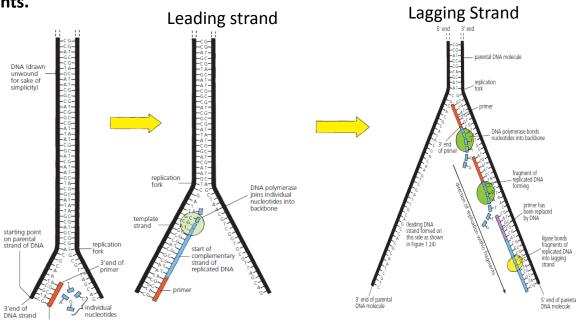

Key Area 2 Replication of DNA

Prior to cell division, DNA is replicated by **DNA Polymerase.**

DNA Polymerase needs PRIMERS to start replication. A Primer is a short strand of nucleotides which binds to the 3' end of the template DNA strand allowing the DNA Polymerase to add DNA Nucleotides.



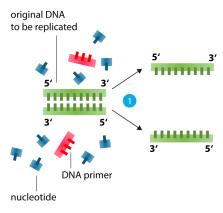
DNA is **unwound** (by DNA Polymerase) and **Hydrogen bonds between the bases broken** to form 2 template strands.

DNA Polymerase adds DNA Nucleotides, using complimentary base pairing, to **the deoxyribose (3') end of the new DNA strand** which is forming.

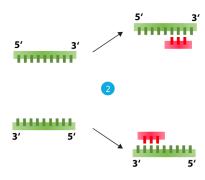
DNA Polymerase can only add DNA Nucleotides in one direction, resulting in the **Leading**Strand being replicated continuously and the Lagging Strand being replicated in

Fragments.

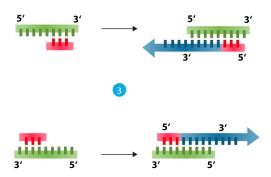
Fragments of DNA on the Lagging strand are joined together by LIGASE.

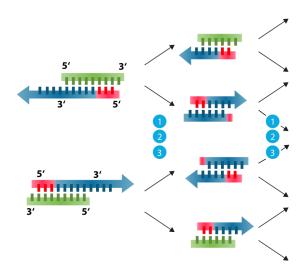

Polymerase Chain Reaction (PCR)

PCR AMPLIFIES DNA using complimentary primers for specific target sequences.


In PCR, primers are short strands of nucleotides which are complimentary to specific target sequences at the 2 ends of the region of DNA to be amplified.

Repeated cycles of **HEATING & COOLING** amplify the target region of DNA.


1. DNA is heated to between 92 and 98°C to separate the strands.


2. It is then cooled to between 50 and 65°C to allow Primers to bind to target sequences.

3. It is then heated to between 70 and 80°C for HEAT-TOLERANT DNA Polymerase to replicate the region of DNA.

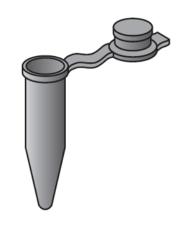
4. The cycle is then repeated.

Each cycle DOUBLES the amount of DNA present.

Example:

1 copy
$$\longrightarrow$$
 2 \longrightarrow 4 \longrightarrow 8 \longrightarrow 16 \longrightarrow 32 \longrightarrow 64 \longrightarrow 128 copies

Cycle Cycle Cycle Cycle Cycle Cycle \longrightarrow 7


After 7 PCR Cycles, 128 copies of the original DNA target sequence are produced.

Requirements for PCR

PCR requires:

- 1. A DNA Template
- 2. A Supply of the 4 types of DNA Nucleotides (A,T,C &G)
- 3. Primers
- 4. Heat-tolerant DNA
 Polymerase (enzyme)

- Contents of tube
- DNA
- DNA nucleotides
- primers
- enzyme and buffer

5. A pH Buffer (to create optimum conditions for enzyme activity)

Practical Applications of PCR

PCR can amplify DNA for use in the following applications:

- 1. To help **SOLVE CRIMES** (Forensic evidence).
- 2. Settle PATERNITY SUITS
- 3. Diagnose Genetic Disorders.