## advancedhighermaths.co.uk

## Further Differentiation

## AH Maths Exam Questions

Source: 2019 Specimen P2 Q2 AH Maths
(a) Given $f(x)=\sin ^{-1} 3 x$, find $f^{\prime}(x)$.
(b) For $y \cos x+y^{2}=6 x$, use implicit differentiation to find $\frac{d y}{d x}$.

Answers:
(a) $f^{\prime}(x)=\frac{3}{\sqrt{1-9 x^{2}}}$
(b) $\frac{d y}{d x}=\frac{6+y \sin x}{\cos x+2 y}$

Source: 2019 Specimen P2 Q4 AH Maths - Same as 2018 Q6
(2) On a suitable domain, a curve is defined parametrically by $x=t^{2}+1$ and $y=\ln (3 t+2)$. Find the equation of the tangent to the curve where $t=-\frac{1}{3}$.

Answers: $y=-\frac{9}{2} x+5$

Source: 2019 Specimen P2 Q10 AH Maths - Same as 2017 Q11
(3)

Given $y=x^{2 x^{3}+1}$ where $x>0$, find $\frac{d y}{d x}$.
Write your answer in terms of $x$.

Answer:

$$
\frac{d y}{d x}=x^{2 x^{3}+1}\left(6 x^{2} \ln x+\frac{2 x^{3}+1}{x}\right)
$$

Source: 2019 Q5 AH Maths
(4) For $x=\ln (2 t+7)$ and $y=t^{2}, t>0$, find
(a) $\frac{d y}{d x}$
(b) $\frac{d^{2} y}{d x^{2}}$.

Answers:
(a) $2 t^{2}+7 t$
(b) $\frac{1}{2}(2 t+7)(4 t+7)$

## Source: 2019 Q10 AH Maths

(5)

A curve is defined implicitly by the equation $x^{2}+y^{2}=x y+12$.
(a) Find an expression for $\frac{d y}{d x}$ in terms of $x$ and $y$.
(b) There are two points where the tangent to the curve has equation $x=k, k \in \mathbb{R}$. Find the values of $k$.

Answers: (a) $\frac{d y}{d x}=\frac{y-2 x}{2 y-x} \quad$ (b) $k= \pm 4$

## Source: 2016 Q11 AH Maths

(6) The height of a cube is increasing at the rate of $5 \mathrm{~cm} \mathrm{~s}^{-1}$.

Find the rate of increase of the volume when the height of the cube is 3 cm .

Answer: $\frac{d v}{d t}=135 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$

## Source: 2018 Q13 AH Maths

(7) An engineer has designed a lifting device. The handle turns a screw which shortens the horizontal length and increases the vertical height.


The device is modelled by a rhombus, with each side 25 cm .
The horizontal length is $x \mathrm{~cm}$, and the vertical height is $h \mathrm{~cm}$ as shown.

(a) Show that $h=\sqrt{2500-x^{2}}$.
(b) The horizontal length decreases at a rate of 0.3 cm per second as the handle is turned.

Find the rate of change of the vertical height when $x=30$.

Answers: (a) Proof (b) $\frac{d h}{d t}=\frac{9}{40} \mathrm{cms}^{-1}$

## Source: 2017 Q18 AH Maths

(8) The position of a particle at time $t$ is given by the parametric equations $x=t \cos t, \quad y=t \sin t, \quad t \geq 0$.
(a) Find an expression for the instantaneous speed of the particle.

The diagram below shows the path that the particle takes.

(b) Calculate the instantaneous speed of the particle at point A .

Answers: (a) $\sqrt{\left(1+t^{2}\right.} \quad$ (b) Speed $=\sqrt{\left(1+9 \pi^{2}\right.}$

Source: 2015 Q4 AH Maths
(9) The equation $x^{4}+y^{4}+9 x-6 y=14$ defines a curve passing through the point

Obtain the equation of the tangent to the curve at A .

Answer: $y=-\frac{1}{2} x+\frac{5}{2}$

Source: 2015 Q6 AH Maths
(10) For $y=3^{x^{2}}$, obtain $\frac{d y}{d x}$.

Answer:

$$
\frac{d y}{d x}=2 x \ln 3.3^{x^{2}} \quad \text { or } \quad 2 x \ln 3 \cdot e^{x^{2} \ln 3}
$$

Source: 2015 Q8 AH Maths
(11) Given $x=\sqrt{t+1}$ and $y=\cot t, 0<t<\pi$, obtain $\frac{d y}{d x}$ in terms of $t$.

