Further Integration

AH Maths Exam Questions

Source: 2019 Specimen P2 Q6 AH Maths (Same as 2010 Q3a)

(1)

Use the substitution $t = x^4$ to obtain $\int \frac{x^3}{1+x^8} dx$.

Answer: $\frac{1}{4}tan^{-1}x^4 + c$

Source: 2019 Q16a AH Maths

(2)

- (a) Use integration by parts to find the exact value of $\int_0^1 (x^2 2x + 1)e^{4x} dx$.
- (b) A solid is formed by rotating the curve with equation $y = 4(x-1)e^{2x}$ between x = 0 and x = 1 through 2π radians about the x-axis.

Find the exact value of the volume of this solid.

- Answers: (a) $\frac{1}{32} (e^4 13)$ (b) $\frac{\pi}{2} (e^4 13)$

Source: 2018 Q15a AH Maths

- (3) (a) Use integration by parts to find $\int x \sin 3x \ dx$.
 - (b) Hence find the particular solution of

$$\frac{dy}{dx} - \frac{2}{x}y = x^3 \sin 3x, \quad x \neq 0$$

given that $x = \pi$ when y = 0.

Express your answer in the form y = f(x).

Answers:

(a)
$$-\frac{x}{3}\cos 3x + \frac{1}{9}\sin 3x + c$$

(b)
$$y = -\frac{x^3}{3}\cos 3x + \frac{x^2}{9}\sin 3x - \frac{\pi x^2}{3}$$

Source: 2017 Q6 AH Maths

(4) Use the substitution $u = 5x^2$ to find the exact value of $\int_0^{\frac{1}{\sqrt{10}}} \frac{x}{\sqrt{1-25x^4}} dx$.

Answer: $Exact\ value = \frac{\pi}{60}$

Source: 2016 Q9 AH Maths

(5) Obtain $\int x^7 (\ln x)^2 dx$.

Answer:

 $\frac{1}{8}x^{8} (\ln x)^{2} - \frac{1}{32}x^{8} (\ln x) + \frac{1}{256}x^{8} + c$

Source: 2015 Q10 AH Maths

(6) Obtain the exact value of $\int_0^2 x^2 e^{4x} dx$.

Answer: $\frac{25}{32}e^8 - \frac{1}{32} = \frac{1}{32}(25e^8 - 1)$

Source: 2014 Q15 AH Maths

(7) (a) Use integration by parts to obtain an expression for $\int e^x \cos x \ dx.$

- (b) Similarly, given $I_n = \int e^x \cos nx \ dx$ where $n \neq 0$, obtain an expression for I_n .
- (c) Hence evaluate $\int_0^{\frac{\pi}{2}} e^x \cos 8x \ dx$.

Answers:

(a)
$$\frac{1}{2}e^x(\sin x + \cos x) + c$$

(b)
$$I_n = \left(\frac{e^x}{1+n^2}\right) (nsinnx + cosnx) + c$$

(c)
$$\frac{1}{65} (e^{\frac{\pi}{2}} - 1)$$

Source: 2013 Q8 AH Maths

(8) Use integration by parts to obtain $\int x^2 \cos 3x \, dx$.

Answer:

$$\frac{1}{3}x^2 \sin 3x + \frac{2}{9}x \cos 3x - \frac{2}{27}\sin 3x + c$$

Source: 2012 Q11 AH Maths

- (9) (a) Write down the derivative of $\sin^{-1}x$.
 - (b) Use integration by parts to obtain $\int \sin^{-1} x \cdot \frac{x}{\sqrt{1-x^2}} dx$.

Answers:

(a)
$$\frac{1}{\sqrt{1-x^2}}$$

(b)
$$x - \sin^{-1}x \cdot \sqrt{1 - x^2} + c$$

Source: 2011 Q11b AH Maths

- (10) (a) Obtain the exact value of $\int_0^{\pi/4} (\sec x x)(\sec x + x) dx$.
 - (b) Find $\int \frac{x}{\sqrt{1-49x^4}} dx$.

Answers:

(a)
$$1 - \frac{\pi^3}{192}$$

(b)
$$\frac{1}{14} \sin^{-1} 7x^2 + c$$

Source: 2010 Q3 AH Maths

- (11)
- (a) Use the substitution $t = x^4$ to obtain $\int \frac{x^3}{1+x^8} dx$.
 - (b) Integrate $x^2 \ln x$ with respect to x.

Answers:

(a)
$$\frac{1}{4}tan^{-1}x^4 + c$$

(a)
$$\frac{1}{4}tan^{-1}x^4 + c$$
 (b) $\frac{1}{3}x^3lnx - \frac{1}{9}x^3 + c$

Source: 2010 Q7 AH Maths

Evaluate (12)

$$\int_{1}^{2} \frac{3x+5}{(x+1)(x+2)(x+3)} \, dx$$

expressing your answer in the form $\ln \frac{a}{b}$, where a and b are integers.

Answer: $ln\frac{32}{25}$

Source: 2009 Q9 AH Maths

(13)

Use integration by parts to obtain the exact value of $\int_0^1 x \tan^{-1} x^2 dx$.

Answer:

$$\frac{\pi}{2} - \frac{\ln 2}{4}$$

Source: 2008 Q7 AH Maths

(14) Use integration by parts to obtain $\int 8x^2 \sin 4x \, dx$.

Answer:

$$-2x^2\cos 4x + x\sin 4x + \frac{1}{4}\cos 4x + c$$

Source: 2007 Q4 AH Maths

(15) Express $\frac{2x^2 - 9x - 6}{x(x^2 - x - 6)}$ in partial fractions.

Given that

$$\int_{4}^{6} \frac{2x^{2} - 9x - 6}{x(x^{2} - x - 6)} dx = \ln \frac{m}{n},$$

determine values for the integers m and n.

Answers:

$$\frac{1}{x} + \frac{2}{x+2} - \frac{1}{x-3}$$

$$m = 8$$
, $n = 9$