Methods of Proof

AH Maths Exam Questions

Source: 2019 Specimen P1 Q7 AH Maths - Same as 2018 Q12

(1) Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} 3^{r-1} = \frac{1}{2} (3^{n} - 1).$$

Answer:

• 1 show true for n=1

• assume (statement) true for n = k AND consider whether (statement) true for n = k + 1

- orrect statement for sum to (k+1) terms using inductive hypothesis
- \bullet^4 combine terms in 3^k
- express sum explicitly in terms of (k+1) or achieve stated aim/goal AND communicate

•1 LHS: $3^0 = 1$ RHS: $\frac{1}{2}(3-1) = 1$ So true for n=1 5

• Suitable statement and $\sum_{k=1}^{k} 3^{r-1} = \frac{1}{2} (3^k - 1)$

AND
$$\sum_{i=1}^{k+1} 3^{r-1} = \dots$$

- •3 ... = $\frac{1}{2}(3^k 1) + 3^{(k+1)-1}$
- $\bullet^4 \quad \frac{3}{2} \times 3^k \frac{1}{2}$
- •5 $\frac{1}{2}(3^{(k+1)}-1)$ If true for n=k then true for n=k+1. Also shown true for n=1 therefore, by induction, true for all positive integers n.

Source: 2019 Specimen P2 Q9 AH Maths – Same as 2016 Q10

(2)

For each of the following statements, decide whether it is true or false. If true, give a proof; if false, give a counterexample.

- A. If a positive integer p is prime, then so is 2p + 1.
- B. If a positive integer n has remainder 1 when divided by 3, then n^3 also has remainder 1 when divided by 3.

Answers:

- 1 give counterexample
- 2 set up n
- 3 consider expansion of n^3
- 4 complete proof with conclusion
- 1 for example choose p=7 2(7)+1=15, which is not prime. \therefore statement is false.
- 2 n = 3a + 1, $a \in \mathbb{W}$
- 3 $n^3 = 27a^3 + 27a^2 + 9a + 1$
- 4 = 3(9 a^3 + 9 a^2 + 3a) + 1 and statement such as "so n^3 has remainder 1 when divided by 3 :: statement is true".

4

Source: 2019 Q11 AH Maths

- (3) Let n be a positive integer.
 - (a) Find a counterexample to show that the following statement is false. $n^2 + n + 1$ is always a prime number.
 - (b) (i) Write down the contrapositive of: If $n^2 2n + 7$ is even then n is odd.
 - (ii) Use the contrapositive to prove that if $n^2 2n + 7$ is even then n is odd.

(b)	(i)	•² write down contrapositive statement 1,2,8	• If n is even then $n^2 - 2n + 7$ is odd	1
	(ii)	• write down appropriate form for <i>n</i> AND substitute 1,3,4,5,9	• $n = 2k, k \in \mathbb{N}$ and $(2k)^2 - 2(2k) + 7$	3
		• show $n^2 - 2n + 7$ is odd 1,6,7,9	•4 eg $2(2k^2-2k+3)+1$ which is odd since $2k^2-2k+3 \in \mathbb{N}$	
		• ⁵ communicate ^{1,8,9}	•5 contrapositive statement is true AND therefore original statement is true	

Source: 2019 Q14 AH Maths

(4)

Prove by induction that

$$\sum_{r=1}^{n} r! r = (n+1)! - 1 \text{ for all positive integers } n.$$

Generic scheme	Illustrative scheme	Max mark
• show true when $n=1$	• when $n = 1$ LHS = 1! ×1=1 RHS = $(1+1)!-1=1$ so result is true when $n = 1$.	5
• assume (statement) true for $n = k$ AND consider whether (statement) true for $n = k + 1$	• suitable statement $ \text{AND } \sum_{r=1}^k r! r = (k+1)! - 1 $ $ \text{AND } \sum_{r=1}^{k+1} r! r = \dots $	
• 3 state sum to $(k+1)$ terms using inductive hypothesis 5	•3 $(k+1)!-1+(k+1)!(k+1)$	
•4 extract $(k+1)!$ as common factor 3,5	•4 $(k+1)!(k+2)-1$	
• express sum explicitly in terms of $(k+1)$ or achieve stated aim/goal AND communicate 4,5,6	• $((k+1)+1)!-1$ AND If true for $n=k$ then true for $n=k+1$. Also shown true for $n=1$ therefore, by induction, true for all positive integers n .	

