advancedhighermaths.co.uk

Systems of Equations

AH Maths Exam Questions

Source: 2019 Specimen P1 Q3 AH Maths
(1) Use Gaussian elimination to solve the following system of equations.

$$
\begin{array}{r}
x+y+3 z=2 \\
2 x+y+z=2 \\
3 x+2 y+5 z=5
\end{array}
$$

Answers: $x=2, y=-3, z=1$

Source: 2017 Q5 AH Maths
(2)
(a) (i) Use Gaussian elimination on the system of equations below to give an expression for z in terms of λ.

$$
\begin{aligned}
x+2 y-z & =-3 \\
4 x-2 y+3 z & =11 \\
3 x+y+2 \lambda z & =8
\end{aligned}
$$

(ii) For what value of λ is this system of equations inconsistent?
(b) Determine the solution of this system when $\lambda=-2 \cdot 5$.

Answers:
(a) (i) $z=\frac{11}{4 \lambda-1}$
(ii) $\lambda=\frac{1}{4}$
(b) $z=-1, y=-3, x=2$

Source: 2016 Q4 AH Maths

(3) Below is a system of equations:

$$
\begin{aligned}
x+2 y+3 z & =3 \\
2 x-y+4 z & =5 \\
x-3 y+2 \lambda z & =2
\end{aligned}
$$

Use Gaussian elimination to find the value of λ which leads to redundancy.

Answer: $\quad \lambda=\frac{1}{2}$

Source: 2014 Q3 AH Maths

(4) Use Gaussian elimination on the system of equations below to give an expression for z in terms of λ.

$$
\begin{array}{r}
x+y+z=2 \\
4 x+3 y-\lambda z=4 \\
5 x+6 y+8 z=11
\end{array}
$$

For what values of λ does this system have a solution?
Determine the solution to this system of equations when $\lambda=2$.

Answers: $\quad \lambda \neq-1, \quad z=1, \quad y=-2, \quad x=3$
(a) Use Gaussian elimination to obtain the solution of the following system of equations in terms of the parameter λ.

$$
\begin{aligned}
4 x+6 z & =1 \\
2 x-2 y+4 z & =-1 \\
-x+y+\lambda z & =2
\end{aligned}
$$

(b) Describe what happens when $\lambda=-2$.
(c) When $\lambda=-1 \cdot 9$ the solution is $x=-22 \cdot 25, y=8 \cdot 25, z=15$.

Find the solution when $\lambda=-2 \cdot 1$.
Comment on these solutions.

Answers:

(a) $x=\frac{\lambda-7}{4(2+\lambda)}$
(b) When $\lambda=-2$, the final row gives $0=6$
which is inconsistent.
There are no solutions.
(c) $\lambda=-2.1 ; x=22.75 ; y=-6.75 ; z=-15$

Although the values of λ are close, the values
of x, y and z are quite different. The
system is ill-conditioned near $\lambda=-2$.

Source: 2009 Q16a AH Maths

(6)
(a) Use Gaussian elimination to solve the following system of equations

$$
\begin{array}{r}
x+y-z=6 \\
2 x-3 y+2 z=2 \\
-5 x+2 y-4 z=1
\end{array}
$$

(b) Show that the line of intersection, L, of the planes $x+y-z=6$ and $2 x-3 y+2 z=2$ has parametric equations

$$
\begin{aligned}
& x=\lambda \\
& y=4 \lambda-14 \\
& z=5 \lambda-20 .
\end{aligned}
$$

(c) Find the acute angle between line L and the plane $-5 x+2 y-4 z=1$.

Answers: (a) $x=3, y=-2, z=-5 \quad$ (b) Proof \quad (c) Acute angle $=23.0^{\circ}$

Source: 2006 Q1 AH Maths
(7) Use Gaussian elimination to obtain solutions of the equations

$$
\begin{aligned}
& 2 x-y+2 z=1 \\
& x+y-2 z=2 \\
& x-2 y+4 z=-1
\end{aligned}
$$

Answers: $\quad z=t, \quad y=1+2 t, \quad x=1$

Source: 2005 Q6 AH Maths

(8) Use Gaussian Elimination to solve the system of equations below when $\lambda \neq 2$.

$$
\begin{aligned}
& x+y+2 z=1 \\
& 2 x+\lambda y+z=0 \\
& 3 x+3 y+9 z=5
\end{aligned}
$$

Explain what happens when $\lambda=2$.

Answers:

$$
\left(\begin{array}{lll|l}
1 & 1 & 2 & 1 \\
2 & \lambda & 1 & 0 \\
3 & 3 & 9 & 5
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 2 & 1 \\
0 & \lambda-2 & -3 & -2 \\
0 & 0 & 3 & 2
\end{array}\right)
$$

$z=\frac{2}{3} ;$
$(\lambda-2) y-2=-2 \Rightarrow y=0 ; x=1-0-\frac{4}{3}=-\frac{1}{3}$.
When $\lambda=2$, the second and third rows of the second matrix are the same,
so there is an infinite number of solutions.
(\dagger) Use of 'redundant' is worth a mark.
Interpretation in geometrical terms can be given both the marks.

Source: 2003 Q6 AH Maths
(9)

Use elementary row operations to reduce the following system of equations to upper triangular form.

$$
\begin{aligned}
& x+y+3 z=1 \\
& 3 x+a y+z=1 \\
& x+y+z=-1
\end{aligned}
$$

Hence express x, y and z in terms of the parameter a.
Explain what happens when $a=3$.

Answers:

$$
\begin{aligned}
x+y+3 z & =1 \\
3 x+a y+z & =1 \\
x+y+z & =-1
\end{aligned}
$$

Hence

$$
\begin{aligned}
x+y+3 z & =1 \\
(a-3) y-8 z & =-2 \\
-2 z & =-2
\end{aligned}
$$

When $a \neq 3$, we can solve to give a unique solution.

$$
z=1 ; \quad y=\frac{6}{a-3} ; \quad x=-2+\frac{6}{3-a} .
$$

When $a=3$, we get $z=\frac{1}{4}$ from the second equation but $z=1 \ddagger$ from the third, i.e. inconsistent ${ }^{\S}$.

Source: 2002 Q1 AH Maths
(10) Use Gaussian Elimination to solve the following system of equations.

$$
\begin{aligned}
& x+y+3 z=2 \\
& 2 x+y+z=2 \\
& 3 x+2 y+5 z=5
\end{aligned}
$$

Answers:

$$
z=1, \quad y=-3, \quad x=2
$$

