advancedhighermaths.co.uk

Vectors

AH Maths Exam Questions

Source: 2019 Specimen P2 Q13 AH Maths

(1) A line, L, has equation $\frac{x+1}{2}=\frac{y-2}{1}=\frac{z}{-1}$.
(a) Find the Cartesian equation of the plane, perpendicular to the line L, which passes through the point $\mathrm{P}(1,1,0)$.
(b) Find the shortest distance from P to L and explain why this is the shortest distance.

The equations of two planes are given below.

$$
\begin{aligned}
& \pi_{1}: \quad 2 x-3 y-z=9 \\
& \pi_{2}: x+y-3 z=2
\end{aligned}
$$

(a) Verify that the line of intersection, L_{1}, of these two planes has parametric equations

$$
\begin{aligned}
& x=2 \lambda+3 \\
& y=\lambda-1 \\
& z=\lambda
\end{aligned}
$$

(b) Let π_{3} be the plane with equation $-2 x+4 y+3 z=4$.

Calculate the acute angle between the line L_{1} and the plane π_{3}.
(c) L_{2} is the line perpendicular to π_{3} passing through $\mathrm{P}(1,3,-2)$.

Determine whether or not L_{1} and L_{2} intersect.

Answers:

(a)

| $\bullet \bullet^{1}$ verify that the line lies on one plane ${ }^{1}$ | \bullet^{1} eg $2(2 \lambda+3)-3(\lambda-1)-\lambda=9$ |
| :--- | :--- | :--- |
| \bullet^{2}verify for other plane and state
 conclusion 2 | \bullet^{2} eg $2 \lambda+3+\lambda-1-3 \lambda=2 ;$
 therefore the line lies on
 both planes |

(Other methods valid - see Marking Scheme)

(b)	\bullet^{3} identify vectors ${ }^{1}$ -4 start to calculate angle -5 calculate complement 2,4	$\cdot\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}-2 \\ 4 \\ 3\end{array}\right)$ ${ }^{4} \cos \theta=\left(\frac{3}{\sqrt{6} \sqrt{29}}\right)$ - 5 any answer which rounds to 0.229 or 13°
(c)	${ }^{6}$ parametric equations for $L_{2} \quad{ }^{2}$ -7 two equations for two parameters \bullet^{8} solve for two possible parameters ${ }^{1}$ - 9 substitute into remaining equation and state conclusion ${ }^{3}$	$\cdot 6$ $\begin{aligned} & x=-2 \mu+1 ; y=4 \mu+3 \\ & z=3 \mu-2 \end{aligned}$ - ${ }^{7}$ any two from $\begin{aligned} & 2 \lambda+3=-2 \mu+1 ; \\ & \lambda-1=4 \mu+3 ; \lambda=3 \mu-2 \end{aligned}$ - 8 eg $\mu=-1 ; \lambda=0$ \bullet eg LHS $=0$, RHS $=-5$ so lines do not intersect.

Source: 2018 Q16 AH Maths

(3) Planes π_{1}, π_{2} and π_{3} have equations:

$$
\begin{aligned}
\pi_{1}: & x-2 y+z & =-4 \\
\pi_{2}: & 3 x-5 y-2 z & =1 \\
\pi_{3}: & -7 x+11 y+a z & =-11
\end{aligned}
$$

where $a \in \mathbb{R}$.
(a) Use Gaussian elimination to find the value of a such that the intersection of the planes π_{1}, π_{2} and π_{3} is a line.
(b) Find the equation of the line of intersection of the planes when a takes this value.

The plane π_{4} has equation $-9 x+15 y+6 z=20$.
(c) Find the acute angle between π_{1} and π_{4}.
(d) Describe the geometrical relationship between π_{2} and π_{4}.

Justify your answer.

