Matrices

AH Maths Exam Questions

Source: 2019 Specimen P1 Q1 AH Maths

(1) Matrix
$$A$$
 is defined by $A = \begin{pmatrix} 5 & 6 \\ -1 & -2 \end{pmatrix}$

- (a) Find A^{-1}
- (b) State A'.

- •¹ find determinant •¹ -4
- •² find inverse $•² -\frac{1}{4} \begin{pmatrix} -2 & -6 \\ 1 & 5 \end{pmatrix}$
- find transpose $3 \begin{pmatrix} 5 & -1 \\ 6 & -2 \end{pmatrix}$

Source: 2019 Specimen P2 Q5 AH Maths - Same as 2018 Q11

- (2)
- (a) Obtain the matrix, A, associated with an anticlockwise rotation of $\frac{\pi}{3}$ radians about the origin.
- (b) Find the matrix, B, associated with a reflection in the x-axis.
- (c) Hence obtain the matrix, P, associated with an anticlockwise rotation of $\frac{\pi}{3}$ radians about the origin followed by reflection in the x-axis, expressing your answer using exact values.
- (d) Explain why matrix P is not associated with rotation about the origin.

An	S۷	vei
----	----	-----

Answer-	} 		
,	(a)	$ullet^1$ obtain A	$ \begin{array}{ccc} \bullet^{1} & \cos\frac{\pi}{3} & -\sin\frac{\pi}{3} \\ \sin\frac{\pi}{3} & \cos\frac{\pi}{3} \end{array} $
_	(b)	$ullet^2$ obtain B	$\bullet^2 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
	(c)	• orrect order for multiplication $(P = BA)$	$ \bullet^3 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} $
		• 4 multiplication completed and appearance of exact values	$ \begin{array}{ccc} \bullet^4 & \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix} \end{array} $
	(d)	•5 valid explanation	• for example compare the elements of <i>P</i> with the general form of a rotation matrix

Source: 2019 Q2 AH Maths

(3) Matrix A is defined by

$$A = \begin{pmatrix} 2 & 1 & 4 \\ -3 & p & 2 \\ -1 & -2 & 5 \end{pmatrix}$$

where $p \in \mathbb{R}$.

(a) Given that the determinant of A is 3, find the value of p.

Matrix B is defined by

$$B = \begin{pmatrix} 0 & 1 \\ q & 3 \\ 4 & 0 \end{pmatrix}$$

where $q \in \mathbb{R}$.

- (b) Find AB.
- (c) Explain why AB does not have an inverse.

2. (a)	•¹ begin process ¹ •² find determinant ¹,² •³ equate to 3 and find p ¹	• 1 eg 2 $\begin{vmatrix} p & 2 \\ -2 & 5 \end{vmatrix}$ - 1 $\begin{vmatrix} -3 & 2 \\ -1 & 5 \end{vmatrix}$ + 4 $\begin{vmatrix} -3 & p \\ -1 & -2 \end{vmatrix}$ • 2 14 p + 45 • 3 - 3
(b)	 any two simplified entries 1,2 complete multiplication 2 	$ \bullet^{4,5} \begin{pmatrix} q+16 & 5 \\ -3q+8 & -12 \\ -2q+20 & -7 \end{pmatrix} $
(c)	• ⁶ explain ^{1,2}	• 6 AB is not a square matrix AND A general statement about square matrices

Source: 2018 Q7 AH Maths

(4) Matrices C and D are given by:

$$C = \begin{pmatrix} -2 & 1 & 2 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 1 & 1 & 2 \\ k+3 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}, \text{ where } k \in \mathbb{R}.$$

- (a) Obtain 2C' D where C' is the transpose of C.
- (b) (i) Find and simplify an expression for the determinant of D.
 - (ii) State the value of k such that D^{-1} does not exist.

