advancedhighermaths.co.uk

Complex Numbers

AH Maths Exam Questions

Source: 2019 Specimen P1 Q5 AH Maths
(1) The complex number $z=2+i$ is a root of the polynomial equation $z^{4}-6 z^{3}+16 z^{2}-22 z+15=0$.

Find the remaining roots.

Answers:
-1 state second solution
-1 $z=2-i$
-2 $(z-2+i)$ and $(z-2-i)$
-3 $z^{2}-4 z+5$
-4 $z ^ { 2 } - 4 z + 5 \longdiv { z ^ { 4 } - 6 z ^ { 3 } + 1 6 z ^ { 2 } - 2 2 z + 1 5 }$ equivalent

- ${ }^{5}$ complete algebraic division

$$
\frac{z^{2}-2 z+3}{\frac{z^{2}-4 z+5}{z^{4}-6 z^{3}+16 z^{2}-22 z+15}} \begin{gathered}
\frac{z^{4}-4 z^{3}+5 z^{2}}{-2 z^{3}+11 z^{2}-22 z+15} \\
\frac{-2 z^{3}+8 z^{2}-10 z}{3 z^{2}-12 z+15} \\
3 z^{2}-12 z+15
\end{gathered}
$$

-6 obtain remaining two solutions

$$
z=1 \pm \sqrt{2} i
$$

Source: 2019 Specimen P2 Q7 AH Maths
(2)

Let $z=\sqrt{3}-i$.
(a) Plot z on an Argand diagram.
(b) Let $w=a z$ where $a>0, a \in \mathbb{R}$.

Express w in polar form.

(c) Express w^{8} in the form $k a^{n}(x+i \sqrt{y})$ where $k, x, y \in \mathbb{Z}$.

Answers:

(a)	- ${ }^{1}$ correctly plot z on Argand diagram	
(b)	-2 find modulus or argument - ${ }^{3}$ express in polar form	-2 $\|w\|=2 a$ or $\arg (w)=-\frac{\pi}{6}$ - ${ }^{3} w=2 a\left(\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right)$
(c)	Method 1 - 4 process modulus - ${ }^{5}$ process argument - ${ }^{6}$ evaluate and express in form $k a^{n}(x+i \sqrt{y})$	- ${ }^{4} 256 a^{8}$. ${ }^{5} \ldots\left(\cos \left(-\frac{8 \pi}{6}\right)+i \sin \left(-\frac{8 \pi}{6}\right)\right)$ - $6 w^{8}=128 a^{8}(-1+i \sqrt{3})$
(c)	Method 2 - ${ }^{4}$ find w^{2} and attempt to find a higher power of w - ${ }^{5}$ obtain w^{4} - ${ }^{6}$ complete expansion and express in form $k a^{n}(x+i \sqrt{y})$	- 4 eg $w^{2}=a^{2}(2-2 i \sqrt{3})$ and $w^{3}=a^{2}(2-2 i \sqrt{3}) \times a(\sqrt{3}-i)$. - $5 w^{4}=a^{4}(-8-8 i \sqrt{3})$ - $6 w^{8}=128 a^{8}(-1+i \sqrt{3})$

Source: 2019 Q18 AH Maths
(3) The complex number w has been plotted on an Argand diagram, as shown below.

(a) Express w in
(i) Cartesian form
(ii) polar form.
(b) The complex number z_{1} is a root of $z^{3}=w$, where

$$
z_{1}=k\left(\cos \frac{\pi}{m}+i \sin \frac{\pi}{m}\right)
$$

for integers k and m.

Given that $a=4$,
(i) use de Moivre's theorem to obtain the values of k and m, and
(ii) find the remaining roots.

Answers:

(a)	(i)	\bullet write in Cartesian form	$\bullet^{1} a-a \sqrt{3} i$

(ii)	-2 calculate modulus 1,6 - ${ }^{3}$ calculate argument $\quad 2,3,4$ - ${ }^{4}$ write in polar form ${ }^{1,4,5,6}$	-2 $2 a$ - ${ }^{3}-\frac{\pi}{3}$ - $2 a\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)$

(b)	(i)	${ }^{-5}$ begin process ${ }^{1}$ ${ }^{6}$ complete process ${ }^{1}$ \bullet^{7} state value of $k^{1,2}$ \bullet^{8} state value of $m^{1,2}$	- ${ }^{5} z_{1}=8^{\frac{1}{3}}\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)^{\frac{1}{3}}$ stated or implied by ${ }^{6}$ - $z_{1}=8^{\frac{1}{3}}\left(\cos \left(-\frac{\pi}{9}\right)+i \sin \left(-\frac{\pi}{9}\right)\right)$ ${ }^{-7} k=2$ ${ }^{8} \quad m=-9$