Answers:

(a)	- ${ }^{1}$ set up augmented matrix - ${ }^{2}$ obtain two zeros ${ }^{1}$ \bullet^{3} complete row operations ${ }^{1,2}$ -4 obtain value for a^{3}	$\begin{aligned} & \bullet\left[\begin{array}{cccc} 1 & -2 & 1 & -4 \\ 3 & -5 & -2 & 1 \\ -7 & 11 & a & -11 \end{array}\right] \\ & \bullet^{2}\left[\begin{array}{cccc} 1 & -2 & 1 & -4 \\ 0 & 1 & -5 & 13 \\ 0 & -3 & a+7 & -39 \end{array}\right] \\ & \bullet^{3}\left[\begin{array}{cccc} 1 & -2 & 1 & -4 \\ 0 & 1 & -5 & 13 \\ 0 & 0 & a-8 & 0 \end{array}\right] \end{aligned}$ $.^{4} \quad a=8$

| (b) |
| :--- | :--- | :--- | :--- | \left\lvert\, \(\begin{array}{ll}\bullet 5 \& introduce parameter and substitute

\& 1,2

\bullet 0^{6} \& equation of line $$
\begin{array}{l}1,3\end{array}
$$

\bullet^{5} z=t, y-5 t=13

\bullet^{6} \quad x=22+9 t, y=13+5 t, z=t\end{array}\right.\)

(d) $|\quad| \bullet^{10}$ explanation $\begin{aligned} & 1,2,3 \\ & \end{aligned}$
$\bullet{ }^{10}$ Planes π_{2} and π_{4} are parallel because the normal of π_{4} is a multiple of the normal of π_{2}.

Source: 2017 Q15 AH Maths

(4)
(a) A beam of light passes through the points $B(7,8,1)$ and $T(-3,-22,6)$. Obtain parametric equations of the line representing the beam of light.
(b) A sheet of metal is represented by a plane containing the points $\mathrm{P}(2,1,9)$, $\mathrm{Q}(1,2,7)$ and $\mathrm{R}(-3,7,1)$.

Find the Cartesian equation of the plane.
(c) The beam of light passes through a hole in the metal at point H . Find the coordinates of H .

Answers:
(a)
$\underbrace{\bullet 1 \text { obtain direction vector }{ }^{1,2,4}}{ }^{\bullet 2}$ state parametric equations ${ }^{3,4,5}$

$$
\begin{array}{rl}
\bullet 1 & \mathbf{d}
\end{array}=\left(\begin{array}{c}
2 \\
6 \\
-1
\end{array}\right) \text { or multiple thereof } \quad \begin{aligned}
& \bullet^{2} x=2 \lambda+7 \\
& y=6 \lambda+8 \\
& z=-\lambda+1 \\
& \text { or } \\
& x=2 \lambda-3 \\
& y=6 \lambda-22 \\
& z=-\lambda+6
\end{aligned}
$$

Or equivalent
(b)
-3 identify vectors \cdot^{3} any two from $\overrightarrow{P Q}=\left(\begin{array}{c}-1 \\ 1 \\ -2\end{array}\right), \overrightarrow{P R}=\left(\begin{array}{c}-5 \\ 6 \\ -8\end{array}\right)$, $\overrightarrow{Q R}=\left(\begin{array}{c}-4 \\ 5 \\ -6\end{array}\right) \quad$ or equivalent

- $\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 1 & -2 \\ -5 & 6 & -8\end{array}\right|$ or equivalent finding normal ${ }^{1}$

\bullet • ${ }^{5}$ calculate normal	$\bullet{ }^{5} \mathbf{n}=\left(\begin{array}{c}4 \\ 2 \\ -1\end{array}\right)$
\bullet obtain equation	$\bullet^{6} 4 x+2 y-z=1$

(c)	${ }^{77}$ substitute into equation of plane $\bullet{ }^{8}$ find λ ${ }^{9}$ determine coordinates of $\mathrm{H} \quad{ }^{1}$	-7 $4(2 \lambda+7)+2(6 \lambda+8)-(-\lambda+1)=1$ - $8 \quad \lambda=-2$ - $9 \mathrm{H}(3,-4,3)$

Source: 2016 Q14 AH Maths
(5)

Two lines L_{1} and L_{2} are given by the equations:

$$
\begin{aligned}
& L_{1}: \quad x=4+3 \lambda, \quad y=2+4 \lambda, \quad z=-7 \lambda \\
& L_{2}: \quad \frac{x-3}{-2}=\frac{y-8}{1}=\frac{z+1}{3}
\end{aligned}
$$

(a) Show that the lines L_{1} and L_{2} intersect and find the point of intersection.
(b) Calculate the obtuse angle between the lines L_{1} and L_{2}.

