Matrices

AH Maths Exam Questions

Source: 2019 Specimen P1 Q1 AH Maths
(1) Matrix A is defined by $A=\left(\begin{array}{cc}5 & 6 \\ -1 & -2\end{array}\right)$
(a) Find A^{-1}
(b) State A^{\prime}.

Answers:
-1 find determinant - ${ }^{1}-4$
-2 find inverse

$$
\bullet^{2}-\frac{1}{4}\left(\begin{array}{cc}
-2 & -6 \\
1 & 5
\end{array}\right)
$$

- 3 find transpose

$$
\cdot{ }^{3}\left(\begin{array}{ll}
5 & -1 \\
6 & -2
\end{array}\right)
$$

Source: 2019 Specimen P2 Q5 AH Maths - Same as 2018 Q11
(2)
(a) Obtain the matrix, A, associated with an anticlockwise rotation of $\frac{\pi}{3}$ radians
about the origin.
(b) Find the matrix, B, associated with a reflection in the x-axis.
(c) Hence obtain the matrix, P, associated with an anticlockwise rotation of $\frac{\pi}{3}$ radians about the origin followed by reflection in the x-axis, expressing your answer using exact values.
(d) Explain why matrix P is not associated with rotation about the origin.

Answer ${ }^{\text {a }}$		-1 obtain A	-1 $\left(\begin{array}{cc}\cos \frac{\pi}{3} & -\sin \frac{\pi}{3} \\ \sin \frac{\pi}{3} & \cos \frac{\pi}{3}\end{array}\right)$
	(b)	$\bullet{ }^{2}$ obtain B	$\bullet^{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
	(c)	-3 correct order for multiplication ($P=B A$) -4 multiplication completed and appearance of exact values	-3 $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}1 & -\sqrt{3} \\ \sqrt{3} & 1\end{array}\right)$ - $\frac{1}{2}\left(\begin{array}{ll}1 & -\sqrt{3} \\ -\sqrt{3} & -1\end{array}\right)$
	(d)	${ }^{5} 5$ valid explanation	- 5 for example compare the elements of P with the general form of a rotation matrix

Source: 2019 Q2 AH Maths
(3)

Matrix A is defined by

$$
A=\left(\begin{array}{ccc}
2 & 1 & 4 \\
-3 & p & 2 \\
-1 & -2 & 5
\end{array}\right)
$$

where $p \in \mathbb{R}$.
(a) Given that the determinant of A is 3 , find the value of p.

Matrix B is defined by

$$
B=\left(\begin{array}{ll}
0 & 1 \\
q & 3 \\
4 & 0
\end{array}\right)
$$

where $q \in \mathbb{R}$.
(b) Find $A B$.
(c) Explain why $A B$ does not have an inverse.

Answers:

2.	(a)

-1 eg $2\left|\begin{array}{cc}p & 2 \\ -2 & 5\end{array}\right|-1\left|\begin{array}{cc}-3 & 2 \\ -1 & 5\end{array}\right|+4\left|\begin{array}{cc}-3 & p \\ -1 & -2\end{array}\right|$
-2 $14 p+45$
$\bullet^{3}-3$

Source: 2018 Q7 AH Maths

(4) Matrices C and D are given by:
$C=\left(\begin{array}{ccc}-2 & 1 & 2 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right) \quad$ and $\quad D=\left(\begin{array}{ccc}1 & 1 & 2 \\ k+3 & 0 & 2 \\ 1 & 1 & 1\end{array}\right)$, where $k \in \mathbb{R}$.
(a) Obtain $2 C^{\prime}-D$ where C^{\prime} is the transpose of C.
(b) (i) Find and simplify an expression for the determinant of D.
(ii) State the value of k such that D^{-1} does not exist.