Answer: $\quad \frac{d y}{d x}=-2 \sqrt{t+1} \cdot \operatorname{cosec}^{2} t$

## Source: 2014 Q4 AH Maths

(12) Given $x=\ln \left(1+t^{2}\right), y=\ln \left(1+2 t^{2}\right)$ use parametric differentiation to find $\frac{d y}{d x}$ in terms of $t$.

Answer: $\frac{d y}{d x}=\frac{2\left(1+t^{2}\right)}{1+2 t^{2}}$

## Source: 2014 Q6 AH Maths

(13) Given $e^{y}=x^{3} \cos ^{2} x, x>0$, show that

$$
\frac{d y}{d x}=\frac{a}{x}+b \tan x, \text { for some constants } a \text { and } b .
$$

State the values of $a$ and $b$.

Answers: $a=3, b=-2$

Source: 2013 Q11 AH Maths
(14) A curve has equation

$$
x^{2}+4 x y+y^{2}+11=0
$$

Find the values of $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(-2,3)$.

Answer:

$$
\frac{d y}{d x}=4, \quad \frac{d^{2} y}{d x^{2}}=33
$$

## Source: 2012 Q12 AH Maths

(15) The radius of a cylindrical column of liquid is decreasing at the rate of $0.02 \mathrm{~m} \mathrm{~s}^{-1}$, while the height is increasing at the rate of $0.01 \mathrm{~m} \mathrm{~s}^{-1}$.
Find the rate of change of the volume when the radius is 0.6 metres and the height is 2 metres.
[Recall that the volume of a cylinder is given by $V=\pi r^{2} h$.]

Answer: Rate of change of the volume $=-0.0444 \pi \mathrm{~m}^{3} \mathrm{~s}^{-1}$

## Source: 2010 Q13 AH Maths

(16) Given $y=t^{3}-\frac{5}{2} t^{2}$ and $x=\sqrt{t}$ for $t>0$, use parametric differentiation to express $\frac{d y}{d x}$ in terms of $t$ in simplified form.
Show that $\frac{d^{2} y}{d x^{2}}=a t^{2}+b t$, determining the values of the constants $a$ and $b$.
Obtain an equation for the tangent to the curve which passes through the point of inflexion.

Answers:

$$
\begin{aligned}
& \frac{d y}{d t}=6 t^{\frac{5}{2}}-10 t^{\frac{3}{2}} \\
& a=30, \quad b=-30 \\
& 2 y+8 x=5
\end{aligned}
$$

## Source: 2009 Q11 AH Maths

(17) The curve $y=x^{2 x^{2}+1}$ is defined for $x>0$. Obtain the values of $y$ and $\frac{d y}{d x}$ at the
point where $x=1$.

Answer: $\quad \frac{d y}{d x}=3$

Source: 2008 Q2 AH Maths
(18) (a) Differentiate $f(x)=\cos ^{-1}(3 x)$ where $-\frac{1}{3}<x<\frac{1}{3}$.
(b) Given $x=2 \sec \theta, y=3 \sin \theta$, use parametric differentiation to find $\frac{d y}{d x}$ in terms of $\theta$.

## Answers:

(a) $f^{\prime}(x)=\frac{-3}{\sqrt{1-9 x^{2}}}$
(b) $\frac{d y}{d x}=\frac{3 \cos ^{3} \emptyset}{2 \sin \emptyset}$

## Source: 2008 Q5 AH Maths

(19) A curve is defined by the equation $x y^{2}+3 x^{2} y=4$ for $x>0$ and $y>0$.

Use implicit differentiation to find $\frac{d y}{d x}$.
Hence find an equation of the tangent to the curve where $x=1$.

Answers:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-y^{2}-6 x y}{2 x y+3 x^{2}} \\
& 5 y+7 x=12
\end{aligned}
$$

## Source: 2007 Q13 AH Maths

(20) A curve is defined by the parametric equations $x=\cos 2 t, y=\sin 2 t, 0<t<\frac{\pi}{2}$.
(a) Use parametric differentiation to find $\frac{d y}{d x}$.

Hence find the equation of the tangent when $t=\frac{\pi}{8}$.
(b) Obtain an expression for $\frac{d^{2} y}{d x^{2}}$ and hence show that $\sin 2 t \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=k$, where $k$ is an integer. State the value of $k$.

Answers:
(a) $\frac{d y}{d x}=\frac{2 \cos 2 t}{-2 \sin 2 t}=-\cot 2 t$

Equation of tangent: $x+y=\sqrt{2}$
(b) $\frac{d^{2} y}{d x^{2}}=\frac{-1}{\sin ^{3} 2 t}, \quad k=-1$