Answers:

(b)

- ${ }^{6}$ identify first direction
- ${ }^{6} \mathbf{d}_{1}=3 \mathbf{i}+4 \mathbf{j}-7 \mathbf{k}$
- ${ }^{7} \mathbf{d}_{2}=-2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$ vector ${ }^{1,2,3}$
- ${ }^{8}$ calculate magnitudes and scalar product
- ${ }^{9}$ calculate obtuse angle ${ }^{4,5}$
$\bullet 8 \quad\left|\mathbf{d}_{1}\right|=\sqrt{74}, \quad\left|\mathbf{d}_{2}\right|=\sqrt{14}$ and $\mathbf{d}_{1} \cdot \mathbf{d}_{2}=-6+4-21=-23$
$\bullet^{9} \cos ^{-1}\left(\frac{-23}{\sqrt{74} \sqrt{14}}\right) \approx 135 \cdot 6^{\circ}$

Source: 2015 Q15 AH Maths

(6) A line, L_{1}, passes through the point $\mathrm{P}(2,4,1)$ and is parallel to

$$
\mathbf{u}_{1}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}
$$

and a second line, L_{2}, passes through $\mathrm{Q}(-5,2,5)$ and is parallel to

$$
\mathbf{u}_{2}=-4 \mathbf{i}+4 \mathbf{j}+\mathbf{k} .
$$

(a) Write down the vector equations for L_{1} and L_{2}.
(b) Show that the lines L_{1} and L_{2} intersect and find the point of intersection.
(c) Determine the equation of the plane containing L_{1} and L_{2}.

Answers:

a	$u_{1}=i+2 j-k$ direction vector $u_{2}=-4 i+4 j+k \quad \text { direction vector }$ $v_{1}=\left(\begin{array}{l} 2 \\ 4 \\ 1 \end{array}\right)+\lambda\left(\begin{array}{c} 1 \\ 2 \\ -1 \end{array}\right), \quad v_{2}=\left(\begin{array}{c} -5 \\ 2 \\ 5 \end{array}\right)+\mu\left(\begin{array}{c} -4 \\ 4 \\ 1 \end{array}\right)$	$\begin{aligned} & \left(\begin{array}{c} 1 \\ 2 \\ -1 \end{array}\right) \\ & \left(\begin{array}{c} -4 \\ 4 \\ 1 \end{array}\right) \end{aligned}$	2	$\bullet^{1} \& \bullet^{2}$ for vector equations ${ }^{1,2,3,6,8}$

b

If they intersect	
$2+\lambda=-5-4 \mu$	$4 \mu+\lambda=-7$
$4+2 \lambda=2+4 \mu$	$\frac{4 \mu-2 \lambda=2}{\lambda=-3}$
$1-\lambda=5+\mu$	$\mu=-1$
$z_{1}=1-(-3)$	$z_{2}=5+(-1)$
$=4$	$=4$

Since $z_{1}=z_{2}$, the lines intersect at $(-1,-2,4)$
-3 two equations for two parameters
-4 two parameter solutions

- 5 for checking third component in both equations.
-6 point of intersection ${ }^{4}$.
- ${ }^{7} \quad$ correct strategy to find normal.
\bullet correct processing to obtain vector.
- ${ }^{9}$ substituting normal vector into an equation of a plane. May also use either of the given points.
- ${ }^{10}$ finding correct value for constant and correct equation.

