 3.9^{2} x R (1) R = 59 \Omega (1)$	4	range: 60Ω , 59Ω , $59\cdot 2\Omega$

12	(a)	Lamp A	1	
	(i)			
	(ii)	It has the lowest resistance/highest current/greatest		one of three
	()	power	1	
	(b)	$\mathbf{P} = \mathbf{V}^2 / \mathbf{R} \tag{1}$	-	
	(0)	$-24^2/2.5$ (1)		
		-230 W (1)	3	
	(c)		5	
	(C)			
			1	
			1	
	(d)	12 V	1	unit required
	(i)			
	(ii)	1/Rp = 1/R1 + 1/R2 (1)		
		= 1/8 + 1/24 (1)		
		$Rp = 6 \Omega \qquad (1)$	3	
	(e)	The motor speed will reduce	1	
	(i)			
	(ii)	The (combined) resistance (of the circuit) is now		any one of four
		higher/current is lower.		
		Voltage across motor is less		
		Motor has less power	1	
13	(a)	X = (NPN) transistor	1	0 marks for MOSFET or PNP
	(i)			transistor
	(ii)	To act as a switch	1	To turn on the buzzer 0 marks
				To operate the buzzer 0 marks
	(b)	Resistance of LDR reduces		-
		so voltage across LDR reduces		
		Voltage across variable resistor/R increases		
		When voltage across variable resistor/R reaches (0.7)		Accept 'when voltage is high
		V) transistor switches buzzer on.	3	enough'
	(c)	80 units: resistance of LDR = 2500 (Ω)		5
		Total resistance = $2500 + 570$		
		$= 3070 (\Omega)$ (1)		
				1.6 mA
		$I = V/R \tag{1}$		1.63 mA
		= 5/3070 (1)		1.629 mA
		$= 1.63 \times 10^{-3}$ A or 1.63 mA (1)	4	
	(d)	The variable resistor is to set the light level at which	† İ	
		the transistor will switch on or to set the level at		
		which the buzzer will sound	1	
		which the buzzer will sound	1	