(a)		•¹ state transpose of <i>C</i>	$ \bullet^{1} \begin{pmatrix} -2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 0 & -1 \end{pmatrix} $ stated or implied by \bullet^{2}	2
		•² obtain matrix	$ \bullet^2 \ 2C' - D = \begin{pmatrix} -5 & 1 & 0 \\ -k - 1 & -2 & -2 \\ 3 & -1 & -3 \end{pmatrix} $	
(b)	(i)	•³ begin to find determinant	$\begin{vmatrix} \bullet^3 & -(k+3) \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} + 0 \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} - 2 \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$	2

	(b)	(i)	•³ begin to find determinant	$ \bullet^3 - (k+3) \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} + 0 \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} - 2 \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$	2
_			• ⁴ simplify expression	\bullet^4 $k+3$	

(ii) \bullet^5 state value of k	• ⁵ −3	1
-------------------------------------	-------------------	---

Source: 2017 Q7 AH Maths

- (5) Matrices P and Q are defined by $P = \begin{pmatrix} x & 2 \\ -5 & -1 \end{pmatrix}$ and $Q = \begin{pmatrix} 2 & -3 \\ 4 & y \end{pmatrix}$, where $x, y \in \mathbb{R}$.
 - (a) Given the determinant of P is 2, obtain:
 - (i) The value of x.
 - (ii) P^{-1} .
 - (iii) $P^{-1}Q'$, where Q' is the transpose of Q.
 - (b) The matrix R is defined by $R = \begin{pmatrix} 5 & -2 \\ z & -6 \end{pmatrix}$, where $z \in \mathbb{R}$.

Determine the value of z such that R is singular.

(a)	(i)	\bullet^1 determine value of x	•¹ <i>x</i> = 8	1
	(ii)	•² find inverse ¹	$\bullet^2 P^{-1} = \frac{1}{2} \begin{pmatrix} -1 & -2 \\ 5 & 8 \end{pmatrix}$	1
	(iii)	•³ state transpose	$\bullet^3 Q' = \begin{pmatrix} 2 & 4 \\ -3 & y \end{pmatrix}$	2
		• ⁴ obtain product ^{2,3}	•4 $P^{-1}Q' = \begin{pmatrix} 2 & -2 - y \\ -7 & 10 + 4y \end{pmatrix}$	

(b)	•5 state condition for singularity 1,2	• 5 det $R = 0$ or one row is a multiple of the other	2
	$ullet^6$ obtain value for z^{-2}	•6 $z = 15$	

Source:	2016	Ω7	ΑН	Maths
Coulce.	2010	W I	/ \I I	IVIALIS

- (6) $A \text{ is the matrix } \begin{pmatrix} 2 & 0 \\ \lambda & -1 \end{pmatrix}$.
 - (a) Find the determinant of matrix A.
 - (b) Show that A^2 can be expressed in the form pA + qI, stating the values of p and q.
 - (c) Obtain a similar expression for A^4 .

• 6 substitute for A² and complete

process

Answers:

(a) Determinant of matrix A = -2

(b)	Method 1		3
	\bullet^2 find A^2	$\bullet^2 \qquad A^2 = \begin{pmatrix} 4 & 0 \\ \lambda & 1 \end{pmatrix}$	
	• 3 use an appropriate method	$\bullet^3 A^2 = \begin{pmatrix} 2 & 0 \\ \lambda & -1 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$	
		$A^2 = A + 2I$	
	 write in required form and explicitly state values of p and q Note 1 	• $^{4}p = 1$ and $q = 2$	
	Method 2		1
	$ullet^2$ find A^2	$\bullet^2 A^2 = \begin{pmatrix} 4 & 0 \\ \lambda & 1 \end{pmatrix}$	
	• 3 use an appropriate method	•3 $A^2 = p \begin{pmatrix} 2 & 0 \\ \lambda & -1 \end{pmatrix} + q \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	
	• ⁴ write in required form and explicitly state values of <i>p</i> and <i>q</i>		
(c)	• ⁵ square expression found in (b)	•5 $A^4 = (A+2I)^2$ = $A^2 + 4AI + 4I^2$	2
		= A + 2I + 4A + 4I	

= 5A + 6I

Source: 2015 Q5 AH Maths

(7)

Obtain the value(s) of p for which the matrix $A = \begin{pmatrix} p & 2 & 0 \\ 3 & p & 1 \\ 0 & -1 & -1 \end{pmatrix}$ is singular.