Source: 2014 Q5 AH Maths

(7) Three vectors $\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}}$ and $\overrightarrow{\mathrm{OC}}$ are given by $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w} where

$$
\boldsymbol{u}=5 \boldsymbol{i}+13 \boldsymbol{j}, \quad \boldsymbol{v}=2 \boldsymbol{i}+\boldsymbol{j}+3 \boldsymbol{k}, \quad \boldsymbol{w}=\boldsymbol{i}+4 \boldsymbol{j}-\boldsymbol{k}
$$

Calculate $\boldsymbol{u} .(\boldsymbol{v} \times \boldsymbol{w})$.
Interpret your result geometrically.

Answers:

$$
\begin{gathered}
\left|\begin{array}{ccc}
i & \boldsymbol{j} & \boldsymbol{k} \\
2 & 1 & 3 \\
1 & 4 & -1
\end{array}\right| \\
=-13 \boldsymbol{i}+5 \boldsymbol{j}+7 \boldsymbol{k} \\
\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})=\left(\begin{array}{c}
5 \\
13 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
-13 \\
5 \\
7
\end{array}\right)=0
\end{gathered}
$$

\boldsymbol{u} lies in the same plane as the one containing both \boldsymbol{v} and \boldsymbol{w}.
OR \boldsymbol{u} is parallel to the plane containing \boldsymbol{v} and \boldsymbol{w}.
OR \boldsymbol{u} is perpendicular to the normal of \boldsymbol{v} and \boldsymbol{w}.
OR All 4 points lie in the same plane.
OR \boldsymbol{u} is perpendicular to $\boldsymbol{v} \times \boldsymbol{w}$.
OR Volume of parallelepiped is zero.
OR u, vand \boldsymbol{w} are coplanar/linearly dependent.

$$
\text { OR } \begin{aligned}
\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w}) & =\left|\begin{array}{ccc}
5 & 13 & 0 \\
2 & 1 & 3 \\
1 & 4 & -1
\end{array}\right| \\
& =5\left|\begin{array}{cc}
1 & 3 \\
4 & -1
\end{array}\right|-13\left|\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right|+0\left|\begin{array}{cc}
2 & 1 \\
1 & 4
\end{array}\right| \\
& =0
\end{aligned}
$$

- ${ }^{4}$ Any one correct statement. ${ }^{2,3,6}$
- ${ }^{1}$ Setting up combined product correctly. ${ }^{4}$
- ${ }^{2}$ Correctly processes determinant. ${ }^{5}$
- ${ }^{3}$ Correctly evaluates determinant to reach 0 .
(8) (a) Find an equation of the plane π_{1}, through the points $A(0,-1,3), B(1,0,3)$ and $C(0,0,5)$.
(b) π_{2} is the plane through A with normal in the direction $-\mathbf{j}+\mathbf{k}$.

Find an equation of the plane π_{2}.
(c) Determine the acute angle between planes π_{1} and π_{2}.

Answers:

| \mathbf{b} | $0 \times 0+(-1) \times(-1)+1 \times 3=4$
 $\pi_{2}:-\boldsymbol{y}+z=\mathbf{4}$ | \bullet^{5} Evidence of appropriate
 method.
 \bullet^{6} Processes to obtain
 equation of second plane. |
| :--- | :---: | :---: | :---: | :--- |

