Gradients - Lesson 2

Gradients of Straight Lines (Non-Calculator)

LI

- Know the meaning of Gradient of a Straight Line.
- Know the 4 types of gradients.
- Calculate the gradient of a straight line when told 2 points on it.

<u>SC</u>

- - integers.
- Simplify fractions.

Gradient Formula

$$m = \frac{\text{vertical distance}}{\text{horizontal distance}}$$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$$

- If $y_2 = y_1$, m = 0.
- If $x_2 = x_1$, m is undefined.

Calculate the gradient of the line joining the points (5,7) and (8,9).

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{9-7}{8-5}$$

$$m = \frac{2}{3}$$

Calculate the gradient of the line joining the points (6, -6) and (2, 12).

$$(6, -6)$$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$$

$$m = \frac{12 - (-6)}{2 - 6}$$

$$m = \frac{18}{-4}$$

$$m = -\frac{9}{2}$$

Calculate the gradient of the line joining the points (9,7) and (6,7).

$$\frac{x_1}{(9,7)}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{7-7}{6-9}$$

$$m = \frac{0}{-3}$$

$$\mathbf{m} = \mathbf{0}$$

Calculate the gradient of the line joining the points (-2, 4) and (-2, 5).

$$(-2,4)$$

$$(-2,5)$$
 \times_2 y_2

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{5-4}{-2-(-2)}$$

$$m = \frac{1}{0}$$

$$m = undefined$$

Calculate the gradients of the straight lines which have these coordinates on them (simplified where possible):

5)
$$(5, -4)$$
 and $(9, -4)$

7)
$$(2, 2)$$
 and $(10, -4)$

10)
$$(0, -11)$$
 and $(1, 0)$

Answers

- 1) (2, 5) and (4, 11) 3
- 2) (0, 15) and (4, 19)1
- 3) (0, 15) and (4, 30) 15/4
- 4) (2,5) and $(6,3)-\frac{1}{2}$
- 5) (5, -4) and (9, -4)0

- 8) (7, 14) and $(-14, 21) \frac{1}{3}$
- 9) (9,64) and (18,1)-7
- $|10\rangle$ (0, -11) and (1, 0) 11
- $|11\rangle$ (3, 35) and (21, 1)²
- 12) (40, 100) and (20,20) 4
- 6) (3,65) and $(3,109) \sim (13)$ (600,50) and (4,20)15/298
- 7) (2, 2) and $(10, -4) \frac{3}{4} | 14)$ (-40, 5) and $(80, 10) \frac{1}{24}$

- 1 Calculate the gradient of the straight line joining the following pairs of points.

- aA (2, 1) and B (3, 4)bC (-1, 6) and D (0, 4)cE (-1, -3) and F (1, 5)dG (-7, 2) and H (-4, -1)eJ (-2, 5) and K (1, 7)fM (-7, 3) and N (-3, -2)
- g P(-7, -8) and Q(-3, -2) h R(-11, 4) and S(-2, -8) i T(-9, -10) and U(-3, 5)
- Calculate the gradient of the line joining A (–3, 5) and B (7, 5). 2 a
 - The line in part a is horizontal. Which axis is it parallel to? b
 - C How could you have known from the coordinates that the line in a is horizontal?
- Calculate the gradient of the line joining C(5, 4) and D(5, -7). 3 a
 - The line in part a is vertical, its gradient is undefined. Which axis is it parallel to? b
 - How could you have known from the coordinates that the line is a is vertical? C
- 4 Calculate the gradient of the straight line joining the following pairs of points.
 - a $T\left(-\frac{1}{2}, -\frac{3}{2}\right)$ and $U\left(-\frac{9}{4}, \frac{15}{4}\right)$ b $V\left(\frac{1}{3}, \frac{1}{5}\right)$ and $W\left(-\frac{16}{9}, \frac{41}{15}\right)$
- 5 A is the point (5, 1) and B is the point (8, y). Find y if $m_{AB} = 2$.
- 6 C is the point (-1, -7) and D is the point (x, -5). Find x if $m_{CD} = -\frac{2}{5}$.
- 7 E is the point $\left(\frac{3}{2}, \frac{5}{3}\right)$ and F is the point $\left(\frac{11}{2}, y\right)$. Find y if $m_{EF} = -\frac{3}{4}$.
- 8 Find and simplify an expression for the gradient of the line joining $G(a, a^2)$ and H(-2, 4).

Answers

1 a $m_{AB} =$	3
----------------	---

b
$$m_{CD} = -2$$

$$c m_{EF} = 4$$

d
$$m_{GH} = -1$$

$$\mathbf{e} \qquad m_{JK} = \frac{2}{3}$$

$$f m_{MN} = -\frac{5}{4}$$

$$g m_{PQ} = \frac{3}{2}$$

$$h m_{RS} = -\frac{4}{3}$$

i
$$m_{TU} = \frac{5}{2}$$

2 a
$$m_{AB} = 0$$

b The line is parallel to the x-axis.

c The line is horizontal, because the vertical change is zero.

3 a The gradient is undefined.

b The line is parallel to the *y*-axis.

 The line is vertical because the horizontal change is zero.

4 a
$$m_{TU} = -3$$

b
$$m_{VW} = -\frac{6}{5}$$

5
$$y = 7$$

6
$$x = -6$$

7
$$y = -\frac{4}{3}$$

$$8 \quad m_{GH} = a - 2$$