Answers:

| (a) | $\bullet \bullet^{1}$ state transpose of C | $\bullet 1\left(\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 0 & -1\end{array}\right)$ stated or implied by \bullet^{2} | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| | \bullet^{2} obtain matrix | $\bullet^{2} 2 C^{\prime}-D=\left(\begin{array}{ccc}-5 & 1 & 0 \\ -k-1 & -2 & -2 \\ 3 & -1 & -3\end{array}\right)$ | |

(b)	(i)	\bullet^{3} begin to find determinant - ${ }^{4}$ simplify expression	$\begin{aligned} & \bullet^{3} \quad-(k+3)\left\|\begin{array}{ll} 1 & 2 \\ 1 & 1 \end{array}\right\|+0\left\|\begin{array}{ll} 1 & 2 \\ 1 & 1 \end{array}\right\|-2\left\|\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right\| \\ & \cdot{ }^{4} k+3 \end{aligned}$	2

(ii)

- ${ }^{5}$ state value of k -5 -3

Source: 2017 Q7 AH Maths
(5) Matrices P and Q are defined by $P=\left(\begin{array}{rr}x & 2 \\ -5 & -1\end{array}\right)$ and $Q=\left(\begin{array}{rr}2 & -3 \\ 4 & y\end{array}\right)$, where $x, y \in \mathbb{R}$.
(a) Given the determinant of P is 2 , obtain:
(i) The value of x.
(ii) P^{-1}.
(iii) $P^{-1} Q^{\prime}$, where Q^{\prime} is the transpose of Q.
(b) The matrix R is defined by $R=\left(\begin{array}{ll}5 & -2 \\ z & -6\end{array}\right)$, where $z \in \mathbb{R}$.

Determine the value of z such that R is singular.

Answers:

(a)	(i)	$\bullet \bullet$ determine value of x	$\bullet x=8$	$\mathbf{1}$
	(ii)	\bullet^{2} find inverse 1	$\mathbf{\bullet}$	
	(iii)	$\bullet^{2} P^{-1}=\frac{1}{2}\left(\begin{array}{cc}-1 & -2 \\ 5 & 8\end{array}\right)$	$\mathbf{2}$	
		$\bullet^{3} Q^{\prime}=\left(\begin{array}{cc}2 & 4 \\ -3 & y\end{array}\right)$		

| (b) | $\cdot{ }^{5}$ state condition for singularity ${ }^{1,2}$
 $\cdot \bullet^{6}$ obtain value for z^{2} | $\mathbf{0}^{5}$ det $R=0$ or one row is a
 multiple of the other
 $\mathbf{0}^{2} z=15$ | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- |

Source: 2016 Q7 AH Maths
(6) A is the matrix $\left(\begin{array}{cc}2 & 0 \\ \lambda & -1\end{array}\right)$.
(a) Find the determinant of matrix A.
(b) Show that A^{2} can be expressed in the form $p A+q I$, stating the values of p and q.
(c) Obtain a similar expression for A^{4}.

Answers:

(a) Determinant of matrix $A=-2$

(b)	Method 1		3
	$\cdot{ }^{2}$ find A^{2}	$\bullet^{2} \quad A^{2}=\left(\begin{array}{ll} 4 & 0 \\ \lambda & 1 \end{array}\right)$	
	- ${ }^{3}$ use an appropriate method	$\cdot^{3} A^{2}=\left(\begin{array}{cc} 2 & 0 \\ \lambda & -1 \end{array}\right)+\left(\begin{array}{ll} 2 & 0 \\ 0 & 2 \end{array}\right)$	
		$A^{2}=A+2 I$	
	- ${ }^{4}$ write in required form and explicitly state values of p and q Note 1	- ${ }^{4} p=1$ and $q=2$	
	Method 2 - ${ }^{2}$ find A^{2}	$\cdot^{2} \quad A^{2}=\left(\begin{array}{ll} 4 & 0 \\ \lambda & 1 \end{array}\right)$	
	- ${ }^{3}$ use an appropriate method	$\bullet^{3} A^{2}=p\left(\begin{array}{rr} 2 & 0 \\ \lambda & -1 \end{array}\right)+q\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)$	
	- ${ }^{4}$ write in required form and explicitly state values of p and q Note 1	$\begin{aligned} \bullet^{4} A^{2} & =A+2 I \\ p & =1 \text { and } q=2 \end{aligned}$	