c	Normal vectors: $\boldsymbol{n}_{1}=\left(\begin{array}{l} 2 \\ -2 \\ 1 \end{array}\right) \text { and } \boldsymbol{n}_{2}=\left(\begin{array}{l} 0 \\ -1 \\ 1 \end{array}\right),\left\|\boldsymbol{n}_{1}\right\|=\sqrt{9}=3,\left\|\boldsymbol{n}_{2}\right\|=\sqrt{2}$ $\cos ($ angle between normals $)=$ $\begin{aligned} & \frac{\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}}{\left\|\boldsymbol{n}_{1}\right\| \boldsymbol{n}_{2} \mid}=\frac{2 \times 0-2 \times-1+1 \times 1}{3 \sqrt{2}}=\frac{3}{3 \sqrt{2}}=\frac{1}{\sqrt{2}} \\ & \text { Angle }=45^{\circ} \end{aligned}$ acute angle between planes is $45^{\circ}\left(\right.$ or $\left.\frac{\pi}{4}\right)$.		- 7 Obtains two correct lengths. - 8 Evidence knows how to use formula. - ${ }^{9}$ Processes to statement of answer. ${ }^{5}$
	OR $\begin{gathered} =2 \mathrm{i}-2 \mathrm{j}+\mathrm{k} \text {, so }\|2 \mathrm{i}-2 \mathrm{j}+\mathrm{k}\|=3 \text { and }\|-\mathrm{j}+\mathrm{k}\|=\sqrt{2} \\ 3=\left\|n_{1}\right\| \cdot\left\|n_{2}\right\| \cdot \cos \theta=3 \sqrt{2} \cdot \cos \theta \\ \cos \theta=\frac{1}{\sqrt{2}} \text { so } \theta=\frac{\pi}{4} \quad\left(\text { or } 45^{\circ}\right) \end{gathered}$		- ${ }^{7} \quad$ States vector and obtains moduli. - 8 Evidence knows how to use formula. - Processes to statement of answer.

Source: 2012 Q5 AH Maths

(9) Obtain an equation for the plane passing through the points $P(-2,1,-1), Q(1,2,3)$ and $R(3,0,1)$.

Answer:

Method 1

$$
\overrightarrow{P Q}=3 \mathbf{i}+\mathbf{j}+4 \mathbf{k} \text { and } \overrightarrow{Q R}=2 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k}
$$

$1 \quad \overrightarrow{P R}$ could be used
A normal to the plane:

$$
\begin{gather*}
\overrightarrow{P Q} \times \overrightarrow{Q R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 1 & 4 \\
2 & -2 & -2
\end{array}\right| \\
=\mathbf{i}\left|\begin{array}{cc}
1 & 4 \\
-2 & -2
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
3 & 4 \\
2 & -2
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
3 & 1 \\
2 & -2
\end{array}\right| \\
=6 \mathbf{i}+14 \mathbf{j}-8 \mathbf{k}
\end{gather*}
$$

$$
\mathbf{1 M}
$$

Hence the equation has the form:

$$
\begin{equation*}
6 x+14 y-8 z=d \tag{1}
\end{equation*}
$$

The plane passes through $P(-2,1,-1)$ so

$$
\begin{equation*}
d=-12+14+8=10 \tag{1}
\end{equation*}
$$

which gives an equation $6 x+14 y-8 z=10 \quad \mathbf{1}$

$$
\text { i.e. } 3 x+7 y-4 z=5
$$

Method 2

A plane has an equation of the form $a x+b y+c z=d$. Using the points P, Q, R we get

$$
\begin{gathered}
-2 a+b-c=d \\
a+2 b+3 c=d \\
3 a+c=d
\end{gathered}
$$

Using Gaussian elimination to solve these we have

1M
or other valid method

$$
\begin{aligned}
\left|\begin{array}{cccc}
-2 & 1 & -1 & d \\
1 & 2 & 3 & d \\
3 & 0 & 1 & d
\end{array}\right| & \Rightarrow \quad\left|\begin{array}{cccc}
-2 & 1 & -1 & d \\
0 & 5 & 5 & 3 d \\
0 & 6 & 8 & 2 d
\end{array}\right|
\end{aligned} \mathbf{1}
$$

(10) The lines L_{1} and L_{2} are given by the equations

$$
\frac{x-1}{k}=\frac{y}{-1}=\frac{z+3}{1} \text { and } \frac{x-4}{1}=\frac{y+3}{1}=\frac{z+3}{2},
$$

respectively.
Find:
(a) the value of k for which L_{1} and L_{2} intersect and the point of intersection;
(b) the acute angle between L_{1} and L_{2}.

