Unit 2 Key Area 2 Cellular Respiration Revision Q Mark Scheme

- 1. C
- 2. A
- 3. D
- 4. D
- 5. B

6.

a i	lactose concentration/percentage	1
a ii	Temperature/concentration of yeast/pH	1

b	As lactose increases (from 4%) to 16%, ethanol (concentration) increases 1 From 16% (to 20%) ethanol remains constant/levels off 1 As lactose (concentration) increases, ethanol (concentration) increases then levels off = 1 mark	2	Both variables must be named at least once to gain any marks Must mention16% as change point (not 2.8g/cm³ ethanol)
С	37.5	1	NOT - 38
b ii	Aerobic respiration does not produce ethanol OR Aerobic respiration produces water not ethanol OR No/less fermentation so less ethanol produced	1	

7.	(a)	(i)	To allow (time) for respiration/metabolic rate to be affected by temperature/conditions/change
			OR
			To allow crickets (time) to acclimatise/adjust/respond to/get used to temperature/condition/change
			OR
			To allow flask/equipment/crickets (time) to reach the temperature

1	Environment / surroundings / ≠ flask / situation conditions
	NOT - to allow crickets time to adapt
	NOT - to allow time for (steady rate of respiration
	NOT - to acclimatise alone
	NOT - To allow it to adjust to the conditions
	NOT - to allow environment to reach the temperature

(ii)	Description: (exactly) the same set up/experiment
	OR
	full description(same size/volume of flask, in water bath and CO ₂ sensor)
	AND
	(With) no crickets/dead crickets/glass beads (1)
	Explanation: To show it was the crickets that respired/metabolised/ produced the CO ₂
	OR
	No CO ₂ production/respiration/ metabolism without live crickets/ with dead crickets/with no crickets/with control (1)
	(1)

NOT - a flask with no crickets

NOT - allow comparison alone

NOT - to prove the independent variable is causing the result

(b)	Axes labelled correctly and scales to fill at least half the grid (1) Points plotted correctly and joined with a ruler (1)	2	Common zero is acceptable 5 boxes = 200 or 5 boxes = 250 are both acceptable scales. Y axis does not have to start at 0
			Mark not awarded if line extended to zero from 5°C
			If axes wrong way around but points plotted correctly, award 1 mark

(c)	As the temperature increased, the (rate of) metabolism increased	1	NOT - rate of CO ₂ production/ respiration alone
			NOT - As metabolism increases temperature decreases

. a	a P is Acetyl CoA Q is Oxaloacetate					
b	ATP/ Energy is required	2				
	AND					
	A greater amount of energy/ ATP is produced					
С	Carry hydrogen and high energy electrons	2				
	AND					
	To the electron transport chain					
d	Less ATP/ energy is produced (1) Fewer electrons are passed to electron transport chain	2				
	OR					
	• Fewer hydrogen ions are pumped through the membrane (1)					
	OR					
	• ATP synthase is damaged (1)					

9.	ai	ADP + Pi/phosphate/inorganic phosphate Both required	1	NOT - P
	a ii	NAD	1	NOT - FAD
	a iii	It is a net/overall energy gain (following an energy investment at an earlier stage) OR	1	Quantification acceptable ie 2 ATP used but 4 ATP produced
		More ATP/energy is produced/released than is used/invested (earlier/in stage1		
	bi	Increases the surface area for (action of) bacteria/Lactobacillus OR	1	
		Bursts cells to release more substrate/cell contents for bacterial action		
	b ii	Acidic conditions/low pH/change in pH/decreased pH/anaerobic conditions/low oxygen	1	
		inhibits/kills/other/most bacteria		
		OR		
		pH/oxygen levels optimum for Lactobacillus but not for other/most bacteria		