advancedhighermaths.co.uk

Binomial Theorem

AH Maths Exam Questions

Source: 2019 Specimen P2 Q3 AH Maths (Same as 2016 Q3)
(1) Write down and simplify the general term in the binomial expansion of $\left(\frac{3}{x}-2 x\right)^{13}$. Hence, or otherwise, find the term in x^{9}.

Answers:

$$
{ }^{13} C_{r}(3)^{13-r}(-2)^{r} x^{2 r-13}
$$

$-1437696 x^{9}($ when $r=11)$

Source: 2019 Q9 AH Maths
(a) Write down and simplify the general term in the binomial expansion of
(2) $\left(2 x^{2}-\frac{d}{x^{3}}\right)^{7}$, where d is a constant.
(b) Given that the coefficient of $\frac{1}{x}$ is -70000 , find the value of d.

Answers:
(a) $\binom{7}{2} \cdot 2^{7-r} \cdot(-d)^{r} \cdot x^{14-5 r}$
(b) $r=3, d=5$

Source: 2018 Q3 AH Maths
(3) (a) Write down and simplify the general term in the binomial expansion of $\left(2 x+\frac{5}{x^{2}}\right)^{9}$.
(b) Hence, or otherwise, find the term independent of x.

Answers:
(a) $\binom{9}{r} \cdot 2^{9-r} \cdot 5^{r} \cdot x^{9-3 r}$
(b) $672000($ when $r=3)$

Source: 2017 Q1 AH Maths

(4) Write down the binomial expansion of $\left(\frac{2}{y^{2}}-5 y\right)^{3}$ and simplify your answer.

Answer: $\frac{8}{y^{6}}-\frac{60}{y^{3}}+150-123 y^{3}$

Source: 2015 Q1 AH Maths

(5)

Use the binomial theorem to expand and simplify

$$
\left(\frac{x^{2}}{3}-\frac{2}{x}\right)^{5}
$$

Answer:

$$
\frac{x^{10}}{243}-\frac{10 x^{7}}{81}+\frac{40 x^{4}}{27}-\frac{80 x}{9}+\frac{80}{3 x^{2}}-\frac{32}{x^{5}}
$$

Source: 2015 Q9 AH Maths
(6)

Show that

$$
\binom{n+2}{3}-\binom{n}{3}=n^{2}
$$

for all integers, n, where $n \geq 3$.

Answer:

$$
\begin{aligned}
& \binom{n+2}{3}-\binom{n}{3} \\
= & \frac{(n+2)!}{(n+2-3)!3!}-\frac{n!}{(n-3)!3!} \\
= & \frac{(n+2)(n+1) n(n-1)!}{(n-1)!3!}-\frac{n(n-1)(n-2)(n-3)!}{(n-3)!3!} \\
= & \frac{(n+2)(n+1) n}{3!}-\frac{n(n-1)(n-2)}{3!} \\
= & \frac{n}{3!}[(n+2)(n+1)-(n-1)(n-2)]^{*} \\
= & \frac{n}{6}\left(n^{2}+3 n+2-n^{2}+3 n-2\right) \\
= & \frac{n}{6}(6 n) \\
= & n^{2} \quad \text { as required }
\end{aligned}
$$

- ${ }^{1}$ demonstrates
understanding of factorial form algebraically ${ }^{1}$.
${ }^{2}{ }^{2}$ using property
$n!=n(n-1)!$
- ${ }^{3}$ correctly expressing with common denominator OR as a single fraction ${ }^{1,5}$.
- ${ }^{4}$ simplification to answer, line * (or equivalent) essential.

Source: 2014 Q2 AH Maths

(7) Write down and simplify the general term in the expression $\left(\frac{2}{x}+\frac{1}{4 x^{2}}\right)^{10}$

Hence, or otherwise, obtain the term in $\frac{1}{x^{13}}$.
Answers: $\binom{10}{r} 2^{3 r-20} x^{r-20} \quad$ OR $\binom{10}{r} 2^{10-3 r} x^{-r-10} \quad \frac{240}{x^{13}}$

Source: 2013 Q1 AH Maths

(8) Write down the binomial expansion of $\left(3 x-\frac{2}{x^{2}}\right)^{4}$ and simplify your answer.