Answers:
(a) In terms of a parameter s, L_{1} is given by $x=1+k s, y=-s, z=-3+s \quad 1$

In terms of a parameter t, L_{2} is given by
$x=4+t, y=-3+t, z=-3+2 t$

Equating the y coordinates and equating the z coordinates:

$$
\left.\begin{array}{c}
-s=-3+t \\
-3+s=-3+2 t \tag{1}
\end{array}\right\}
$$

Adding these

$$
\begin{gather*}
-3=-6+3 t \\
\Rightarrow t=1 \Rightarrow s=2 . \tag{1}
\end{gather*}
$$

From the x coordinates

$$
1+k s=4+t
$$

Using the values of s and t

$$
\begin{equation*}
1+2 k=5 \Rightarrow k=2 \tag{1}
\end{equation*}
$$

The point of intersection is: $(5,-2,-1)$.
(b) L_{1} has direction $2 \mathbf{i}-\mathbf{j}+\mathbf{k}$.
L_{2} has direction $\mathbf{i}+\mathbf{j}+2 \mathbf{k}$.
Let the angle between L_{1} and L_{2} be θ, then
$\cos \theta=\frac{(2 \mathbf{i}-\mathbf{j}+\mathbf{k}) \cdot(\mathbf{i}+\mathbf{j}+2 \mathbf{k})}{|2 \mathbf{i}-\mathbf{j}+\mathbf{k}||\mathbf{i}+\mathbf{j}+2 \mathbf{k}|}$

$$
\begin{gathered}
=\frac{2-1+2}{\sqrt{6} \sqrt{6}}=\frac{3}{6}=\frac{1}{2} \\
\theta=60^{\circ}
\end{gathered}
$$

The angle between L_{1} and L_{2} is 60°.

Source: 2010 Q6 AH Maths
(11) Given $\mathbf{u}=-2 \mathbf{i}+5 \mathbf{k}, \mathbf{v}=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ and $\mathbf{w}=-\mathbf{i}+\mathbf{j}+4 \mathbf{k}$.

Calculate \mathbf{u}. $(\mathbf{v} \times \mathbf{w})$.

Answer:

$$
\begin{aligned}
\mathbf{v} \times \mathbf{w} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 2 & -1 \\
-1 & 1 & 4
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{cc}
2 & -1 \\
1 & 4
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
3 & -1 \\
-1 & 4
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
3 & 2 \\
-1 & 1
\end{array}\right| \\
& =9 \mathbf{1}-11 \mathbf{j}+5 \mathbf{k} \\
\mathbf{u} .(\mathbf{v} \times \mathbf{w}) & =(-2 \mathbf{i}+0 \mathbf{j}+5 \mathbf{k}) \cdot(9 \mathbf{i}-11 \mathbf{j}+5 \mathbf{k}) \\
& =-18+0+25 \\
& =7 .
\end{aligned}
$$

Source: 2009 Q16 AH Maths

(12) (a) Use Gaussian elimination to solve the following system of equations

$$
\begin{array}{r}
x+y-z=6 \\
2 x-3 y+2 z=2 \\
-5 x+2 y-4 z=1 .
\end{array}
$$

(b) Show that the line of intersection, L, of the planes $x+y-z=6$ and $2 x-3 y+2 z=2$ has parametric equations

$$
\begin{aligned}
& x=\lambda \\
& y=4 \lambda-14 \\
& z=5 \lambda-20 .
\end{aligned}
$$

(c) Find the acute angle between line L and the plane $-5 x+2 y-4 z=1$.

Answers:

(a)

$$
\begin{array}{r}
x+y-z=6 \\
2 x-3 y+2 z=2 \\
-5 x+2 y-4 z=1
\end{array}
$$

$$
\begin{array}{ccc|ccccc|ccccc|c}
1 & 1 & -1 & 6 & 1 & 1 & -1 & 6 & 1 & 1 & -1 & 6 \\
2 & -3 & 2 & 2 & \Rightarrow & 0 & -5 & 4 & -10 \Rightarrow & 0 & -5 & 4 & -10 \\
-5 & 2 & -4 & 1 & 0 & 7 & -9 & 31 & 0 & 0 & -\frac{17}{5} & 17
\end{array}
$$

$$
\begin{gathered}
z=17 \div\left(\frac{-17}{5}\right)=-5 \\
-5 y-20=-10 \Rightarrow y=-2 \\
x-2+5=6 \Rightarrow x=3
\end{gathered}
$$

(b) Let $x=\lambda$.