(c)	- ${ }^{5}$ square expression found in (b) 1,2,3 - ${ }^{6}$ substitute for A^{2} and complete process	$\begin{aligned} \cdot 5 A^{4} & =(A+2 I)^{2} \\ & =A^{2}+4 A I+4 I^{2} \\ & =A+2 I+4 A+4 I \end{aligned}$ $\bullet \quad=5 A+6 I$	2

Source: 2015 Q5 AH Maths

(7) Obtain the value(s) of p for which the matrix $A=\left(\begin{array}{rrr}p & 2 & 0 \\ 3 & p & 1 \\ 0 & -1 & -1\end{array}\right)$ is singular.

Answer:

Singular when $\operatorname{det} A=0$

$$
\begin{aligned}
& p\left|\begin{array}{cc}
p & 1 \\
-1 & -1
\end{array}\right|-2\left|\begin{array}{cc}
3 & 1 \\
0 & -1
\end{array}\right|+0\left|\begin{array}{cc}
3 & p \\
0 & -1
\end{array}\right|=0 \\
& p(-p+1)-2(-3)=0
\end{aligned}
$$

$$
p^{2}-p-6=0
$$

$$
(p-3)(p+2)=0
$$

$$
p=3 \text { or } p=-2
$$

4

- ${ }^{1}$ evidence of any valid method for obtaining $\operatorname{det} A$ and setting $=0^{1}$.
- ${ }^{2}$ expansion or equivalent method by first row
-3 for polynomial
- ${ }^{4}$ solutions (both)

Source: 2015 Q11 AH Maths

(8) Write down the 2×2 matrix, M_{1}, associated with a reflection in the y-axis.

Write down a second 2×2 matrix, M_{2}, associated with an anticlockwise rotation through an angle of $\frac{\pi}{2}$ radians about the origin.

Find the 2×2 matrix, M_{3}, associated with an anticlockwise rotation through $\frac{\pi}{2}$ radians about the origin followed by a reflection in the y-axis.

What single transformation is associated with M_{3} ?

Answers:

$$
\begin{aligned}
M_{1} & =\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
M_{2} & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
M_{3} & =M_{1} M_{2}
\end{aligned}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Reflection in the line $y=x$

4

- ${ }^{1}$ for M_{1}
- ${ }^{2}$ for M_{2}.
- ${ }^{3}$ for $M_{3} .{ }^{1}$
-4 correct interpretation ${ }^{3}$.
(9) Matrices A and B are defined by $A=\left(\begin{array}{cc}4 & p \\ -2 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}x & -6 \\ 1 & 3\end{array}\right)$.
(a) Find A^{2}.
(b) Find the value of p for which A^{2} is singular.
(c) Find the values of p and x if $B=3 A^{\prime}$.

Answers:

a		$\begin{aligned} A^{2}=\left(\begin{array}{rr} 4 & p \\ -2 & 1 \end{array}\right)\left(\begin{array}{rr} 4 & p \\ -2 & 1 \end{array}\right) & =\left(\begin{array}{ll} 16-2 p & 4 p+p \\ -8-2 & -2 p+1 \end{array}\right) \\ & =\left(\begin{array}{ll} 16-2 p & 5 p \\ -10 & 1-2 p \end{array}\right) \end{aligned}$	- ${ }^{1}$ Correct answer. ${ }^{3,1}$ Improved alternative.
b		A^{2} is singular when $\operatorname{det} A^{2}=0$ $\begin{aligned} (16-2 p)(1-2 p)+50 p & =0 \\ 16-34 p+4 p^{2}+50 p & =0 \\ 4 p^{2}+16 p+16 & =0 \\ 4(p+2)^{2} & =0 \\ p & =-\mathbf{2} \end{aligned}$ OR A^{2} is singular when A is singular, [i.e. when $\operatorname{det} A=0$] $\begin{aligned} 4+2 p & =0 \\ p & =-\mathbf{2} \end{aligned}$	- ${ }^{2}$ Property stated or implied. ${ }^{4}$ - ${ }^{3}$ Correct value of $p .^{5,1}$ - ${ }^{2}$ Explicitly states property. [not essential, but preferred] - ${ }^{3} \quad$ Correct value of p^{1}
c		$\begin{aligned} & A^{\prime}=\left(\begin{array}{rr} 4 & -2 \\ p & 1 \end{array}\right) \\ & \left(\begin{array}{rr} x & -6 \\ 1 & 3 \end{array}\right)=3\left(\begin{array}{rr} 4 & -2 \\ p & 1 \end{array}\right) \\ & \left(\begin{array}{rr} x & -6 \\ 1 & 3 \end{array}\right)=\left(\begin{array}{rr} 12 & -6 \\ 3 p & 3 \end{array}\right) \quad x=12, p=\frac{1}{3} \end{aligned}$	- A transpose (A^{T}) correct. Does not have to be explicitly stated. - ${ }^{5} \quad$ Values of p and x correct. ${ }^{1,2}$

Source: 2012 Q9 AH Maths

(10) A non-singular $n \times n$ matrix A satisfies the equation $A+A^{-1}=I$, where I is the $n \times n$ identity matrix. Show that $A^{3}=k I$ and state the value of k.

Answers:

Method 1

$\frac{d y}{d x}=3(1+y) \sqrt{1+x}$
$\int \frac{d y}{1+y}=3 \int(1+x)^{\frac{1}{2}} d x$
$\ln (1+y)=2(1+x)^{\frac{3}{2}}+c$
$1+y=\exp \left(2(1+x)^{\frac{3}{2}}+c\right)$
$y=\exp \left(2(1+x)^{\frac{3}{2}}+c\right)-1$.
$=A \exp \left(2(1+x)^{\frac{3}{2}}\right)-1$.
M1 separating variables
1 for LHS
1 for term in x
1 for the constant

Method 2

$$
\begin{equation*}
\frac{d y}{d x}-3 \sqrt{1+x} y=3 \sqrt{1+x} \tag{1}
\end{equation*}
$$

Integrating Factor

$$
\begin{array}{cc}
\exp \left(-3 \int \sqrt{1+x} d x\right)=\exp \left(-2(1+x)^{3 / 2}\right) & \mathbf{1} \\
\frac{d}{d x}\left(y \exp \left(-2(1+x)^{3 / 2}\right)\right)= \\
3 \sqrt{1+x}\left(\exp \left(-2(1+x)^{3 / 2}\right)\right) & \mathbf{1} \\
y\left(\exp \left(-2(1+x)^{3 / 2}\right)\right)= & \\
\left.-\int(-3 \sqrt{1+x}) \exp \left(-2(1+x)^{3 / 2}\right)\right) d x & \\
=-\exp \left(-2(1+x)^{3 / 2}\right)+c & \mathbf{1} \\
y=-1+c \exp \left(2(1+x)^{3 / 2}\right) & \mathbf{1}
\end{array}
$$

Source: 2011 Q4 AH Maths

(11)
(a) For what value of λ is $\left(\begin{array}{ccc}1 & 2 & -1 \\ 3 & 0 & 2 \\ -1 & \lambda & 6\end{array}\right)$ singular?
(b) For $A=\left(\begin{array}{ccc}2 & 2 \alpha-\beta & -1 \\ 3 \alpha+2 \beta & 4 & 3 \\ -1 & 3 & 2\end{array}\right)$, obtain values of α and β such that

$$
A^{\prime}=\left(\begin{array}{ccc}
2 & -5 & -1 \\
-1 & 4 & 3 \\
-1 & 3 & 2
\end{array}\right)
$$