Answer:

Singular when $\det A = 0$

$$p \begin{vmatrix} p & 1 \\ -1 & -1 \end{vmatrix} - 2 \begin{vmatrix} 3 & 1 \\ 0 & -1 \end{vmatrix} + 0 \begin{vmatrix} 3 & p \\ 0 & -1 \end{vmatrix} = 0$$
$$p(-p+1) - 2(-3) = 0$$

$$p^{2}-p-6=0$$

 $(p-3)(p+2)=0$
 $p=3$ or $p=-2$

4

- evidence of any valid method for obtaining det*A* and setting = 0¹.
- expansion or equivalent method by first row
- for polynomial
- solutions (both)

Source: 2015 Q11 AH Maths

(8)

Write down the 2×2 matrix, M_1 , associated with a reflection in the y-axis.

Write down a second 2×2 matrix, M_2 , associated with an anticlockwise rotation through an angle of $\frac{\pi}{2}$ radians about the origin.

Find the 2 \times 2 matrix, M_3 , associated with an anticlockwise rotation through $\frac{\pi}{2}$ radians about the origin followed by a reflection in the y-axis.

What single transformation is associated with M_3 ?

Answers:

$$M_{1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$M_{2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$M_{3} = M_{1}M_{2} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Reflection in the line y = x

4

• for M_1

 \bullet^2 for M_2 .

 \bullet^3 for M_3 .

• 4 correct interpretation³.

Source: 2013 Q3 AH Maths

- Matrices A and B are defined by $A = \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix}$. (9)
 - (a) Find A^2 .
 - (b) Find the value of p for which A^2 is singular.
 - (c) Find the values of p and x if B = 3A'.

Answers:

a
$$A^{2} = \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 16-2p & 4p+p \\ -8-2 & -2p+1 \end{pmatrix}$$
 • Correct answer.^{3,1}
$$= \begin{pmatrix} 16-2p & 5p \\ -10 & 1-2p \end{pmatrix}$$
 Improved alternative.

 A^2 is singular when $\det A^2 = 0$ b (16-2p)(1-2p)+50p=0 $16 - 34p + 4p^2 + 50p = 0$ $4p^2 + 16p + 16 = 0$ $4(p+2)^2=0$

Property stated or implied.⁴

- Correct value of p. 5,1
- A^2 is singular when A is singular, [i.e. when $\det A = 0$] Explicitly states property.
 - [not essential, but preferred]
 - 4 + 2p = 0
- Correct value of p¹

 $A' = \begin{pmatrix} 4 & -2 \\ p & 1 \end{pmatrix}$ c $\begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix} = 3 \begin{pmatrix} 4 & -2 \\ p & 1 \end{pmatrix}$

- A transpose (A^T) correct. Does not have to be explicitly stated.
- $\begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 12 & -6 \\ 3p & 3 \end{pmatrix}$ $x=12, p=\frac{1}{3}$
- Values of p and x correct.^{1,2}

Source: 2012 Q9 AH Maths

(10)

A non-singular $n \times n$ matrix A satisfies the equation $A + A^{-1} = I$, where I is the $n \times n$ identity matrix. Show that $A^3 = kI$ and state the value of k.

Answers:

$$\frac{dy}{dx} = 3(1+y)\sqrt{1+x} \int \frac{dy}{1+y} = 3\int (1+x)^{\frac{1}{2}} dx$$

$$\ln(1+y) = 2(1+x)^{\frac{3}{2}} + c$$

$$1 + y = \exp\left(2\left(1 + x\right)^{\frac{3}{2}} + c\right)$$

$$y = \exp\left(2\left(1 + x\right)^{\frac{3}{2}} + c\right) - 1.$$

$$= A \exp\left(2\left(1 + x\right)^{\frac{3}{2}}\right) - 1.$$

Method 2

$$\frac{dy}{dx} - 3\sqrt{1+x}y = 3\sqrt{1+x}$$

Integrating Factor

$$\exp\left(-3\int\sqrt{1+x}\,dx\right) = \exp\left(-2\left(1+x\right)^{3/2}\right) \quad \mathbf{1}$$