Method 1

In first plane: $x+y-z=6$.
$\lambda+(4 \lambda-14)-(5 \lambda-20)=5 \lambda-5 \lambda+6=6$.
In the second plane:
$2 x-3 y+2 z=2 \lambda-3(4 \lambda-14)+2(5 \lambda-20)=5 \lambda-5 \lambda+2=2$.
Method 2

$$
\begin{gathered}
y-z=6-\lambda \Rightarrow y=6+z-\lambda \\
-3 y+2 z=2-2 \lambda \\
(-18-3 z+3 \lambda)+2 z=2-2 \lambda \\
-z=20-5 \lambda \Rightarrow z=5 \lambda-20 \\
\text { and } y=4 \lambda-14
\end{gathered}
$$

Method 2

$$
\begin{aligned}
& x+y-z=6 \\
& 2 x-3 y+2 z=2 \\
& 5 x-z=20 \\
& 5 x-y=14 \\
& y=4 x-14 \\
& z=5 x-20 \\
&4 x)+3 \\
& x=\lambda, y= 4 \lambda-14, z=5 \lambda-20
\end{aligned}
$$

(c) Direction of L is $\mathbf{i}+4 \mathbf{j}+5 \mathbf{k}$, direction of normal to the plane is $-5 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$. Letting θ be the angle between these then

$$
\begin{aligned}
\cos \theta & =\frac{-5+8-20}{\sqrt{42} \sqrt{45}} \\
& =\frac{-17}{3 \sqrt{210}}
\end{aligned}
$$

This gives a value of 113.0° which leads to the angle

$$
113.0^{\circ}-90^{\circ}=23.0^{\circ} .
$$

Source: 2008 Q14 AH Maths

(13) (a) Find an equation of the plane π_{1} through the points $A(1,1,1), B(2,-1,1)$ and $C(0,3,3)$.
(b) The plane π_{2} has equation $x+3 y-z=2$.

Given that the point $(0, a, b)$ lies on both the planes π_{1} and π_{2}, find the values of a and b. Hence find an equation of the line of intersection of the planes π_{1} and π_{2}.
(c) Find the size of the acute angle between the planes π_{1} and π_{2}.

Answers:
(a)

$$
\begin{aligned}
& \overrightarrow{A B}=\mathbf{i}-2 \mathbf{j} \quad \overrightarrow{A C}=-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k} \\
& \overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -2 & 0 \\
-1 & 2 & 2
\end{array}\right|=(-4-0) \mathbf{i}-(2-0) \mathbf{j}+(2-2) \mathbf{k} \\
&=-4 \mathbf{i}-2 \mathbf{j}
\end{aligned}
$$

Equation is

$$
\begin{gather*}
-4 x-2 y=k \\
=-4(1)-2(1)=-6 \tag{1}\\
\text { i.e. }-2 x-y=-3 \\
2 x+y=3
\end{gather*}
$$

(b) In $\pi_{1}: 2 \times 0+a=3 \Rightarrow a=3$.