Source: 2018 Q9 AH Maths

(5) Prove directly that:

- (a) the sum of any three consecutive integers is divisible by 3;
- (b) any odd integer can be expressed as the sum of two consecutive integers.

$$\bullet^1 (n-1) + n + (n+1)$$

(b) • appropriate form for odd number, decomposed into two consecutive integers
$1,2,3$
 • $2k+1=k+(k+1)$, $k\in\mathbb{Z}$

Source: 2017 Q13 AH Maths

(6)

Let n be an integer.

Using proof by contrapositive, show that if n^2 is even, then n is even.

Generic scheme	Illustrative scheme	Max mark
•¹ write down contrapositive statement 1,2,7,8	•¹ The contrapositive of the original statement is: If n is odd then n^2 is odd	4
• write down appropriate form for $n^{-3,4,7}$	$\bullet^2 n = 2k+1 \ , \ k \in \mathbb{Z}$	
• 3 show n^{2} is odd 5,6,7	• $n^2 = 2(2k^2 + 2k) + 1$ which is odd	
• ⁴ communicate	• contrapositive statement is true therefore original statement is true	

Source: 2016 Q5 AH Maths

(7) Prove **by induction** that

$$\sum_{r=1}^{n} r(3r-1) = n^{2}(n+1), \quad \forall n \in \mathbb{N}.$$

Generic Scheme	Illustrative Scheme	Max Mark
• 1 show true for $n=1$ 1	• LHS: $1(3-1)=2$ RHS: $1^2(1+1)=2$ So true for $n=1$	4
• 2 assume true for $n = k^{-2}$ AND consider $n = k + 1$	• $\sum_{r=1}^{k} r(3r-1) = k^2(k+1)$ and $\sum_{r=1}^{k+1} r(3r-1) =$	
	= $\sum_{r=1}^{k} r(3r-1) + (k+1)(3(k+1)-1)$	
$ullet^3$ correct statement of sum to $(k+1)$ terms using inductive hypothesis	•3 = $k^2(k+1)+(k+1)(3k+2)$ = $(k+1)[k^2+3k+2]$ = $(k+1)(k+1)(k+2)$	
$ullet^4$ express explicitly in terms of $(k+1)$ or achieve stated aim/goal 3,4 AND communicate	$ullet^4=(k+1)^2\left((k+1)+1 ight)$, thus if true for $n=k$ then true for $n=k+1$ but since true for $n=1$, then by induction true for all $n\in\mathbb{N}$	

Source: 2015 Q12 AH Maths

(8)

Prove that the difference between the squares of any two consecutive odd numbers is divisible by 8.

Answer:

Let numbers be 2n-1, 2n+1, $n \in \aleph$

 $(2n+1)^{2} - (2n-1)^{2}$ = $(4n^{2} + 4n + 1) - (4n^{2} - 4n + 1)$

=8n which is divisible by 8

3

correct form for any two consecutive odd numbers^{1,2}.

• correct expressions squared out.

• multiple of 8 and communication.

Source: 2014 Q7 AH Maths

(9)

Given A is the matrix
$$\begin{pmatrix} 2 & a \\ 0 & 1 \end{pmatrix}$$
,

prove by induction that

$$A^{n} = \begin{pmatrix} 2^{n} & a(2^{n} - 1) \\ 0 & 1 \end{pmatrix} , n \ge 1.$$

A	n	C	۸.	_	r
\boldsymbol{H}	П	5	Vν	ㄷ	Ι.

