

advancedhighermaths.co.uk

Complex Numbers

AH Maths Exam Questions

Source: 2019 Specimen P1 Q5 AH Maths

(1) The complex number z = 2 + i is a root of the polynomial equation $z^4 - 6z^3 + 16z^2 - 22z + 15 = 0$.

Find the remaining roots.

Answers:

•1 state second solution

•3 create quadratic factor

•2 create two linear factors

 set up algebraic division or equivalent

•5 complete algebraic division

 \bullet^1 z=2-i

 \bullet^2 (z-2+i) and (z-2-i)

 $e^3 z^2 - 4z + 5$

•4 z^2-4z+5 $z^4-6z^3+16z^2-22z+15$

•5

$$z^{2}-2z+3$$

$$\underline{z^{2}-4z+5} \quad z^{4}-6z^{3}+16z^{2}-22z+15$$

$$\underline{z^{4}-4z^{3}+5z^{2}}$$

$$-2z^{3}+11z^{2}-22z+15$$

$$\underline{-2z^{3}+8z^{2}-10z}$$

$$3z^{2}-12z+15$$

$$\underline{3z^{2}-12z+15}$$

$$0$$

•6 obtain remaining two solutions

•6 $z = 1 \pm \sqrt{2} i$

Source: 2019 Specimen P2 Q7 AH Maths

(2) Let
$$z = \sqrt{3} - i$$
.

- (a) Plot z on an Argand diagram.
- (b) Let w = az where a > 0, $a \in \mathbb{R}$. Express w in polar form.
- (c) Express w^8 in the form $ka^n(x+i\sqrt{y})$ where $k, x, y \in \mathbb{Z}$.

(a)	• ¹ correctly plot z on Argand diagram	• 1 Im O Re -1
(b)	•² find modulus or argument	• 2 $ w = 2a$ or $\arg(w) = -\frac{\pi}{6}$
	•³ express in polar form	• $w = 2a \left(\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right)$
(c)	Method 1	
	• 4 process modulus	• ⁴ 256 <i>a</i> ⁸
	• 5 process argument	•5 $\left(\cos\left(-\frac{8\pi}{6}\right) + i\sin\left(-\frac{8\pi}{6}\right)\right)$
	• 6 evaluate and express in form $ka^n \left(x + i\sqrt{y}\right)$	•6 $w^8 = 128a^8 \left(-1 + i\sqrt{3}\right)$
(c)	Method 2	
	• 4 find w^2 and attempt to find a higher power of w	•4 eg $w^2 = a^2 (2 - 2i\sqrt{3})$ and $w^3 = a^2 (2 - 2i\sqrt{3}) \times a(\sqrt{3} - i)$.
	• ⁵ obtain w ⁴	$\bullet^5 w^4 = a^4 \left(-8 - 8i\sqrt{3} \right)$
	• 6 complete expansion and express in form $ka^n(x+i\sqrt{y})$	•6 $w^8 = 128a^8 \left(-1 + i\sqrt{3}\right)$

Source: 2019 Q18 AH Maths

(3) The complex number w has been plotted on an Argand diagram, as shown below.

- (a) Express w in
 - (i) Cartesian form
 - (ii) polar form.
- (b) The complex number z_1 is a root of $z^3 = w$, where

$$z_1 = k \left(\cos \frac{\pi}{m} + i \sin \frac{\pi}{m} \right)$$

for integers k and m.

Given that a = 4,

- (i) use de Moivre's theorem to obtain the values of k and m, and
- (ii) find the remaining roots.

(a)	(i) •¹ write in Cartesian form	$\bullet^1 a - a\sqrt{3}i$
-----	--------------------------------	-----------------------------

((ii)	•² calculate modulus 1,6	•² 2 <i>a</i>
		•³ calculate argument 2,3,4	\bullet^3 $-\frac{\pi}{3}$
		• ⁴ write in polar form ^{1,4,5,6}	•4 $2a\left(\cos\left(-\frac{\pi}{3}\right)+i\sin\left(-\frac{\pi}{3}\right)\right)$

