Acceleration

N4 N5

Acceleration

Acceleration is the change in speed (or velocity) every second and is measured in metres per second per second (ms⁻²).

It can be calculated using the formula:

time

In symbol form: $\mathbf{a} = \mathbf{v} - \mathbf{u}$

t

Quantity	Symbol	SI Unit
acceleration	а	ms ⁻²
final velocity	V	ms ⁻¹
Initial velocity	u	ms ⁻¹
time	t	S

A common form of the equation worth remembering

 $a = 2.4 \text{ ms}^{-2}$

Example:

1. Calculate the acceleration of a vehicle travelling from rest to 12 ms⁻¹ in 5 s.

$$a = ?$$
 $a = \underline{v - u}$
 $v = 12 \text{ ms}^{-1}$ t
 $u = 0 \text{ (at rest)}$ $a = \underline{12 - 0}$
 $t = 5 \text{ s}$ 5

2. A car accelerates at 4 ms⁻² for 10 s from rest. Calculate the sped of the car after 10 s.

N5

$$a = 4 \text{ ms}^{-2}$$
 $a = \underline{v - u}$
 $v = ?$ t
 $u = 0 \text{ (at rest)}$ $v = u + at$
 $t = 10 \text{ s}$ $v = 0 + (4 \text{ x } 10)$
 $v = 40 \text{ ms}^{-1}$

3. Calculate the deceleration of a train which travels from 30 ms⁻¹ to 16 ms⁻¹ in a time of 1 minute.

a = ?
$$a = v - u$$

 $v = 16 \text{ ms}^{-1}$ t
 $u = 30 \text{ ms}^{-1}$ $a = \frac{16 - 30}{60}$
 $t = 1 \text{ minute} = 60 \text{ s}$ 60
 $a = -0.47 \text{ ms}^{-2}$