Expected Answer/s	Max Mark	Additional Guidance
For $n = 1$ RHS = $\begin{pmatrix} 2^1 & a(2^1 - 1) \\ 0 & 1 \end{pmatrix}$ = $\begin{pmatrix} 2 & a \\ 0 & 1 \end{pmatrix}$ = A LHS = $A^1 = A$ = RHS.	4	•¹ Substituting $n = 1.$ ¹
Assume true for $n = k$, $A^{k} = \begin{pmatrix} 2^{k} & a(2^{k} - 1) \\ 0 & 1 \end{pmatrix}$ Consider $n = k + 1$, $A^{k+1} = A^{k}A^{1} \qquad [\mathbf{OR} \mathbf{A}^{1}\mathbf{A}^{k}]$ $= \begin{pmatrix} 2^{k} & a(2^{k} - 1) \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & a \\ 0 & 1 \end{pmatrix}$		See note 5. • Inductive hypothesis (must include "Assume true for $n = k$ " or equivalent phrase) and expansion of. A^{k+1} . 2,5
$= \begin{pmatrix} 2^{k} \cdot 2 & 2^{k} \cdot a + a(2^{k} - 1) \\ 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 2^{k+1} & 2^{k} \cdot a + 2^{k} \cdot a - a \\ 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 2^{k+1} & a(2^{k} + 2^{k} - 1) \\ 0 & 1 \end{pmatrix}$		• Correct multiplication of two matrices and accurate manipulation of indices and brackets. *
$= \begin{pmatrix} 2^{k+1} & a(2^{k+1}-1) \\ 0 & 1 \end{pmatrix}$ Hence, if true for $n = k$, then true for $n = k+1$, but since true for $n = 1$, then by induction true for all positive integers n .		• Line * and statement of result in terms of (k + 1) and valid statement of conclusion. 4,6

Source: 2013 Q9 AH Maths

(10)

Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} (4r^3 + 3r^2 + r) = n(n+1)^3$$

Answer:

For
$$n = 1$$

L.H.S

 $\sum_{r=1}^{n} (4r^3 + 3r^2 + r)$
 $= 4 + 3 + 1 = 8$
 $\Rightarrow \text{true for } n = 1$

R.H.S

 $n(n+1)^3$
 $= 1 \times 2^3 = 8$

Assume true for n = k,

$$\sum_{r=1}^{k} (4r^3 + 3r^2 + r) = k(k+1)^3$$

Consider n = k + 1,

Consider
$$h = k + 1$$
,

$$\sum_{r=1}^{k+1} (4r^3 + 3r^2 + r)$$

$$= \sum_{r=1}^{k} (4r^3 + 3r^2 + r) + 4(k+1)^3 + 3(k+1)^2 + (k+1)$$

$$= k(k+1)^3 + 4(k+1)^3 + 3(k+1)^2 + (k+1)$$

$$= (k+1)[k(k+1)^2 + 4(k+1)^2 + 3(k+1) + 1]$$

$$= (k+1)[k(k^2 + 2k+1) + 4(k^2 + 2k+1) + 3(k+1) + 1]$$

$$= (k+1)[k^3 + 2k^2 + k + 4k^2 + 8k + 4 + 3k + 3 + 1]$$

$$= (k+1)(k^3 + 6k^2 + 12k + 8)$$

$$= (k+1)(k+2)^3$$

$$= (k+1)((k+1)+1)^3$$

Hence, if true for n = k, then true for n = k + 1, but since true for n = 1, then by induction true for all positive integers n.

- Evaluation of both sides independently to 8.8
- Inductive hypothesis (must include "Assume true..." or equivalent phrase). 3,4
- Addition of (k + 1)th term.⁵
- Use of inductive hypothesis and first step in factorisation process.^{1,6}
- Processing and simplifying to arrive at second factor.¹
- Statement of result in terms of (k + 1) and valid statement of conclusion.^{1,7}

Source: 2013 Q12 AH Maths

(11) Let n be a natural number.

For each of the following statements, decide whether it is true or false. If true, give a proof; if false, give a counterexample.

- **A** If n is a multiple of 9 then so is n^2 .
- **B** If n^2 is a multiple of 9 then so is n.

A	Suppose $n = 9m$ for some natural number [positive integer], m .	•1	Generalisation, using different letter. ^{3, 6}
	Then $n^2 = 81m^2 = 9(9m^2)$	•2	Correct multiplication <i>and</i> 9 extracted as a factor.
	Hence n^2 is a multiple of 9, so A is true .	•3	Conclusion of proof and state A true. ¹
В	False. Accept any valid counterexample: $n = 3, 6, 12, 15, 21$ etc	•4	Valid counterexample and conclusion. ⁵

Source: 2012 Q16a AH Maths

(12)

(a) Prove by induction that

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$

for all integers $n \ge 1$.