(b)	(i)	•5 begin process 1	•5 $z_1 = 8^{\frac{1}{3}} \left(\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right)^{\frac{1}{3}}$ stated or implied by •6
		•6 complete process 1	
		\bullet^7 state value of k 1,2	\bullet^7 $k=2$
		\bullet^8 state value of m ^{1,2}	\bullet ⁸ $m = -9$

(ii)	•9 begin to add or subtract $\frac{2\pi}{3}$ to or	•9 $\pm \frac{2\pi}{3}$ stated or implied by •10
	from argument of z_1 • 10 state roots	$\bullet^{10} z_2 = 2\left(\cos\frac{5\pi}{9} + i\sin\frac{5\pi}{9}\right)$ $z_3 = 2\left(\cos\left(-\frac{7\pi}{9}\right) + i\sin\left(-\frac{7\pi}{9}\right)\right)$

Source: 2018 Q4 AH Maths

- (4) Given that $z_1 = 2 + 3i$ and $z_2 = p - 6i$, $p \in \mathbb{R}$, find:
 - (a) $z_1\overline{z}_2$;
 - (b) the value of p such that $z_1\overline{z_2}$ is a real number.

Answers:

(a)
$$(2p-18) + (3p+12)i$$
 (b) $p = -4$

(b)
$$p = -4$$

Source: 2018 Q10 AH Maths

(5) Given z = x + iy, sketch the locus in the complex plane given by |z| = |z - 2 + 2i|.

Answer:

- substitute, collect real and imaginary parts and equate moduli
- 2 process to obtain a linear equation in x and y
- sketch consistent with equation 1,2

•
$$|x+iy| = |(x-2)+(y+2)i|$$

- 3 complete sketch

Other methods available - see Marking Scheme

Source: 2017 Q17 AH Maths

(6)

The complex number z=2+i is a root of the polynomial equation $z^4-6z^3+16z^2-22z+q=0$, where $q\in\mathbb{Z}$.

- (a) State a second root of the equation.
- (b) Find the value of \boldsymbol{q} and the remaining roots.
- (c) Show the solutions to $z^4 6z^3 + 16z^2 22z + q = 0$ on an Argand diagram.

Answers:

- (a) second root is 2 i
- (b) q = 15, remaining roots $1 \pm \sqrt{2}i$

Source: 2016 Q8 AH Maths

(7)

Let $z = \sqrt{3} - i$.

- (a) Plot z on an Argand diagram.
- (b) Let w = az where a > 0, $a \in \mathbb{R}$. Express w in polar form.
- (c) Express w^8 in the form $ka^n(x+i\sqrt{y})$ where $k, x, y \in \mathbb{Z}$.

Answers:

(a)

- (b) $w = 2a \left(\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right)$
- (c) $w^8 = 128a^8(-1 + i\sqrt{3})$

Source: 2015 Q13 AH Maths

By writing z in the form x + iy: (8)

- (a) solve the equation $z^2 = |z|^2 4$;
- (b) find the solutions to the equation $z^2 = i(|z|^2 4)$.

Answers:

(a)
$$z = \pm \sqrt{2i}$$

(b)
$$z = 1 - i$$
 & $z = -1 + i$

Source: 2013 Q7 AH Maths

Given that $z = 1 - \sqrt{3}i$, write down \overline{z} and express \overline{z}^2 in polar form. (9)

Answers:

$$1+\sqrt{3}i$$

$$4(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3})$$

Source: 2013 Q10 AH Maths

Describe the loci in the complex plane given by: (10)

(a)
$$|z+i|=1$$
;

(a)
$$|z+i|=1$$
;
(b) $|z-1|=|z+5|$.