$$\frac{d}{dx}\left(y\,\exp\left(-2\left(1+x\right)^{3/2}\right)\right) = \\
3\sqrt{1+x}\left(\exp\left(-2\left(1+x\right)^{3/2}\right)\right) \quad \mathbf{1}$$

$$y\left(\exp\left(-2\left(1+x\right)^{3/2}\right)\right) =$$

$$-\int (-3\sqrt{1+x}) \exp(-2(1+x)^{3/2}) dx$$

$$= -\exp(-2(1+x)^{3/2}) + c$$

$$y = -1 + c \exp(2(1+x)^{3/2})$$
1

M1 separating variables

for LHS

1

for term in x

for the constant

Source: 2011 Q4 AH Maths

(11)

- (a) For what value of λ is $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ -1 & \lambda & 6 \end{pmatrix}$ singular?
- (b) For $A = \begin{pmatrix} 2 & 2\alpha \beta & -1 \\ 3\alpha + 2\beta & 4 & 3 \\ -1 & 3 & 2 \end{pmatrix}$, obtain values of α and β such that

$$A' = \begin{pmatrix} 2 & -5 & -1 \\ -1 & 4 & 3 \\ -1 & 3 & 2 \end{pmatrix}.$$

Answers:

(a) Singular when the determinant is 0.

$$1 \det \begin{pmatrix} 0 & 2 \\ \lambda & 6 \end{pmatrix} - 2 \det \begin{pmatrix} 3 & 2 \\ -1 & 6 \end{pmatrix} + (-1) \det \begin{pmatrix} 3 & 0 \\ -1 & \lambda \end{pmatrix} = 0 \mathbf{M1}$$

$$-2\lambda - 2(18 + 2) - 1(3\lambda - 0) = 0$$

$$-5\lambda - 40 = 0 \text{ when } \lambda = -8$$

(b) From $A, A' = \begin{pmatrix} 2 & 3\alpha + 2\beta & -1 \\ 2\alpha - \beta & 4 & 3 \\ -1 & 3 & 2 \end{pmatrix}$. 1 for transpose

Hence
$$2\alpha - \beta = -1$$
 and $3\alpha + 2\beta = -5$.

$$4\alpha - 2\beta = -2$$

$$3\alpha + 2\beta = -5$$

$$7\alpha = -7 \Rightarrow \alpha = -1 \text{ and } \beta = -1.$$
 1 for both values

Source: 2010 Q4 AH Maths

(12)

Obtain the 2 \times 2 matrix M associated with an enlargement, scale factor 2, followed by a clockwise rotation of 60° about the origin.

Answer:

The matrix $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ gives an enlargement, scale factor 2.

The matrix $\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$ gives a clockwise **1** correct matrix

rotation of 60° about the origin.

 $M = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ $= \begin{pmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}.$ 1 correct order

Source: 2010 Q14 AH Maths

(13) Use Gaussian elimination to show that the set of equations

$$x - y + z = 1$$
$$x + y + 2z = 0$$
$$2x - y + az = 2$$

has a unique solution when $a \neq 2.5$.

Explain what happens when a = 2.5.

Obtain the solution when a = 3.

Given
$$A = \begin{pmatrix} 5 & 2 & -3 \\ 1 & 1 & -1 \\ -3 & -1 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, calculate AB .