(b) Show that the real part of $\frac{\left(\cos\frac{\pi}{18} + i\sin\frac{\pi}{18}\right)^{4}}{\left(\cos\frac{\pi}{36} + i\sin\frac{\pi}{36}\right)^{4}}$ is zero.

Answers:

(a) For n = 1, the LHS = $\cos \theta + i \sin \theta$ and the RHS = $\cos \theta + i \sin \theta$. Hence the result is true for n = 1.

Assume the result is true for n = k, i.e. $(\cos \theta + i \sin \theta)^k = \cos k\theta + i \sin k\theta$.

working with n is penalised.

1

1

1

Now consider the case when n = k + 1: $(\cos \theta + i \sin \theta)^{k+1} = (\cos \theta + i \sin \theta)^k (\cos \theta + i \sin \theta)$ $= (\cos k\theta + i \sin k\theta) (\cos \theta + i \sin \theta)$

 $= (\cos k\theta \cos \theta - \sin k\theta \sin \theta) + i(\sin k\theta \cos \theta + \cos k\theta \sin \theta)$ $= \cos (k+1)\theta + i\sin (k+1)\theta$

Thus, if the result is true for n = k the result is true for n = k + 1.

Since it is true for n = 1, the result is true for all $n \ge 1$.

for applying the inductive hypothesis

multiplying and collecting

(b) $\frac{\left(\cos\frac{\pi}{18} + i \sin\frac{\pi}{18}\right)^{11}}{\left(\cos\frac{\pi}{36} + i \sin\frac{\pi}{36}\right)^{4}} = \frac{\cos\frac{11\pi}{18} + i \sin\frac{11\pi}{18}}{\cos\frac{\pi}{9} + i \sin\frac{\pi}{9}}$ 1 $= \frac{\cos\frac{11\pi}{18} + i \sin\frac{11\pi}{18}}{\cos\frac{\pi}{9} + i \sin\frac{\pi}{9}} \times \frac{\cos\frac{\pi}{9} - i \sin\frac{\pi}{9}}{\cos\frac{\pi}{9} - i \sin\frac{\pi}{9}}$ 1 $= \frac{\cos\frac{11\pi}{18}\cos\frac{\pi}{9} + \sin\frac{11\pi}{18}\sin\frac{\pi}{9}}{\cos^{2}\frac{\pi}{9} + \sin^{2}\frac{\pi}{9}} + \text{imaginary term}$ $= \cos\left(\frac{11\pi}{18} - \frac{\pi}{9}\right) + \text{imaginary term}$ 1 $= \cos\frac{\pi}{2} + \text{imaginary term}$ 1

1 using result from above

Thus the real part is zero as required.

1 or equivalent

Source: 2011 Q12 AH Maths

(13)

Prove by induction that $8^n + 3^{n-2}$ is divisible by 5 for all integers $n \ge 2$.

Answer:

For
$$n = 2$$
, $8^2 + 3^0 = 64 + 1 = 65$.
True when $n = 2$.

1

1

Assume true for k, i.e. that $8^k + 3^{k-2}$ is divisible by 5, i.e. can be expressed as 5p for an integer p.

for the inductive hypothesis

Now consider
$$8^{k+1} + 3^{k-1}$$

$$= 8 \times 8^{k} + 3^{k-1}$$

$$= 8 \times 8^{k} + 3^{k-1}$$

$$= 8 \times (5p - 3^{k-2}) + 3^{k-1}$$
1

$$=40p-3^{k-2}(8-3)$$

=
$$5(8p - 3^{k-2})$$
 which is divisible by 5.

So, since it is true for n = 2, it is true for all $n \ge 2$.

for replacing 8^k

Source: 2010 Q8 AH Maths

(14)

- Prove that the product of two odd integers is odd. (a)
- Let p be an odd integer. Use the result of (a) to prove by induction that p^n (b) is odd for all positive integers n.