Answers:

(a) Circle centre (0, -1) radius 1 (b) Straight line with equation x = -2

Source: 2014 Q16 AH Maths

(11)

- (a) Express -1 as a complex number in polar form and hence determine the solutions to the equation $z^4 + 1 = 0$.
- (b) Write down the four solutions to the equation $z^4 1 = 0$.
- (c) Plot the solutions of both equations on an Argand diagram.
- (d) Show that the solutions of $z^4 + 1 = 0$ and the solutions of $z^4 1 = 0$ are also solutions of the equation $z^8 1 = 0$.
- (e) Hence identify all the solutions to the equation

$$z^6 + z^4 + z^2 + 1 = 0.$$

Answers:

(a)
$$z = cos\left(\frac{\pi}{4}\right) \pm isin\left(\frac{\pi}{4}\right)$$
, $cos\left(\frac{3\pi}{4}\right) \pm isin\left(\frac{3\pi}{4}\right)$

(b)
$$z = \pm i$$
, ± 1

(c)

(d)
$$z^8-1=(z^4+1)(z^4-1)$$

Then the solutions to $z^4 + 1 = 0$ and $z^4 - 1 = 0$ are also the solutions to $z^8 - 1 = 0$.

(e) Observe that $z^6 + z^4 + z^2 + 1 = (z^2 + 1)(z^4 + 1)$

OR

$$z^{8}-1=(z^{4}+1)(z^{2}+1)(z^{2}-1)$$

 \therefore Six solutions are those above except $z = \pm 1$

Source: 2012 Q13 AH Maths

(12)

Given that (-1 + 2i) is a root of the equation

$$z^3 + 5z^2 + 11z + 15 = 0$$
,

1

1

1

obtain all the roots.

Plot all the roots on an Argand diagram.

Answers:

Since w is a root, $\overline{w} = -1 - 2i$ is also a root.

The corresponding factors are

$$(z + 1 - 2i)$$
 and $(z + 1 + 2i)$

from which

$$((z+1)-2i)((z+1)+2i) = (z+1)^2 + 4$$
$$= z^2 + 2z + 5$$

 $z^3 + 5z^2 + 11z + 15 = (z^2 + 2z + 5)(z + 3)$

The roots are (-1 + 2i), (-1 - 2i) and -3.

for conjugate

evidence needed

for stating roots together

for two correct points for third correct point

Source: 2011 Q10 AH Maths

(13)

Identify the locus in the complex plane given by

$$|z-1|=3.$$

Show in a diagram the region given by $|z-1| \le 3$.

Answers:

Let
$$z = x + iy$$
, so
 $z - 1 = (x - 1) + iy$. 1
 $|z - 1|^2 = (x - 1)^2 + y^2 = 9$. 1

The locus is the circle with centre (1, 0) and radius 3.

Can subsume the first two marks.

1 for circle

1

1

for shading or other indication

Source: 2010 Q16 AH Maths

(14)

Given $z = r(\cos\theta + i\sin\theta)$, use de Moivre's theorem to express z^3 in polar form.

Hence obtain $\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)^3$ in the form a + ib.

Hence, or otherwise, obtain the roots of the equation $z^3 = 8$ in Cartesian form.

Denoting the roots of $z^3 = 8$ by z_1 , z_2 , z_3 :

- (a) state the value $z_1 + z_2 + z_3$;
- (b) obtain the value of $z_1^6 + z_2^6 + z_3^6$.

Answers:

$$z^3 = r^3(\cos 3\theta + i \sin 3\theta)$$

$$(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})^3 = \cos 2\pi + i \sin 2\pi$$
 1

$$a = 1; b = 0$$
 1

Method 1

$$r^3(\cos 3\theta + i\sin 3\theta) = 8$$

$$r^3 \cos 3\theta = 8$$
 and $r^3 \sin 3\theta = 0$ 1
 $\Rightarrow r = 2$; $3\theta = 0$, 2π , 4π 1

Roots are 2, $2(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$, $2(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3})$. 1

In cartesian form: 2, $(-1 + i\sqrt{3})$, $(-1 - i\sqrt{3})$ 1

See Marking Scheme for alternative method

Source: 2009 Q6 AH Maths

(15)

Express $z = \frac{(1+2i)^2}{7-i}$ in the form a+ib where a and b are real numbers.

