Binomial Theorem

AH Maths Exam Questions

Source: 2019 Specimen P2 Q3 AH Maths (Same as 2016 Q3)

Write down and simplify the general term in the binomial expansion of $\left(\frac{3}{x}-2x\right)^3$. (1) Hence, or otherwise, find the term in x^9 .

Answers:

$$^{13}C_r(3)^{13-r}(-2)^r x^{2r-13}$$

 $-1437696x^9$ (when r = 11)

Source: 2019 Q9 AH Maths

(2)

- (a) Write down and simplify the general term in the binomial expansion of $\left(2x^2-\frac{d}{x^3}\right)'$, where d is a constant.
- (b) Given that the coefficient of $\frac{1}{r}$ is $-70\,000$, find the value of d.

Answers:

(a)
$$\binom{7}{2} \cdot 2^{7-r} \cdot (-d)^r \cdot x^{14-5r}$$
 (b) $r = 3, d = 5$

(b)
$$r = 3$$
, $d = 5$

Source: 2018 Q3 AH Maths

- (3)
- (a) Write down and simplify the general term in the binomial expansion of $\left(2x+\frac{5}{x^2}\right)^2$.
- (b) Hence, or otherwise, find the term independent of *x*.

Answers:

- (a) $\binom{9}{r}$ $\cdot 2^{9-r} \cdot 5^r \cdot x^{9-3r}$ (b) 672000 (when r = 3)

Source: 2017 Q1 AH Maths

(4)

Write down the binomial expansion of $\left(\frac{2}{v^2} - 5y\right)^3$ and simplify your answer.

Answer: $\frac{8}{v^6} - \frac{60}{v^3} + 150 - 123y^3$

Source: 2015 Q1 AH Maths

(5)

Use the binomial theorem to expand and simplify

$$\left(\frac{x^2}{3} - \frac{2}{x}\right)^5.$$

Answer:

$$\frac{x^{10}}{243} - \frac{10x^7}{81} + \frac{40x^4}{27} - \frac{80x}{9} + \frac{80}{3x^2} - \frac{32}{x^5}$$

Source: 2015 Q9 AH Maths

(6)

Show that

$$\binom{n+2}{3} - \binom{n}{3} = n^2,$$

for all integers, n, where $n \ge 3$.

Answer:

$${\binom{n+2}{3}} - {\binom{n}{3}}$$

$$= \frac{(n+2)!}{(n+2-3)! \, 3!} - \frac{n!}{(n-3)! \, 3!}$$

$$= \frac{(n+2)(n+1)n(n-1)!}{(n-1)! \, 3!} - \frac{n(n-1)(n-2)(n-3)!}{(n-3)! \, 3!}$$

$$= \frac{(n+2)(n+1)n}{3!} - \frac{n(n-1)(n-2)}{3!}$$

$$= \frac{n}{3!} [(n+2)(n+1) - (n-1)(n-2)]^*$$

$$= \frac{n}{6} (n^2 + 3n + 2 - n^2 + 3n - 2)$$

$$= \frac{n}{6} (6n)$$

$$= n^2 \quad \text{as required}$$

4

- demonstrates understanding of factorial form *algebraically* .
- using property $n! = n(n-1)!^{-1}$
- correctly expressing with common denominator **OR** as a single fraction ^{1,5}.
- simplification to answer, line * (or equivalent) essential.

Source: 2014 Q2 AH Maths

(7) Write down and simplify the general term in the expression $\left(\frac{2}{x} + \frac{1}{4x^2}\right)^{10}$

Hence, or otherwise, obtain the term in $\frac{1}{x^{13}}$.

Answers:
$$\binom{10}{r} 2^{3r-20} x^{r-20}$$
 OR $\binom{10}{r} 2^{10-3r} x^{-r-10}$ $\frac{240}{x^{13}}$

Source: 2013 Q1 AH Maths

Write down the binomial expansion of $\left(3x - \frac{2}{x^2}\right)^4$ and simplify your answer.

Answer:

$$81x^4 - 216x + \frac{216}{x^2} - \frac{96}{x^5} + \frac{16}{x^8}$$

Source: 2012 Q4 AH Maths

(9) Write down and simplify the general term in the expansion of $\left(2x - \frac{1}{x^2}\right)^9$. Hence, or otherwise, obtain the term independent of x.

Answer: -5376

Source: 2011 Q2 AH Maths

(10) Use the binomial theorem to expand $\left(\frac{1}{2}x-3\right)^4$ and simplify your answer.

Answer:

$$\frac{x^4}{16} - \frac{3x^3}{2} + \frac{27x^2}{2} - 54x + 81.$$

Source: 2010 Q5 AH Maths

(11) Show that

$$\binom{n+1}{3} - \binom{n}{3} = \binom{n}{2}$$

where the integer n is greater than or equal to 3.

Answer:

$${\binom{n+1}{3} - \binom{n}{3}} = \frac{(n+1)!}{3!(n-2)!} - \frac{n!}{3!(n-3)!}$$

$$= \frac{(n+1)!}{3!(n-2)!} - \frac{n!(n-2)}{3!(n-2)!}$$

$$= \frac{(n+1)! - n!(n-2)}{3!(n-2)!}$$

$$= \frac{n! [(n+1) - (n-2)]}{3!(n-2)!}$$

$$= \frac{n! \times 3}{3!(n-2)!} = \frac{n!}{2!(n-2)!}$$

$$= {\binom{n}{2}}$$

both terms correct

{alternative methods will appear}

correct numerator correct denominator

1 for knowing (anywhere) $(n-2)! = (n-2) \times (n-3)!$

Source: 2009 Q8 AH Maths

- (12) (a) Write down the binomial expansion of $(1 + x)^5$.
 - (b) Hence show that 0.9^5 is 0.59049.

Answers

(a)
$$(1 + x)^5 = 1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5$$

(b) Let
$$x = -0.1$$
, then
$$0.9^5 = (1 + (-0.1))^5$$

$$= 1 - 0.5 + 0.1 - 0.01 + 0.0005 - 0.00001$$

$$= 0.5 + 0.09 + 0.00049$$

$$= 0.59049$$

Source: 2008 Q8 AH Maths

Write down and simplify the general term in the expansion of $\left(x^2 + \frac{1}{x}\right)^{10}$. Hence, or otherwise, obtain the term in x^{14} .

Answers

$${10 \choose r} (x^2)^{10-r} \left(\frac{1}{x}\right)^r$$

$$= {10 \choose r} x^{20-3r}$$

$$20 - 3r = 14 \implies r = 2$$

$$\text{term is } 45x^{14}$$

$${10 \choose r} (x^2)^r \left(\frac{1}{x}\right)^{10-r} = {10 \choose r} x^{3r-10}$$
$$3r - 10 = 14 \implies r = 8$$
$$\text{term is } 45x^{14}$$

Source: 2007 Q1 AH Maths

(14) Express the binomial expansion of $\left(x - \frac{2}{x}\right)^4$ in the form $ax^4 + bx^2 + c + \frac{d}{x^2} + \frac{e}{x^4}$ for integers a, b, c, d and e.

Answers

$$\left(x - \frac{2}{x}\right)^4 = x^4 + 4x^3 \left(-\frac{2}{x}\right) + 6x^2 \left(-\frac{2}{x}\right)^2 + 4x \left(-\frac{2}{x}\right)^3 + \left(-\frac{2}{x}\right)^4$$
$$= x^4 - 8x^2 + 24 - \frac{32}{x^2} + \frac{16}{x^4}$$