Acceleration

Acceleration is the change in speed (or velocity) every second and is measured in metres per second per second $\left(\mathrm{ms}^{-2}\right)$.

It can be calculated using the formula:

$$
\text { acceleration }=\frac{\text { final velocity }- \text { initial velocity }}{\text { time }}
$$

In symbol form:

$$
a=\frac{v-u}{t}
$$

Quantity	Symbol	SI Unit
acceleration	a	ms^{-2}
final velocity	v	ms^{-1}
Initial velocity	u	ms^{-1}
time	t	s

A common form of the equation worth remembering
is $\quad \mathbf{v}=\mathbf{u}+\mathbf{a t}$

Example:

1. Calculate the acceleration of a vehicle travelling from rest to $12 \mathrm{~ms}^{-1}$ in 5 s .
$\mathrm{a}=$?

$$
\mathrm{u}=0 \text { (at rest) }
$$

$$
\begin{aligned}
& a=\frac{v-u}{t} \\
& a=\frac{12-0}{5} \\
& a=2.4 \mathrm{~ms}^{-2}
\end{aligned}
$$

$\mathrm{t}=5 \mathrm{~s}$
2. A car accelerates at $4 \mathrm{~ms}^{-2}$ for 10 s from rest. Calculate the sped of the car after 10 s .
$\mathrm{a}=4 \mathrm{~ms}^{-2}$
$v=$?

$$
\mathrm{u}=0 \text { (at rest) }
$$

$$
\mathrm{t}=10 \mathrm{~s}
$$

$$
\begin{aligned}
& a=\frac{v-u}{t} \\
& v=u+a t \\
& v=0+(4 \times 10) \\
& v=40 \mathrm{~ms}^{-1}
\end{aligned}
$$

3. Calculate the deceleration of a train which travels from $30 \mathrm{~ms}^{-1}$ to $16 \mathrm{~ms}^{-1}$ in a time of 1 minute.
$\mathrm{a}=$?
$\mathrm{v}=16 \mathrm{~ms}^{-1}$
$\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}$
$\mathrm{u}=30 \mathrm{~ms}^{-1}$
$\mathrm{t}=1$ minute $=60 \mathrm{~s}$

$$
\begin{aligned}
& a=\frac{16-30}{60} \\
& a=-0.47 \mathrm{~ms}^{-2}
\end{aligned}
$$

