advancedhighermaths.co.uk

Differentiation

AH Maths Exam Questions

Source: 2019 Specimen P1 Q2 AH Maths
(1) Given $f(x)=2 x \tan x$, where $0<x<\frac{\pi}{2}$, obtain $f^{\prime}\left(\frac{\pi}{4}\right)$.

Answer: $f^{\prime}\left(\frac{\pi}{4}\right)=2+\pi$
Source: 2019 Q1a,b AH Maths
(2) (a) Differentiate $f(x)=x^{6} \cot 5 x$.
(b) Given $y=\frac{2 x^{3}+1}{x^{3}-4}$, find $\frac{d y}{d x}$. Simplify your answer.
(c) For $f(x)=\cos ^{-1} 2 x$ evaluate $f^{\prime}\left(\frac{\sqrt{3}}{4}\right)$.

Answers: (a) $6 x^{5} \cot 5 x-5 x^{6} \operatorname{cosec}^{2} 5 x$
(b) $\frac{-27 x^{2}}{\left(x^{3}-4\right)^{2}}$
(c) -4

Source: 2019 Q6 AH Maths

(3) A spherical balloon of radius $r \mathrm{~cm}, r>0$, deflates at a constant rate of $60 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Calculate the rate of change of the radius with respect to time when $r=3$.
$\left[\right.$ The volume of a sphere is given by $V=\frac{4}{3} \pi r^{3}$.]

Answer: \quad Rate of change $=-\frac{5}{3 \pi} \mathrm{cms}^{-1}$

Source: 2018 Q1b AH Maths

(4) (a) Given $f(x)=\sin ^{-1} 3 x$, find $f^{\prime}(x)$.
(b) Differentiate $y=\frac{e^{5 x}}{7 x+1}$.
(c) For $y \cos x+y^{2}=6 x$, use implicit differentiation to find $\frac{d y}{d x}$.

Answers:

$$
\text { (a) } \frac{3}{\sqrt{1-9 x^{2}}} \quad \text { (b) } \frac{5(7 x+1) e^{5 x}-7 e^{5 x}}{(7 x+1)^{2}} \quad \text { (c) } \frac{6+y \sin x}{\cos x+2 y}
$$

Source: 2017 Q3 AH Maths
(5) On a suitable domain, a function is defined by $f(x)=\frac{e^{x^{2}-1}}{x^{2}-1}$.

Find $f^{\prime}(x)$, simplifying your answer.

Answer:

$$
f^{\prime}(x)=\frac{2 x e^{x^{2}-1}\left(x^{2}-2\right)}{\left(x^{2}-1\right)^{2}}
$$

Source: 2016 Q1a,b AH Maths

(6) (a) Differentiate $y=x \tan ^{-1} 2 x$.
(b) Given $f(x)=\frac{1-x^{2}}{1+4 x^{2}}$, find $f^{\prime}(x)$, simplifying your answer.
(c) A curve is given by the parametric equations

$$
x=6 t \text { and } y=1-\cos t .
$$

Find $\frac{d y}{d x}$ in terms of t.

Answers: (a) $\tan ^{-1} 2 x+\frac{2 x}{1+4 x^{2}} \quad$ (b) $\frac{-10 x}{\left(1+4 x^{2}\right)^{2}} \quad$ (c) $\frac{1}{6} \sin t$

Source: 2015 Q2 AH Maths
(7) (a) For $y=\frac{5 x+1}{x^{2}+2}$, find $\frac{d y}{d x}$. Express your answer as a single, simplified fraction.
(b) Given $f(x)=e^{2 x} \sin ^{2} 3 x$, obtain $f^{\prime}(x)$.

Answers:
(a) $\frac{d y}{d x}=\frac{-5 x^{2}-2 x+10}{\left(x^{2}+2\right)^{2}}$
(b) $f^{\prime}(x)=e^{2 x}\left(2 \sin ^{2} 3 x+3 \sin 6 x\right)$

Source: 2014 Q1 AH Maths

(8) (a) Given

$$
f(x)=\frac{x^{2}-1}{x^{2}+1}
$$

obtain $f^{\prime}(x)$ and simplify your answer.
(b) Differentiate $y=\tan ^{-1}\left(3 x^{2}\right)$.