Answer:

$$
81 x^{4}-216 x+\frac{216}{x^{2}}-\frac{96}{x^{5}}+\frac{16}{x^{8}}
$$

Source: 2012 Q4 AH Maths

(9) Write down and simplify the general term in the expansion of $\left(2 x-\frac{1}{x^{2}}\right)^{9}$. Hence, or otherwise, obtain the term independent of x.

Answer: -5376

Source: 2011 Q2 AH Maths
(10) Use the binomial theorem to expand $\left(\frac{1}{2} x-3\right)^{4}$ and simplify your answer.

Answer:

$$
\frac{x^{4}}{16}-\frac{3 x^{3}}{2}+\frac{27 x^{2}}{2}-54 x+81 .
$$

Source: 2010 Q5 AH Maths
(11) Show that

$$
\binom{n+1}{3}-\binom{n}{3}=\binom{n}{2}
$$

where the integer n is greater than or equal to 3 .

Answer:

$$
\begin{array}{rlr|l}
\binom{n+1}{3}-\binom{n}{3} & =\frac{(n+1)!}{3!(n-2)!}-\frac{n!}{3!(n-3)!} & \mathbf{1} & \begin{array}{l}
\text { both terms correct } \\
\text { alternative methods } \\
\text { appear }\} \\
\text { will app }
\end{array} \\
& =\frac{(n+1)!}{3!(n-2)!}-\frac{n!(n-2)}{3!(n-2)!} & & \begin{array}{l}
\text { (n+1)!-n!(n-2)} \\
3!(n-2)! \\
\text { correct numerator } \\
\text { correct denominator }
\end{array} \\
& =\frac{n![(n+1)-(n-2)]}{3!(n-2)!} & \mathbf{1} & \mathbf{1} \\
& =\frac{n!\times 3}{3!(n-2)!}=\frac{n!}{2!(n-2)!} & \mathbf{1} & \mathbf{1} \text { for knowing (anywhere }) \\
(n-2)!=(n-2) \times(n-3)!
\end{array}
$$

Source: 2009 Q8 AH Maths

(12) (a) Write down the binomial expansion of $(1+x)^{5}$.
(b) Hence show that $0 \cdot 9^{5}$ is $0 \cdot 59049$.

Answers
(a)

$$
(1+x)^{5}=1+5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5}
$$

(b)

$$
\begin{aligned}
& \text { Let } x=-0 \cdot 1, \text { then } \\
& \qquad \begin{aligned}
0 \cdot 9^{5} & =(1+(-0 \cdot 1))^{5} \\
& =1-0 \cdot 5+0 \cdot 1-0 \cdot 01+0 \cdot 0005-0 \cdot 00001 \\
& =0 \cdot 5+0 \cdot 09+0 \cdot 00049 \\
& =0 \cdot 59049
\end{aligned}
\end{aligned}
$$

Source: 2008 Q8 AH Maths

Write down and simplify the general term in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{10}$. Hence, or otherwise, obtain the term in x^{14}.

Answers

$$
\begin{gathered}
\binom{10}{r}\left(x^{2}\right)^{10-r}\left(\frac{1}{x}\right)^{r} \\
=\binom{10}{r} x^{20-3 r} \\
20-3 r=14 \Rightarrow r=2 \\
\text { term is } 45 x^{14}
\end{gathered}
$$

$$
\begin{gathered}
\binom{10}{r}\left(x^{2}\right)^{r}\left(\frac{1}{x}\right)^{10-r}=\binom{10}{r} x^{3 r-10} \\
3 r-10=14 \Rightarrow r=8 \\
\text { term is } 45 x^{14}
\end{gathered}
$$

Source: 2007 Q1 AH Maths

(14) Express the binomial expansion of $\left(x-\frac{2}{x}\right)^{4}$ in the form $a x^{4}+b x^{2}+c+\frac{d}{x^{2}}+\frac{e}{x^{4}}$ for integers a, b, c, d and e.

Answers

$$
\begin{aligned}
\left(x-\frac{2}{x}\right)^{4} & =x^{4}+4 x^{3}\left(-\frac{2}{x}\right)+6 x^{2}\left(-\frac{2}{x}\right)^{2}+4 x\left(-\frac{2}{x}\right)^{3}+\left(-\frac{2}{x}\right)^{4} \\
& =x^{4}-8 x^{2}+24-\frac{32}{x^{2}}+\frac{16}{x^{4}}
\end{aligned}
$$

