Key Area 2—Distribution of organisms

Biotic factors which can affect the distribution of an organism include:

Competition for resources Disease Food availability Grazing Predation

Biotic factors are factors associated with living things.

Abiotic factors which can affect the distribution of an organism include:

Light Intensity Moisture pH Temperature

These are **'non-living'** factors.

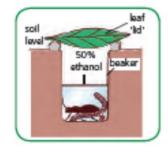
Measuring abiotic factors.

Examples: Abiotic Factor: How to measure: Possible source of error: How to minimise error:

Light Intensity Use a light meter Shadow cast on meter

Abiotic Factor: How to measure: Possible source of error: How to minimise error:

Moisture Stick a moisture probe into soil. Soil left on probe from previous reading. Wipe probe between readings to remove soil.

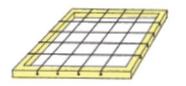

Sampling Plants and Animals

Plants can be sampled using a Quadrat.

Source of Error : Sample size is too small and not representative of the entire area.

How to minimise error: Take several replicate quadrat measurements/readings.

Animals can be sampled using a Pitfall Trap.


Source of Error: Predators may eat trapped animals.

How to minimise error: Camouflage entrance of pitfall trap to prevent predators seeing trap.

Source of Error: Some of the trapped animals eat other animals in trap with them.

How to minimise error: Preserve trapped animals in ethanol (not eco-friendly!)

Check traps regularly.

(d) Using and constructing Paired-statement Keys.

	had been been		
1	body has no legs body has legs	go to 2 go to 6	\sim
2	body not divided into sections (segments) body divided into segments	go to 3 go to 5	
3	body worm-like body not worm-like	nematode worm (a) go to 4	
4	shell present no shell present	snail (b) slug (c)	(d)
5	no more than 13 segments present more than 13 segments present	fly maggot (d) earthworm (e)	
6	6 jointed legs present more than 6 jointed legs present	go to 7 go to 11	
7	grub-like insect adult insect	go to 8 go to 9	M A A A A A A A A A A A A A A A A A A A
8	non jointed legs present on abdomen non jointed legs absent from abdomen	caterpillar (f) beetle larva (g)	
9	thin waist between thorax and abdomen no thin waist between thorax and abdomen	ant (h) go to 10	
10	spring attached to abdomen no spring attached to abdomen	springtail (i) beetle (j)	
П	8 legs present more than 8 legs present	go to 12 go to 13	
12	body divided into 2 parts body not divided into 2 parts	spider (k) mite (l)	
13	14 legs present more than 14 legs present	woodlouse (m) go to 14	
14	each body segment has 1 pair of legs each body segment has 2 pairs of legs	centipede (n) millipede (o)	

In the example shown, each (a)

> Organism can be identified using the paired statement key.

For organism (a)

Start at statement 1: it does not have legs so follow the instruction 'go to 2'.

Statement 2: its body is not divided into sections so follow the instruction 'go to 3'

Statement 3: its body is 'wormlike' so (a) is a Nematode worm.

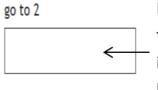
.

(not drawn to scale)

To construct a 'paired statement key' it's a little trickier.

Example:

Plant	Height range (cm)	Flower colour	Flowering period (months)
Pink Campion	30–90	pink	6
Ragwort	30–200	yellow	6
Meadow Grass	30–70	green	3
Buttercup	5–90	yellow	5

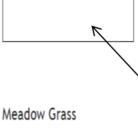

In this example, the information in the table must be used to complete the paired statement key.

Statement 1 should have 2 'go to...' statements.

Using the information in the table, complete the three boxes in the paired statement key below.

1. Flower colour is yellow

Flower colour is not yellow



Flower colour is not yellow must have the instruction **'go to 3'** since Ragwort is in statement 2 and Ragwort is yellow (seen in table).

Height of plant can be over 100 cm
Height of plant is under 100 cm

3. Flowering period lasts only 3 months

Flowering period is longer than 3 months

Ragwort

Since we have worked out statement 2 is for identifying Yellow flowers and Ragwort is already given, it is easy to work out the remaining yellow flower must be **'Buttercup'.** We can check this is correct by making sure its height is under 100cm (which it is : 5 – 90cm).

Statement 3 identifies the 'non yellow' flowers. Meadow Grass is already given so the only other non-yellow flower is 'Pink Campion'.

(e)Effect of Biotic and Abiotic factors on biodiversity and the distribution

of organisms. Low Light Intensity Low Carbon Dioxide Concentration Low/Very High Temperatures Low moisture/rainfall Low Oxygen concentration

These **abiotic factors** can **reduce biodiversity** since they will lead to a reduced rate of photosynthesis and/or aerobic respiration.

Low temperatures reduce enzyme activity and high temperatures denature enzymes. Since enzymes control both photosynthesis and aerobic respiration, the rate of these processes decrease (or stop) and this leads to the death of plants and/or animals and so reduces biodiversity.

Explanations are required for 2 mark questions.

Disease Increased Competition Availability of food These **biotic factors** can reduce biodiversity. Disease leads to **increased death rate**. Weaker species/individuals lose out on vital resources as a result of competition.

(f) Indicator Species

These are species that by their presence or absence **indicate environmental quality/levels of pollution**.

1

Levels of air pollution can be estimated by the presence or absence of organisms called lichens.

Air pollution level	Most common type of lichen present
Low	Shrubby
Medium	Leafy
High	Crusty

Environmental scientists carried out a study on lichen species at four different sites and obtained the results shown in the table below.

	Number	r of lichen species	present
Site	Shrubby	Leafy	Crusty
Α	0	5	19
В	3	2	0
С	16	3	0
D	7	14	2

(a) (i) Site A had the highest levels of air pollution.

Using information from both tables, describe the evidence supporting this statement.

ii)	Calculate the average number of leafy lichen species present at the four sites.
	Space for calculation

(b) State the name given to species, such as lichen, which are used to estimate levels of pollution. In this example, Site A contains

the greatest number of 'Crusty' lichens (using lower table) **and** this species of lichen indicates high levels of air pollution (using upper table).

Use information from BOTH tables as instructed.

Indicator species estimate levels of pollution.