In $\pi_{2}: 0+3 a-b=2 \Rightarrow b=3 a-2=7$.
Hence the point of intersection is $(0,3,7)$.
Line of intersection: direction from

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-4 & -2 & 0 \\
1 & 3 & -1
\end{array}\right|=2 \mathbf{i}-4 \mathbf{j}-10 \mathbf{k} \\
& x=0+2 t ; y=3-4 t ; z=7-10 t
\end{aligned}
$$

There are many valid variations on this (including symmetric form) and these were marked on their merits.
(c) Let the angle be θ, then

$$
\cos \theta=\left|\frac{(-4 \mathbf{i}-2 \mathbf{j}) \cdot(\mathbf{i}+3 \mathbf{j}-\mathbf{k})}{\sqrt{4^{2}+2^{2}} \sqrt{1^{2}+3^{2}+1^{2}}}\right|=\left|\frac{-4-6}{\sqrt{20 \times 11}}\right|=\frac{5}{\sqrt{55}} \quad \mathbf{1 M}, \mathbf{1}
$$

or

$$
\begin{aligned}
\sin \theta & =\left|\frac{(-4 \mathbf{i}-2 \mathbf{j}) \times(\mathbf{i}+3 \mathbf{j}-\mathbf{k})}{\sqrt{4^{2}+2^{2}} \sqrt{1^{2}+3^{2}+1^{2}}}\right| \\
& =\frac{\sqrt{2^{2}+4^{2}+10^{2}}}{\sqrt{20} \sqrt{11}}=\sqrt{\frac{120}{20 \times 11}}=\sqrt{\frac{6}{11}}
\end{aligned}
$$

Lines L_{1} and L_{2} are given by the parametric equations

$$
\begin{equation*}
L_{1}: x=2+s, y=-s, z=2-s \quad L_{2}: x=-1-2 t, y=t, z=2+3 t . \tag{14}
\end{equation*}
$$

(a) Show that L_{1} and L_{2} do not intersect.
(b) The line L_{3} passes through the point $P(1,1,3)$ and its direction is perpendicular to the directions of both L_{1} and L_{2}. Obtain parametric equations for L_{3}.
(c) Find the coordinates of the point Q where L_{3} and L_{2} intersect and verify that P lies on L_{1}.
(d) $P Q$ is the shortest distance between the lines L_{1} and L_{2}. Calculate $P Q$.

Answers:
(a) Equating the x-coordinates: $2+s=-1-2 t \Rightarrow s+2 t=-3$ (1)

Equating the y-coordinates: $-s=t \Rightarrow s=-t$
Substituting in (1): $-t+2 t=-3 \Rightarrow t=-3 \Rightarrow s=3$.
Putting $s=3$ in L_{1} gives $(5,-3,-1)$ and $t=-3$ in $L_{2},(5,-3,-7)$.
As the z coordinates differ, L_{1} and L_{2} do not intersect.
(b) Directions of L_{1} and L_{2} are: $\mathbf{i}-\mathbf{j}-\mathbf{k}$ and $-2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$. The vector product of these gives the direction of L_{3}.

$$
(\mathbf{i}-\mathbf{j}-\mathbf{k}) \times(-2 \mathbf{i}+\mathbf{j}+3 \mathbf{k})=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & -1 \\
-2 & 1 & 3
\end{array}\right|=-2 \mathbf{i}-\mathbf{j}-\mathbf{k}
$$

Equation of L_{3} :

$$
\begin{aligned}
\mathbf{r} & =\mathbf{i}+\mathbf{j}+3 \mathbf{k}+(-2 \mathbf{i}-\mathbf{j}-\mathbf{k}) u \\
& =(1-2 u) \mathbf{i}+(1-u) \mathbf{j}+(3-u) \mathbf{k}
\end{aligned}
$$

Hence L_{3} is given by $x=1-2 u, y=1-u, z=3-u$.
(c) Solving the x and y coordinates of L_{3} and L_{2} :

$$
\begin{gathered}
-1-2 t=1-2 u \text { and } t=1-u \\
\Rightarrow-1=3-4 u \Rightarrow u=1 \text { and } t=0
\end{gathered}
$$

The point of intersection, Q, is $(-1,0,2)$ since $2+3 t=2$ and $3-u=2$. $\quad 1$
L_{1} is $x=2+s, y=-s, z=2-s$. When $x=1, s=-1$ and hence $y=1$ and $z=3$, i.e. P lies on L_{1}.
(d) $P Q=\sqrt{2^{2}+1^{2}+1^{2}}=\sqrt{6}$.

