Calculations

Marking Instructions

1. 30%

Working : $\quad 9 \mathrm{am}=6 \mathrm{mmol} / \mathrm{l} \quad 11 \mathrm{am}=4.2 \mathrm{mmol} / \mathrm{l}$
Difference $($ decrease $)=6-4.2=1.8 \mathrm{mmol} / \mathrm{l}$
$\%$ decrease $=1.8 / 6 \times 100=0.3 \times 100=30 \%$

2. 15%

Working: Fraction of energy intake used for growth $=3 / 20=0.15$
$\%$ energy intake used for growth $=0.15 \times 100=15 \%$
3. 7.2 millions (units required if not written in table)

Working : $\quad 48 \%$ of $15=48 / 100 \times 15=0.48 \times 15=7.2$
4. 20%

Working : Original yield $=35 \mathrm{~kg}$
New yield $=42 \mathrm{~kg}$
Increase in yield $=42-35=7 \mathrm{~kg}$
$\%$ increase in yield $=\quad$ increase $/$ original $\times 100$
$=\quad 7 / 35 \times 100$
$=0.2 \times 100$
$=20$
5. (i) 80%

Working : fraction of total fat which is saturated $=20 \mathrm{~g} / 25 \mathrm{~g}=0.8$ $\%$ of total fat which is saturated $=0.8 \times 100=80 \%$
(ii) 8400

Working : $\quad 630 \mathrm{~kJ}=7.5 \%$ of X (where X is the total number of kJ which should be consumed daily)

$$
\begin{aligned}
& \text { So } 7.5 / 100 X=630 \mathrm{~kJ} \\
& \text { So } 0.075 X=630 \mathrm{~kJ} \\
& \text { So } X=630 / 0.075=8400
\end{aligned}
$$

6. $\mathbf{+ 2 5}$ (symbol must be included)

Working : Change in mass $=67.5-54=13.5$

$$
\begin{aligned}
\% \text { change in mass } & =\text { change/original mass } \times 100 \\
& =13.5 / 54 \times 100 \\
& =0.25 \times 100 \\
& =+25
\end{aligned}
$$

7. 65%

Working : number with mutation $=7$
Number of family members $=20$
Number without mutation $\quad=20-7=13$
$\%$ family without mutation $=13 / 20 \times 100$
$=0.65 \times 100$
$=65$
8. 285

Working: Total number of skin epithelium cells $=250+330+275$ $=855$

Average number of skin epithelium cells $=855 / 3=285$
9. 29

Working : Chloride ion concentration outside $=116$
Chloride ion concentration inside $=4$
Number of times concentration greater outside $=116 / 4=29$
10. 100 micrometres

Working : Field of view $=2 \mathrm{~mm}=2000$ micrometres
20 cells $=2000$ micrometres
1 cell $=2000 / 20=100$ micrometres
11. 4

Working : Enzyme activity at pH $2.5=8$
Enzyme activity at pH $4.5=2$
Number of times more active at pH 2.5 than $\mathrm{pH} 4.5=8 / 2=4$
12. 19

Working : Number of seedlings surviving in dish C $=95 \%$ of 20
$=95 / 100 \times 20$
$=0.95 \times 20$
= 19
13. 15

Working : Total number of plants for species F = $15+14+16+17+13+15=90$
Average number of plants for species F
= 90/6
$=15$

14. 1.3mm per minute

Working : At $25^{\circ} \mathrm{C}$ rise in liquid level over 20 minutes $=26 \mathrm{~mm}$ Rise in liquid level per minute $=26 / 20=1.3 \mathrm{~mm}$ per minute
15. 150

Working: \quad there are 6 stomata present in $0.04 \mathrm{~mm}^{2}$ area.
To find number in $1 \mathrm{~mm}^{2}$ find out how much greater $1 \mathrm{~mm}^{2}$ is compared to $0.04 \mathrm{~mm}^{2}$
i.e. $1 / 0.04=25$

So, there will be $25 \times$ more stomata $=25 \times 6=150$
16. 175

Working: \quad Non-resistant variety $=250$
Beetle-resistant variety $=425$

Difference $=425-250=175$
17. 6

Working: \quad Average number of leafy lichen $=5+2+3+14 / 4=6$

18. 30

Working: Biomass of population $=33000 \mathrm{~g}$
Population size $=1100$
Average mass of 1 limpet $=33000 / 1100=30$
19. 2

Working: Ragwort abundance in $2011=15$
Ragwort abundance in $2015=5$
Decrease in 5 year period $=15-5=10$
Average decrease per year $=10 / 5=2$
20. 0.01s

Working: reflex action $=90 \mathrm{~m}$ in 1 second
So for $0.9 \mathrm{~m}=1 / 100=0.01$
21. 36

Working: Average width of leaves $=32+34+35+44+35 / 5$

$$
=180 / 5=36
$$

22. A (increases)

Working: $\quad 20^{\circ} \mathrm{C}-72$ eggs in 24 days, so $72 / 24=3$ eggs per day $25^{\circ} \mathrm{C}-72$ eggs in 18 days, so $72 / 18=4$ eggs per day $30^{\circ} \mathrm{C}-72$ eggs in 12 days, so $72 / 12=6$ eggs per day
23. 0.9

Working: in 60 minutes liquid moved from $10-64 \mathrm{~mm}=54 \mathrm{~mm}$ So, in 1 minute $=54 / 60=0.9$
24. 3

Working: \quad Number of lugworms at $11 \mathrm{~m}=27$
Number of lugworms at $7 m=9$

Number of times greater at $11 m$ compared to $7 m=27 / 9=3$