Answers:
(a) Singular when the determinant is 0 .

$$
\begin{gathered}
1 \operatorname{det}\left(\begin{array}{ll}
0 & 2 \\
\lambda & 6
\end{array}\right)-2 \operatorname{det}\left(\begin{array}{cc}
3 & 2 \\
-1 & 6
\end{array}\right)+(-1) \operatorname{det}\left(\begin{array}{cc}
3 & 0 \\
-1 & \lambda
\end{array}\right)=0 \mathbf{M 1} \\
-2 \lambda-2(18+2)-1(3 \lambda-0)=0 \\
-5 \lambda-40=0 \text { when } \lambda=-8
\end{gathered}
$$

(b) From $A, A^{\prime}=\left(\begin{array}{ccc}2 & 3 \alpha+2 \beta & -1 \\ 2 \alpha-\beta & 4 & 3 \\ -1 & 3 & 2\end{array}\right)$. $\quad 1$

$$
\text { Hence } 2 \alpha-\beta=-1 \text { and } 3 \alpha+2 \beta=-5 . \quad \mathbf{1}
$$

$$
4 \alpha-2 \beta=-2
$$

$$
3 \alpha+2 \beta=-5
$$

$$
7 \alpha=-7 \Rightarrow \alpha=-1 \text { and } \beta=-1 . \quad \mathbf{1} \mid \text { for both values }
$$

Source: 2010 Q4 AH Maths
(12) Obtain the 2×2 matrix M associated with an enlargement, scale factor 2 , followed by a clockwise rotation of 60° about the origin.

Answer:
The matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ gives an enlargement, $\quad \mathbf{1} \quad$ correct matrix scale factor 2 .
The matrix $\left(\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$ gives a clockwise rotation of 60° about the origin.

$$
\begin{aligned}
M & =\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & \sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right) .
\end{aligned}
$$

1 correct order

Source: 2010 Q14 AH Maths

(13) Use Gaussian elimination to show that the set of equations

$$
\begin{array}{r}
x-y+z=1 \\
x+y+2 z=0 \\
2 x-y+a z=2
\end{array}
$$

has a unique solution when $a \neq 2 \cdot 5$.
Explain what happens when $a=2 \cdot 5$.
Obtain the solution when $a=3$.
Given $A=\left(\begin{array}{ccc}5 & 2 & -3 \\ 1 & 1 & -1 \\ -3 & -1 & 2\end{array}\right)$ and $B=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$, calculate $A B$.
Hence, or otherwise, state the relationship between A and the matrix

$$
C=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 2 \\
2 & -1 & 3
\end{array}\right)
$$

Answers:

$$
\begin{aligned}
& \begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
1 & 1 & 2 & 0 \\
2 & -1 & a & 2
\end{array} \\
& \begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
0 & 2 & 1 & -1 \\
0 & 1 & a-2 & 0
\end{array} \\
& \begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
0 & 2 & 1 & -1 \\
0 & 0 & 2 a-5 & 1
\end{array} \\
& z=\frac{1}{2 a-5} ; \\
& 2 y+\frac{1}{2 a-5}=-1 \Rightarrow 2 y=\frac{-2 a+5-1}{2 a-5} \\
& \Rightarrow y=\frac{2-a}{2 a-5} ;
\end{aligned}
$$

$$
\begin{aligned}
& x-\frac{2-a}{2 a-5}+\frac{1}{2 a-5}=1 \\
& \Rightarrow x=\frac{2 a-5}{2 a-5}+\frac{1-a}{2 a-5}=\frac{a-4}{2 a-5} .
\end{aligned}
$$

When $a=3, x=-1, y=-1, z=1$.

$$
A B=\left(\begin{array}{ccc}
5 & 2 & -3 \\
1 & 1 & -1 \\
-3 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
$$