Answers: (a) $f^{\prime}(x)=\frac{4 x}{\left(x^{2}+1\right)^{2}} \quad$ (b) $f^{\prime}(x)=\frac{6 x}{1+9 x^{4}}$

Source: 2014 Q13 AH Maths

(9) The fuel efficiency, F, in km per litre, of a vehicle varies with its speed, $s \mathrm{~km}$ per hour, and for a particular vehicle the relationship is thought to be

$$
F=15+e^{x}(\sin x-\cos x-\sqrt{2}), \quad \text { where } x=\frac{\pi(s-40)}{80},
$$

for speeds in the range $40 \leq s \leq 120 \mathrm{~km}$ per hour.
What is the greatest and least efficiency over the range and at what speeds do they occur?

Answers:
Greatest Efficiency is $15 \mathrm{~km} /$ litre at $100 \mathrm{~km} / \mathrm{h}$
Least Efficiency is $5.4 \mathrm{~km} /$ litre at $120 \mathrm{~km} / \mathrm{h}$

Source: 2013 Q2 AH Maths
(10) Differentiate $f(x)=e^{\cos x} \sin ^{2} x$.

Answer: $e^{\cos x} \sin x\left(2 \cos x-\sin ^{2} x\right)$

Source: 2012 Q1 AH Maths
(11) (a) Given $f(x)=\frac{3 x+1}{x^{2}+1}$, obtain $f^{\prime}(x)$.
(b) Let $g(x)=\cos ^{2} x \exp (\tan x)$. Obtain an expression for $g^{\prime}(x)$ and simplify your answer.

Answers:
(a) $f^{\prime}(x)=\frac{-3 x^{2}-2 x+3}{\left(x^{2}+1\right)^{2}}$
(b) $g^{\prime}(x)=(1-\sin 2 x) \tan x$

Source: 2011 Q7 AH Maths

(12) A curve is defined by the equation $y=\frac{e^{\sin x}(2+x)^{3}}{\sqrt{1-x}}$ for $x<1$.

Calculate the gradient of the curve when $x=0$.

Answer: Gradient $=24$

Source: 2010 Q1 AH Maths

Differentiate the following functions.
(a) $f(x)=e^{x} \sin x^{2}$.
(b) $g(x)=\frac{x^{3}}{(1+\tan x)}$.

Answers:
(a) $f^{\prime}(x)=e^{x} \sin x^{2}+e^{x}\left(2 x \cos x^{2}\right)$
(b) $g^{\prime}(x)=\frac{3 x^{2}(1+\tan x)-x^{3} \sec ^{2} x}{(1+\tan x)^{2}}$

Source: 2009 Q1a AH Maths

(14) (a) Given $f(x)=(x+1)(x-2)^{3}$, obtain the values of x for which $f^{\prime}(x)=0$.
(b) Calculate the gradient of the curve defined by $\frac{x^{2}}{y}+x=y-5$ at the point $(3,-1)$.

Answers:
(a) $y=\ln \left(2-\frac{1}{x}\right)$
(b) $m=\frac{d y}{d x}=-\frac{1}{2}$

Source: 2008 Q10 AH Maths

(15) A body moves along a straight line with velocity $v=t^{3}-12 t^{2}+32 t$ at time t.
(a) Obtain the value of its acceleration when $t=0$.
(b) At time $t=0$, the body is at the origin O. Obtain a formula for the displacement of the body at time t.

Show that the body returns to O, and obtain the time, T, when this happens.

Answers:
(a) Acceleration $=32$ when $t=0$
(b) Displacement of body at time $t: x(t)=\frac{t^{4}}{4}-4^{3}+16 t^{2}$

The body returns to 0 when $t=8$

Source: 2008 Q15 AH Maths

(16) Let $f(x)=\frac{x}{\ln x}$ for $x>1$.
(a) Derive expressions for $f^{\prime}(x)$ and $f^{\prime \prime}(x)$, simplifying your answers.
(b) Obtain the coordinates and nature of the stationary point of the curve $y=f(x)$.
(c) Obtain the coordinates of the point of inflexion.

Answers:
(a) $f^{\prime}(x)=\frac{\ln x-1}{(\ln x)^{2}}, \quad f^{\prime \prime}(x)=\frac{2-\ln x}{x(\ln x)^{3}}$
(b) Minimum stationaty point at coordinates (e, e)
(c) Coordinates $=\left(e^{2}, \frac{e^{2}}{2}\right)$

Source: 2007 Q2 AH Maths

(17) Obtain the derivative of each of the following functions:
(a) $f(x)=\exp (\sin 2 x)$;
(b) $y=4^{\left(x^{2}+1\right)}$.

Answers:
(a) $f^{\prime}(x)=2 \cos 2 x \exp (\sin 2 x)$
(b) $\frac{d y}{d x}=2 x \ln 4.4^{\left(x^{2}+1\right)}$