Answers:

(a) Write the odd integers as: 2n + 1and 2m + 1 where *n* and *m* are integers. Then

1M for unconnected odd integers

$$(2n+1)(2m+1) = 4nm + 2n + 2m + 1$$

= $2(2nm + n + m) + 1$ 1

demonstrating clearly

- which is odd.
- (b) Let $n = 1, p^1 = p$ which is given as odd. 1 Assume p^k is odd and consider p^{k+1} . **1M**

$$p^{k+1} = p^k \times p$$
 1

Since p^k is assumed to be odd and p is odd, p^{k+1} is the product of two odd integers is therefore odd.

for a valid explanation from a previous correct argument

Thus p^{n+1} is an odd integer for all n if p is an odd integer.

Source: 2010 Q12 AH Maths

(15)

Prove by contradiction that if x is an irrational number, then 2 + x is irrational.

1

Answer:

Assume 2 + x is rational 1
and let 2 +
$$x = \frac{p}{2}$$
 where p, q are integers. 1

and let
$$2 + x = \frac{p}{q}$$
 where p , q are integers.

So
$$x = \frac{p}{q} - 2$$

$$= \frac{p - 2q}{q}$$
Since $p = 2q$ and q are integers, it follows

as a single fraction

1

Since p - 2q and q are integers, it follows that x is rational. This is a contradiction.

Source: 2009 Q4 AH Maths

(16)

Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} \frac{1}{r(r+1)} = 1 - \frac{1}{n+1}.$$

Answer:

When
$$n = 1$$
, LHS = $\frac{1}{1 \times 2} = \frac{1}{2}$, RHS = $1 - \frac{1}{2} = \frac{1}{2}$. So true when $n = 1$.

Assume true for
$$n = k$$
, $\sum_{r=1}^{k} \frac{1}{r(r+1)} = 1 - \frac{1}{k+1}$.

Consider n = k + 1

$$\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \sum_{r=1}^{k} \frac{1}{r(r+1)} + \frac{1}{(k+1)(k+2)}$$

$$= 1 - \frac{1}{k+1} + \frac{1}{(k+1)(k+2)}$$

$$= 1 - \frac{k+2-1}{(k+1)(k+2)} = 1 - \frac{k+1}{(k+1)((k+1)+1)}$$

$$= 1 - \frac{1}{((k+1)+1)}$$
1

Thus, if true for n = k, statement is true for n = k + 1, and, since true for n = 1, true for all $n \ge 1$.

Source: 2008 Q11 AH Maths

(17)

For each of the following statements, decide whether it is true or false and prove your conclusion.

- A For all natural numbers m, if m^2 is divisible by 4 then m is divisible by 4.
- B The cube of any odd integer p plus the square of any even integer q is always odd.

Answers:

(a) Counter example m = 2.

1,1

So statement is false.

(b) Let the numbers be 2n + 1 and 2m then

1M

$$(2n + 1)^3 + (2m)^2 = 8n^3 + 12n^2 + 6n + 1 + 4m^2$$

1

$$= 2(4n^3 + 6n^2 + 3n + 2m^2) + 1$$

which is odd.

OR

Proving algebraically that either the cube of an odd number is odd or the square of an even number is even.

1

1

Odd cubed is odd and even squared is even.

1

So the sum of them is odd.

1

Source: 2007 Q12 AH Maths

(18)

Prove by induction that for a > 0,

$$(1+a)^n \ge 1 + na$$

for all positive integers n.

Answers:

Consider
$$n = 1$$
, LHS = $(1 + a)$, RHS = $1 + a$ so true for $n = 1$.

Assume that $(1 + a)^k \ge 1 + ka$ and consider $(1 + a)^{k+1}$.

 $(1 + a)^{k+1} = (1 + a)(1 + a)^k$
 $\ge (1 + a)(1 + ka)$
 $= 1 + a + ka + ka^2$
 $= 1 + (k + 1)a + ka^2$
 $> 1 + (k + 1)a$ since $ka^2 > 0$

as required. So since true for n=1, by mathematical induction statement is true for all $n \ge 1$.