Show z on an Argand diagram and evaluate |z| and arg (z).

$$\frac{(1+2i)^2}{7-i} = \frac{1+4i-4}{7-i}$$

$$= \frac{-3+4i}{7-i} \times \frac{7+i}{7+i}$$

$$= \frac{(-3+4i)(7+i)}{50}$$

$$= -\frac{1}{2} + \frac{1}{2}i$$

$$|z| = \sqrt{\frac{1}{4} + \frac{1}{4}} = \frac{1}{2}\sqrt{2}$$

$$\arg z = \tan^{-1} \frac{\frac{1}{2}}{-\frac{1}{2}} = \tan^{-1} (-1) = \frac{3\pi}{4} \text{ (or } 135^{\circ}).$$

Source: 2008 Q16 AH Maths

(16)

Given $z = \cos \theta + i \sin \theta$, use de Moivre's theorem to write down an expression for z^k in terms of θ , where k is a positive integer.

Hence show that $\frac{1}{z^k} = \cos k\theta - i \sin k\theta$.

Deduce expressions for $\cos k\theta$ and $\sin k\theta$ in terms of z.

Show that
$$\cos^2 \theta \sin^2 \theta = -\frac{1}{16} \left(z^2 - \frac{1}{z^2} \right)^2$$
.

Hence show that $\cos^2 \theta \sin^2 \theta = a + b \cos 4\theta$, for suitable constants a and b.

Answers:

$$z^{k} = \cos k\theta + i \sin k\theta,$$

$$\sin \frac{1}{z^{k}} = \frac{1}{\cos k\theta + i \sin k\theta} = \frac{\cos k\theta - i \sin k\theta}{\cos^{2} k\theta + \sin^{2} k\theta} = \cos k\theta - i \sin k\theta.$$

Adding the expressions for z^k and $\frac{1}{z^k}$ gives $z^k + \frac{1}{z^k} = 2 \cos k\theta$ so $\cos k\theta = \frac{1}{2}(z^k + z^{-k})$.

Subtracting the expressions for z^k and $\frac{1}{z^k}$ gives $z^k - \frac{1}{z^k} = 2i \sin k\theta$ so $\sin k\theta = \frac{1}{2i}(z^k - z^{-k})$.

For k = 1

$$\cos^2 \theta \sin^2 \theta = (\cos \theta \sin \theta)^2$$
$$= \left(\frac{\left(z + \frac{1}{z}\right)\left(z - \frac{1}{z}\right)}{4i}\right)^2$$
$$= -\frac{1}{16}\left(z^2 - \frac{1}{z^2}\right)^2.$$

$$\left(z^{2} - \frac{1}{z^{2}}\right)^{2} = z^{4} + \frac{1}{z^{4}} - 2 = 2\cos 4\theta - 2$$

$$\Rightarrow \cos^{2}\theta \sin^{2}\theta = \frac{1}{8} - \frac{1}{8}\cos 4\theta,$$

i.e. $a = \frac{1}{8}$ and $b = \frac{1}{8}$.

OR

A correct trigonometric proof that $\cos^2 \theta \sin^2 \theta = \frac{1}{8} - \frac{1}{8} \cos 4\theta$.

Source: 2007 Q3 AH Maths

(17)

Show that z = 3 + 3i is a root of the equation $z^3 - 18z + 108 = 0$ and obtain the remaining roots of the equation.

Answers:

$$(3 + 3i)^3 = 27 + 81i + 81i^2 + 27i^3 = -54 + 54i$$
. Thus
 $(3 + 3i)^3 - 18(3 + 3i) + 108 = -54 + 54i - 54 - 54i + 108 = 0$

Since 3 + 3i is a root, 3 - 3i is a root.

These give a factor
$$(z - (3+3i))(z - (3-3i)) = (z-3)^2 + 9 = z^2 - 6z + 18$$
.
 $z^3 - 18z + 108 = (z^2 - 6z + 18)(z + 6)$

The remaining roots are 3 - 3i and -6.

Source: 2007 Q11 AH Maths

(18)

Given that |z-2| = |z+i|, where z = x + iy, show that ax + by + c = 0 for suitable values of a, b and c.

Indicate on an Argand diagram the locus of complex numbers z which satisfy |z-2|=|z+i|.

$$|z - 2| = |z + i|$$

$$|(x - 2) + iy| = |x + (y + 1)i|$$

$$(x - 2)^{2} + y^{2} = x^{2} + (y + 1)^{2}$$

$$-4x + 4 = 2y + 1$$

$$4x + 2y - 3 = 0$$