Hence, or otherwise, state the relationship between A and the matrix

$$C = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 2 \\ 2 & -1 & 3 \end{pmatrix}.$$

Answers:

$$\begin{array}{c|cccc}
1 & -1 & 1 & 1 \\
1 & 1 & 2 & 0 \\
2 & -1 & a & 2
\end{array}$$

for a structured approach

1

$$\begin{array}{c|ccccc}
1 & -1 & 1 & 1 & 1 \\
0 & 2 & 1 & -1 \\
0 & 0 & 2a - 5 & 1
\end{array}$$

$$z=\frac{1}{2a-5};$$

one correct variable

$$2y + \frac{1}{2a - 5} = -1 \implies 2y = \frac{-2a + 5 - 1}{2a - 5}$$
$$\implies y = \frac{2 - a}{2a - 5};$$

$$x - \frac{2-a}{2a-5} + \frac{1}{2a-5} = 1$$

$$\Rightarrow x = \frac{2a-5}{2a-5} + \frac{1-a}{2a-5} = \frac{a-4}{2a-5}.$$

which exist when $2a - 5 \neq 0$.

From the third row of the final tableau, when a = 2.5, there are no solutions

When a = 3, x = -1, y = -1, z = 1.

$$AB = \begin{pmatrix} 5 & 2 & -3 \\ 1 & 1 & -1 \\ -3 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$
 1

From above, we have $C \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ and

also $A \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ which suggests AC = I and

this can be verified directly. Hence

A is the inverse of C (or vice versa).

for the two other variables {other justifications for uniqueness are possible}

1

2

A candidate who obtains AC = I directly may be awarded full marks.

Source: 2009 Q2 AH Maths

(14)

Given the matrix $A = \begin{pmatrix} t+4 & 3t \\ 3 & 5 \end{pmatrix}$.

- (a) Find A^{-1} in terms of t when A is non-singular.
- (b) Write down the value of t such that A is singular.
- (c) Given that the transpose of A is $\begin{pmatrix} 6 & 3 \\ 6 & 5 \end{pmatrix}$, find t.

$$\det\begin{pmatrix} t + 4 & 3t \\ 3 & 5 \end{pmatrix} = 5(t + 4) - 9t$$

$$= 20 - 4t$$

$$A^{-1} = \frac{1}{20 - 4t} \begin{pmatrix} 5 & -3t \\ -3 & t + 4 \end{pmatrix}$$
 1,1

(b)
$$20 - 4t = 0 \Rightarrow t = 5$$

Source: 2008 Q6 AH Maths

- (15) Let the matrix $A = \begin{pmatrix} 1 & x \\ x & 4 \end{pmatrix}$.
 - (a) Obtain the value(s) of x for which A is singular.
 - (b) When x = 2, show that $A^2 = pA$ for some constant p. Determine the value of q such that $A^4 = qA$.

Answers:

(a)

$$\det\begin{pmatrix} 1 & x \\ x & 4 \end{pmatrix} = 4 - x^2$$

1

A matrix is singular when its determinant is 0, hence $x = \pm 2$.

(b) When x = 2, $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$

$$A^2 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 10 & 20 \end{pmatrix} = 5A.$$

$$A^4 = (A^2)^2 = (5A)^2 = 25A^2 = 125A.$$
 2E1

Evaluating $A^4 = \begin{pmatrix} 125 & 250 \\ 250 & 500 \end{pmatrix} = 125A$ was accepted.

Source: 2007 Q5 AH Maths

(16) Matrices A and B are defined by

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} x+2 & x-2 & x+3 \\ -4 & 4 & 2 \\ 2 & -2 & 3 \end{pmatrix}.$$

- (a) Find the product AB.
- (b) Obtain the determinants of A and of AB.Hence, or otherwise, obtain an expression for det B.

Answers:

(a)
$$AB = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x+2 & x-2 & x+3 \\ -4 & 4 & 2 \\ 2 & -2 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} x & x & x \\ -6 & 6 & -1 \\ 0 & 0 & 8 \end{pmatrix}$$
 2E1

(b)
$$\det A = 1 \times (2 + 1) - 0 - 1 \times 0 = 3$$

$$\det AB = x(48 - 0) - x(-48 - 0) + x(0 - 0) = 96x$$
1

Since $\det AB = \det A \det B$

$$\det B = \frac{\det AB}{\det A} = \frac{96x}{3} = 32x$$