(ii)	- ${ }^{9}$ begin to add or subtract $\frac{2 \pi}{3}$ to or from argument of z_{1} - ${ }^{10}$ state roots	${ }^{9} \ldots \pm \frac{2 \pi}{3}$ stated or implied by \bullet^{10} $\begin{aligned} { }^{10} z_{2} & =2\left(\cos \frac{5 \pi}{9}+i \sin \frac{5 \pi}{9}\right) \\ z_{3} & =2\left(\cos \left(-\frac{7 \pi}{9}\right)+i \sin \left(-\frac{7 \pi}{9}\right)\right) \end{aligned}$

Source: 2018 Q4 AH Maths
(4) Given that $z_{1}=2+3 i$ and $z_{2}=p-6 i, p \in \mathbb{R}$, find:
(a) $z_{1} \bar{z}_{2}$;
(b) the value of p such that $z_{1} \bar{z}_{2}$ is a real number.

Answers:
(a) $(2 p-18)+(3 p+12) i$
(b) $p=-4$

Source: 2018 Q10 AH Maths
(5) Given $z=x+i y$, sketch the locus in the complex plane given by $|z|=|z-2+2 i|$.

Answer:

- ${ }^{1}$ substitute, collect real and imaginary parts and equate moduli
- ${ }^{2}$ process to obtain a linear equation in x and y
${ }^{3}{ }^{3}$ sketch consistent with equation ${ }^{1,2}$

$$
\left\lvert\, \begin{aligned}
& \bullet|x+i y|=|(x-2)+(y+2) i| \\
& \bullet{ }^{2} \text { eg } y=x-2 \\
& \bullet \text { complete sketch }
\end{aligned}\right.
$$

Other methods available - see Marking Scheme

Source: 2017 Q17 AH Maths
(6) The complex number $z=2+i$ is a root of the polynomial equation $z^{4}-6 z^{3}+16 z^{2}-22 z+q=0$, where $q \in \mathbb{Z}$.
(a) State a second root of the equation.
(b) Find the value of q and the remaining roots.
(c) Show the solutions to $z^{4}-6 z^{3}+16 z^{2}-22 z+q=0$ on an Argand diagram.

Answers:
(a) second root is $2-i$
(b) $q=15$, remaining roots $1 \pm \sqrt{2 i}$
(c)

Source: 2016 Q8 AH Maths

(7)

Let $z=\sqrt{3}-i$.
(a) Plot z on an Argand diagram.
(b) Let $w=a z$ where $a>0, a \in \mathbb{R}$.

Express w in polar form.
(c) Express w^{8} in the form $k a^{n}(x+i \sqrt{y})$ where $k, x, y \in \mathbb{Z}$.

Answers:
(a)

(b) $w=2 a\left(\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right)$
(c) $w^{8}=128 a^{8}(-1+i \sqrt{3})$

Source: 2015 Q13 AH Maths
(8) By writing z in the form $x+i y$:
(a) solve the equation $z^{2}=|z|^{2}-4$;
(b) find the solutions to the equation $z^{2}=i\left(|z|^{2}-4\right)$.

Answers:
(a) $z= \pm \sqrt{2 i}$
(b) $z=1-i \quad \& \quad z=-1+i$

Source: 2013 Q7 AH Maths

(9) Given that $z=1-\sqrt{3} i$, write down \bar{z} and express \bar{z}^{2} in polar form.

Answers:

$$
\begin{aligned}
& 1+\sqrt{3} i \\
& 4\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)
\end{aligned}
$$

Source: 2013 Q10 AH Maths
(10)

Describe the loci in the complex plane given by:
(a) $|z+i|=1$;
(b) $|z-1|=|z+5|$.

