Weight and Mass

W = m g Calculations - During Interplanetary Flight

The value for g is not always constant. It changes as you travel:

- further away from the centre of the earth;
- to a different planet, moon or star.

Every planet, moon and star has their own gravitational field strength.

Planet, Moon or Star	Value for g / Nkg ⁻¹
Mercury	4
Venus	9
Earth	9.8
Earth's Moon	1.6
Mars	4
Jupiter	26
Saturn	11
Uranus	11
Neptune	12
Sun	270

Example: An un-manned space rocket of mass 20000 kg travels from Earth to Mars, Jupiter, Saturn and Uranus.

- a) Calculate the rocket's weight on Mars.
- b) What is the mass of the rocket on Jupiter?
- c) Of the 4 planets (including Earth) visited by the rockets, on which planets would the weight of the rocket be the same? Explain your answer.

Solution

- a) W = ? m = 20000 kg $g = 4 \text{ Nkg}^{-1}$ W = mg W = 20000 x 4W = 80000 N
- b) m = 20000 kg
- c) Saturn and Uranus. The values for g on both planets are the same with the mass of the rocket remaining constant.

During interplanetary flight there is no need for the engines to be kept on. Since space is a vacuum there is no friction acting on the space vehicle. With no unbalanced forces acting on the vehicle it will continue to move at a steady velocity (Newton's First Law of Motion).

N5