From above, we have $C\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$ and also $A\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)=\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)$ which suggests $A C=I$ and this can be verified directly. Hence A is the inverse of C (or vice versa).

$$
\begin{aligned}
& \text { for the two other variables } \\
& \text { \{other justifications for } \\
& \text { uniqueness are possible }\}
\end{aligned}
$$

From the third row of the final tableau, when $a=2 \cdot 5$, there are no solutions

Source: 2009 Q2 AH Maths

(14) Given the matrix $A=\left(\begin{array}{cc}t+4 & 3 t \\ 3 & 5\end{array}\right)$.
(a) Find A^{-1} in terms of t when A is non-singular.
(b) Write down the value of t such that A is singular.
(c) Given that the transpose of A is $\left(\begin{array}{ll}6 & 3 \\ 6 & 5\end{array}\right)$, find t.

Answers:
(a)

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
t+4 & 3 t \\
3 & 5
\end{array}\right) & =5(t+4)-9 t \\
& =20-4 t \\
A^{-1} & =\frac{1}{20-4 t}\left(\begin{array}{cc}
5 & -3 t \\
-3 & t+4
\end{array}\right)
\end{aligned}
$$

(b)

$$
20-4 t=0 \Rightarrow t=5
$$

(c)

$$
\left(\begin{array}{rr}
t+4 & 3 \\
3 t & 5
\end{array}\right)=\left(\begin{array}{ll}
6 & 3 \\
6 & 5
\end{array}\right) \Rightarrow t=2
$$

Source: 2008 Q6 AH Maths

(15) Let the matrix $A=\left(\begin{array}{cc}1 & x \\ x & 4\end{array}\right)$.
(a) Obtain the value(s) of x for which A is singular.
(b) When $x=2$, show that $A^{2}=p A$ for some constant p.

$$
\text { Determine the value of } q \text { such that } A^{4}=q A \text {. }
$$

Answers:
(a)

$$
\operatorname{det}\left(\begin{array}{ll}
1 & x \\
x & 4
\end{array}\right)=4-x^{2}
$$

A matrix is singular when its determinant is 0 , hence $x= \pm 2$.
(b) When $x=2, A=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$

$$
A^{2}=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)=\left(\begin{array}{cc}
5 & 10 \\
10 & 20
\end{array}\right)=5 A
$$

$$
A^{4}=\left(A^{2}\right)^{2}=(5 A)^{2}=25 A^{2}=125 A
$$

Evaluating $A^{4}=\left(\begin{array}{rr}125 & 250 \\ 250 & 500\end{array}\right)=125 A$ was accepted.

Source: 2007 Q5 AH Maths
(16) Matrices A and B are defined by

$$
A=\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 1 & 2
\end{array}\right), \quad B=\left(\begin{array}{rrr}
x+2 & x-2 & x+3 \\
-4 & 4 & 2 \\
2 & -2 & 3
\end{array}\right)
$$

(a) Find the product $A B$.
(b) Obtain the determinants of A and of $A B$.

Hence, or otherwise, obtain an expression for $\operatorname{det} B$.

Answers:
(a)

$$
\begin{aligned}
A B & =\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{ccc}
x+2 & x-2 & x+3 \\
-4 & 4 & 2 \\
2 & -2 & 3
\end{array}\right) \\
& =\left(\begin{array}{ccc}
x & x & x \\
-6 & 6 & -1 \\
0 & 0 & 8
\end{array}\right)
\end{aligned}
$$

(b)

$$
\operatorname{det} A=1 \times(2+1)-0-1 \times 0=3
$$

$$
\operatorname{det} A B=x(48-0)-x(-48-0)+x(0-0)=96 x
$$1

Since $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$

$$
\operatorname{det} B=\frac{\operatorname{det} A B}{\operatorname{det} A}=\frac{96 x}{3}=32 x
$$