Answers:
(a) Circle centre $(0,-1)$ radius $1 \quad$ (b) Straight line with equation $x=-2$

Source: 2014 Q16 AH Maths

(a) Express -1 as a complex number in polar form and hence determine the solutions to the equation $z^{4}+1=0$.
(b) Write down the four solutions to the equation $z^{4}-1=0$.
(c) Plot the solutions of both equations on an Argand diagram.
(d) Show that the solutions of $z^{4}+1=0$ and the solutions of $z^{4}-1=0$ are also solutions of the equation $z^{8}-1=0$.
(e) Hence identify all the solutions to the equation

$$
z^{6}+z^{4}+z^{2}+1=0
$$

Answers:

(a) $z=\cos \left(\frac{\pi}{4}\right) \pm i \sin \left(\frac{\pi}{4}\right), \quad \cos \left(\frac{3 \pi}{4}\right) \pm i \sin \left(\frac{3 \pi}{4}\right)$
(b) $z= \pm i, \quad \pm 1$
(c)

(d) $z^{8}-1=\left(z^{4}+1\right)\left(z^{4}-1\right)$

Then the solutions to $z^{4}+1=0$ and $z^{4}-1=0$ are also the solutions to $z^{8}-1=0$.
(e) Observe that $z^{6}+z^{4}+z^{2}+1=\left(z^{2}+1\right)\left(z^{4}+1\right)$

OR

$$
z^{8}-1=\left(z^{4}+1\right)\left(z^{2}+1\right)\left(z^{2}-1\right)
$$

\therefore Six solutions are those above except $z= \pm 1$
(12) Given that $(-1+2 i)$ is a root of the equation

$$
z^{3}+5 z^{2}+11 z+15=0
$$

obtain all the roots.
Plot all the roots on an Argand diagram.

Answers:
Since w is a root, $\bar{w}=-1-2 i$ is also a root. $\quad \mathbf{1} \mid$ for conjugate
The corresponding factors are

$$
(z+1-2 i) \text { and }(z+1+2 i)
$$

from which

$$
\begin{gathered}
((z+1)-2 i)((z+1)+2 i)=(z+1)^{2}+4 \\
=z^{2}+2 z+5 \\
z^{3}+5 z^{2}+11 z+15=\left(z^{2}+2 z+5\right)(z+3)
\end{gathered}
$$

The roots are $(-1+2 i),(-1-2 i)$ and -3 .

1 for stating roots together
1
1 evidence needed

1 for two correct points
1 for third correct point
(13) Identify the locus in the complex plane given by

$$
|z-1|=3 \text {. }
$$

Show in a diagram the region given by $|z-1| \leq 3$.

Answers:

Let $z=x+i y$, so
$z-1=(x-1)+i y$.
$|z-1|^{2}=(x-1)^{2}+y^{2}=9$.
The locus is the circle with centre $(1,0)$ and radius 3 .

$\mathbf{1}$	for circle
$\mathbf{1}$	for shading or other indication

Source: 2010 Q16 AH Maths

Given $z=r(\cos \theta+i \sin \theta)$, use de Moivre's theorem to express z^{3} in polar form.
Hence obtain $\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)^{3}$ in the form $a+i b$.
Hence, or otherwise, obtain the roots of the equation $z^{3}=8$ in Cartesian form.
Denoting the roots of $z^{3}=8$ by z_{1}, z_{2}, z_{3} :
(a) state the value $z_{1}+z_{2}+z_{3}$;
(b) obtain the value of $z_{1}^{6}+z_{2}^{6}+z_{3}^{6}$.

Answers:

$$
\begin{array}{cl}
z^{3}=r^{3}(\cos 3 \theta+i \sin 3 \theta) & \mathbf{1} \\
\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)^{3}=\cos 2 \pi+i \sin 2 \pi & \mathbf{1} \\
a=1 ; b=0 & \mathbf{1}
\end{array}
$$

Method 1

$$
\begin{gathered}
r^{3}(\cos 3 \theta+i \sin 3 \theta)=8 \\
r^{3} \cos 3 \theta=8 \text { and } r^{3} \sin 3 \theta=0 \\
\Rightarrow r=2 ; 3 \theta=0,2 \pi, 4 \pi
\end{gathered}
$$

Roots are $2,2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right), 2\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right) . \mathbf{1}$
In cartesian form: 2, $(-1+i \sqrt{3}),(-1-i \sqrt{3}) \mathbf{1}$

Source: 2009 Q6 AH Maths

(15) Express $z=\frac{(1+2 i)^{2}}{7-i}$ in the form $a+i b$ where a and b are real numbers. Show z on an Argand diagram and evaluate $|z|$ and $\arg (z)$.

Answers:

$$
\begin{aligned}
\frac{(1+2 i)^{2}}{7-i} & =\frac{1+4 i-4}{7-i} \\
& =\frac{-3+4 i}{7-i} \times \frac{7+i}{7+i} \\
& =\frac{(-3+4 i)(7+i)}{50} \\
& =-\frac{1}{2}+\frac{1}{2} i
\end{aligned}
$$

$$
|z|=\sqrt{\frac{1}{4}+\frac{1}{4}}=\frac{1}{2} \sqrt{2}
$$

$$
\arg z=\tan ^{-1} \frac{\frac{1}{2}}{-\frac{1}{2}}=\tan ^{-1}(-1)=\frac{3 \pi}{4}\left(\text { or } 135^{\circ}\right) .
$$

Source: 2008 Q16 AH Maths

(16) Given $z=\cos \theta+i \sin \theta$, use de Moivre's theorem to write down an expression for z^{k} in terms of θ, where k is a positive integer.
Hence show that $\frac{1}{z^{k}}=\cos k \theta-i \sin k \theta$.
Deduce expressions for $\cos k \theta$ and $\sin k \theta$ in terms of z.
Show that $\cos ^{2} \theta \sin ^{2} \theta=-\frac{1}{16}\left(z^{2}-\frac{1}{z^{2}}\right)^{2}$.
Hence show that $\cos ^{2} \theta \sin ^{2} \theta=a+b \cos 4 \theta$, for suitable constants a and b.

Answers:

$z^{k}=\cos k \theta+i \sin k \theta$,
so $\frac{1}{z^{k}}=\frac{1}{\cos k \theta+i \sin k \theta}=\frac{\cos k \theta-i \sin k \theta}{\cos ^{2} k \theta+\sin ^{2} k \theta}=\cos k \theta-i \sin k \theta$.

Adding the expressions for z^{k} and $\frac{1}{z^{k}}$ gives $z^{k}+\frac{1}{z^{k}}=2 \cos k \theta$ so $\cos k \theta=\frac{1}{2}\left(z^{k}+z^{-k}\right)$.
Subtracting the expressions for z^{k} and $\frac{1}{z^{k}}$ gives $z^{k}-\frac{1}{z^{k}}=2 i \sin k \theta$ so $\sin k \theta=\frac{1}{2 i}\left(z^{k}-z^{-k}\right)$.

For $k=1$

$$
\begin{aligned}
& \cos ^{2} \theta \sin ^{2} \theta=(\cos \theta \sin \theta)^{2} \\
&=\left(\frac{\left(z+\frac{1}{z}\right)\left(z-\frac{1}{z}\right)}{4 i}\right)^{2} \\
&=-\frac{1}{16}\left(z^{2}-\frac{1}{z^{2}}\right)^{2} \\
&\left(z^{2}-\frac{1}{z^{2}}\right)^{2}=z^{4}+\frac{1}{z^{4}}-2=2 \cos 4 \theta-2 \\
& \Rightarrow \cos ^{2} \theta \sin ^{2} \theta=\frac{1}{8}-\frac{1}{8} \cos 4 \theta
\end{aligned}
$$

i.e. $a=\frac{1}{8}$ and $b=\frac{1}{8}$.

OR
A correct trigonometric proof that $\cos ^{2} \theta \sin ^{2} \theta=\frac{1}{8}-\frac{1}{8} \cos 4 \theta$.

Source: 2007 Q3 AH Maths

(17) Show that $z=3+3 i$ is a root of the equation $z^{3}-18 z+108=0$ and obtain the remaining roots of the equation.

Answers:

$$
\begin{array}{r}
(3+3 i)^{3}=27+81 i+81 i^{2}+27 i^{3}=-54+54 i . \text { Thus } \\
(3+3 i)^{3}-18(3+3 i)+108= \\
-54+54 i-54-54 i+108=0
\end{array}
$$

Since $3+3 i$ is a root, $3-3 i$ is a root.
These give a factor $(z-(3+3 i))(z-(3-3 i))=(z-3)^{2}+9=z^{2}-6 z+18$.

$$
z^{3}-18 z+108=\left(z^{2}-6 z+18\right)(z+6)
$$

The remaining roots are $3-3 i$ and -6 .

Source: 2007 Q11 AH Maths

(18) Given that $|z-2|=|z+i|$, where $z=x+i y$, show that $a x+b y+c=0$ for suitable values of a, b and c.

Indicate on an Argand diagram the locus of complex numbers z which satisfy $|z-2|=|z+i|$.

Answers:

$$
\begin{aligned}
|z-2| & =|z+i| \\
|(x-2)+i y| & =|x+(y+1) i| \\
(x-2)^{2}+y^{2} & =x^{2}+(y+1)^{2} \\
-4 x+4 & =2 y+1 \\
4 x+2 y-3 & =0
\end{aligned}
$$

